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The Pre-Image Problem in Kernel Methods
James Tin-Yau Kwok and Ivor Wai-Hung Tsang

Abstract—In this paper, we address the problem of finding the
pre-image of a feature vector in the feature space induced by a
kernel. This is of central importance in some kernel applications,
such as on using kernel principal component analysis (PCA) for
image denoising. Unlike the traditional method in [1] which relies
on nonlinear optimization, our proposed method directly finds the
location of the pre-image based on distance constraints in the fea-
ture space. It is noniterative, involves only linear algebra and does
not suffer from numerical instability or local minimum problems.
Evaluations on performing kernel PCA and kernel clustering on
the USPS data set show much improved performance.

Index Terms—Kernel principal component analysis (PCA),
multidimensional scaling (MDS), pre-image.

I. INTRODUCTION

I N RECENT years, there has been a lot of interest in the
study of kernel methods [2]–[4]. The basic idea is to map

the data in the input space to a feature space via some non-
linear map , and then apply a linear method there. It is now
well-known that the computational procedure depends only on
the inner products1 in the feature space (where

), which can be obtained efficiently from a suitable
kernel function . Besides, kernel methods have the impor-
tant computational advantage that no nonconvex nonlinear op-
timization is involved. Thus, the use of kernels provides elegant
nonlinear generalizations of many existing linear algorithms. A
well-known example in supervised learning is the support vector
machines (SVMs). In unsupervised learning, the kernel idea has
also led to methods such as kernel-based clustering algorithms
[5], [6], kernel independent component analysis [7], and kernel
principal component analysis (PCA) [8].

While the mapping from input space to feature space is
of primary importance in kernel methods, the reverse mapping
from feature space back to input space (the pre-image problem)
is also useful. Consider for example the use of kernel PCA
for pattern denoising. Given some noisy patterns, kernel PCA
first applies linear PCA on the -mapped patterns in the fea-
ture space, and then performs denoising by projecting them onto
the subspace defined by the leading eigenvectors. These pro-
jections, however, are still in the feature space and have to be
mapped back to the input space in order to recover the denoised
patterns. Another example is in visualizing the clustering solu-
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1In this paper, vector/matrix transpose (in both the input and feature spaces)
is denoted by the superscript .

tion of a kernel-based clustering algorithm. Again, this involves
finding the pre-images of, say, the cluster centroids in the fea-
ture space. More generally, methods for finding pre-images can
be used as reduced set methods to compress a kernel expansion
(which is a linear combination of many feature vectors) into
one with fewer terms, and this can offer significant speed-ups
in many kernel applications [9], [10].

However, the exact pre-image typically does not exist [1], and
one can only settle for an approximate solution. But even this
is nontrivial as the dimensionality of the feature space can be
infinite. Schölkopf et al. [10] (and later in [1]) cast this as a
nonlinear optimization problem, which, for particular choices
of kernels (such as the Gaussian kernel2), can be solved by a
fixed-point iteration method. However, as mentioned in [1], this
method suffers from numerical instabilities. Moreover, as in any
nonlinear optimization problem, one can get trapped in a local
minimum and the pre-image obtained is, thus, sensitive to the
initial guess. On the other hand, a method for computing the
pre-images using only linear algebra has also been proposed [9],
though it only works for polynomial kernels of degree two.

While the inverse of typically does not exist, there is usu-
ally a simple relationship between feature-space distance and
input-space distance for many commonly used kernels [11]. In
this paper, we use this relationship together with the idea in
multidimensional scaling (MDS) [12] to address the pre-image
problem. The resultant procedure is noniterative and involves
only linear algebra.

Our exposition in the sequel will focus on the pre-image
problem in kernel PCA. However, this can be applied equally
well to other kernel methods, such as kernel -means clustering,
as will be experimentally demonstrated in Section IV. The rest
of this paper is organized as follows. Brief introduction to the
kernel PCA is given in Section II. Section III then describes
our proposed method. Experimental results are presented in
Section IV, and the last section gives some concluding remarks.
A preliminary version of this paper has appeared in [13].

II. KERNEL PCA

A. PCA in the Feature Space

In this section, we give a short review on the kernel PCA.
For clarity, centering of the -mapped patterns will be explicitly
performed in the following.

Given a set of patterns . Kernel PCA
performs the traditional linear PCA in the feature space corre-
sponding to the kernel . Analogous to linear PCA, it in-
volves the following eigen decomposition

2In Section IV-A2, an analogous iteration formula for polynomial kernels is
derived.
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Fig. 1.Pre-image problem in kernel PCA.

where is the kernel matrix with entries

(1)

is the centering matrix, is the identity matrix,
is an vector, with

is the matrix containing the eigenvec-
tors and contains the corresponding
eigenvalues. Denote the mean of the -mapped patterns by

and define the “centered” map as

The th orthonormal eigenvector of the covariance matrix in the
feature space can then be shown to be [8]

where . Denote the projection
of the -image of a pattern onto the th component by .
Then

(2)

where

and . Denote

(3)

then (2) can be written more compactly as .
Finally, the projection of onto the subspace
spanned by the first eigenvectors3 is

(4)

where is symmetric.

B. Iterative Scheme for Finding the Pre-Image

As is in the feature space, we have to find its
pre-image in order to recover the denoised pattern (Fig. 1).
As mentioned in Section I, the exact pre-image may not even
exist, and so we can only recover an where .
Mika et al. addressed this problem by minimizing the squared
distance between and [1]

(5)

where includes terms independent of . This, however, is a
nonlinear optimization problem. As mentioned in Section I, it
will be plagued by the problem of local minimum and is sensi-
tive to the initial guess of .

For particular choices of kernels, such as Gaussian kernels of
the form , this nonlinear optimiza-
tion can be solved by a fixed-point iteration method. On setting
the derivative of (5) to zero, the following iteration formula is
obtained:

(6)

3For simplicity, P '(x) will often be denoted as P'(x) in the sequel.
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Fig. 2. Basic idea of the proposed method.

Here4, and .
However, as mentioned in [1], this iteration scheme is numer-
ically unstable and one has to try a number of initial guesses
for .

Notice from (6), that the pre-image obtained is in the span of
’s. Besides, because of the exponential ,

the contributions of ’s typically drop rapidly with increasing
distance from the pre-image. These observations will be useful
in Sections III-B and C.

III. FINDING THE PRE-IMAGE BASED ON

DISTANCE CONSTRAINTS

For any two points and in the input space, we can ob-
tain their Euclidean distance . Analogously, we can
also obtain the feature-space distance between
their -mapped images. Moreover, for many commonly used
kernels, there is a simple relationship5 between and

[11]. between and
[11]. The idea of the proposed method is then as follows (Fig. 2).
Let the pattern to be denoised be . As mentioned in Section I,
the corresponding will be projected to in the fea-
ture space. For each training pattern , this will be
at a distance from each in the feature
space. Using the distance relationship mentioned above, we can
obtain the corresponding input-space distance between the de-
sired pre-image and each of the ’s. Now, in MDS6 [12], one
attempts to find a representation of the objects that preserves
the dissimilarities between each pair of them. Here, we will
use this MDS idea to embed back to the input space.
When the exact pre-image exists, it would have exactly satis-
fied these input-space distance constraints.7 In cases where the
exact pre-image does not exist, we will require the approximate
pre-image to satisfy these constraints approximately (to be more
precise, in the least-square sense).

Notice that instead of finding the pre-image of in
kernel PCA, this procedure can also be used to find the pre-
image of any feature vector in the feature space. For example,

4The apparent difference with the equations in [1] is because we explicitly
perform centering of the '-mapped patterns here.

5An analogous relationship between the dot product in the feature space and
the dot product in the input space is first pointed out in [14].

6Interested readers may also refer to [12] for a connection between PCA and
MDS, and to [11] for a connection between kernel PCA and kernel MDS.

7One can visualize these x ’s as range sensors (or global positioning system
satellites) that help to pinpoint the location of an object (i.e., the pre-image).

we can use this to find the pre-images of the cluster centroids ob-
tained from some kernel clustering algorithm, as will be demon-
strated in Section IV.

The following sections describe these steps in more detail.
Computation of the feature-space distances is
described in Section III-A. Section III-B uses the distance rela-
tionship to obtain the corresponding distances in the input space.
Section III-C uses these distances to constrain the final embed-
ding of the pre-image.

A. Distances in the Feature Space

For any two patterns and , the squared feature-space dis-
tance between the projection and is given by:

(7)

Now, from (3) and (4), we have

and

(8)
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Fig. 3. Typical test images corrupted by Gaussian noise (top) and “salt and pepper” noise (bottom). (a) � = 0:25. (b) � = 0:3. (c) � = 0:4. (d) � = 0:5.
(e) p = 0:3. (f) p = 0:4. (g) p = 0:5. (h) p = 0:7.

Fig. 4. Denoised results corresponding to the Gaussian kernel and the Gaussian noise. Top two rows: 300 training images. Bottom two rows: 60 training images.
(a) � = 0:25, [1]. (b) � = 0:3, [1]. (c) � = 0:4, [1]. (d) � = 0:5, [1]. (e) � = 0:25, ours. (f) � = 0:3, ours. (g) � = 0:4, ours. (h) � = 0:5, ours.
(i) � = 0:25, [1]. (j) � = 0:3, [1]. (k) � = 0:4, [1]. (l) � = 0:5, [1]. (m) � = 0:25, ours. (n) � = 0:3, ours. (o) � = 0:4, ours. (p) � = 0:5, ours.
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Fig. 5. Denoised results corresponding to the Gaussian kernel and the “salt and pepper” noise. Top two rows: 300 training images. Bottom two rows: 60 training
images. (a) p = 0:3, [1]. (b) p = 0:4, [1]. (c) p = 0:5, [1]. (d) p = 0:7, [1]. (e) p = 0:3, ours. (f) p = 0:4, ours. (g) p = 0:5, ours. (h) p = 0:7, ours. (i) p = 0:3,
[1]. (j) p = 0:4, [1]. (k) p = 0:5, [1]. (l) p = 0:7, [1]. (m) p = 0:3, ours. (n) p = 0:4, ours. (o) p = 0:5, ours. (p) p = 0:7, ours.

TABLE I
SNRS (IN dB) OF THE DENOISED IMAGES USING THE GAUSSIAN KERNEL,
AT DIFFERENT NUMBER OF TRAINING SAMPLES AND DIFFERENT NOISE

VARIANCES (� ) OF THE GAUSSIAN NOISE

Thus, (7) becomes

(9)

where .

TABLE II
SNRS (IN dB) OF THE DENOISED IMAGES USING THE GAUSSIAN KERNEL,
AT DIFFERENT NUMBER OF TRAINING SAMPLES AND DIFFERENT NOISE

LEVELS (p) OF THE “SALT AND PEPPER” NOISE

B. Distances in the Input Space

Given the feature-space distances between and the
-mapped training patterns (Section III-A), we now proceed

to find the corresponding input-space distances, which will be
preserved when is embedded back to the input space
(Section III-C). Recall that the distances with neighbors are
the most important in determining the location of any point
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Fig. 6. Denoised results using the proposed method with the polynomial kernel (Gaussian noise). Top: 300 training images.Bottom: 60 training images. (a) � =
0:25. (b) � = 0:3. (c) � = 0:4. (d) � = 0:5. (e) � = 0:25. (f) � = 0:3. (g) � = 0:4. (h) � = 0:5.

(Section II-B). Hence, in the following, we will only consider
the (squared) input-space distances between and its
nearest neighbors,8 i.e.,

(10)

This in turn can offer significant speed-up, especially during
the singular value decomposition step in Section III-C. More-
over, this is also in line with the ideas in metric MDS [12], in
which smaller dissimilarities are given more weight, and in lo-
cally linear embedding [15], where only the local neighborhood
structure needs to be preserved.

We first consider isotropic kernels9 of the form
. There is a simple relationship between the fea-

ture-space distance and the input-space distance [11]

and, hence,

(11)

Typically, is invertible. For example, for the Gaussian
kernel where is a constant, we have

.
Similarly, for dot product kernels of the form

, there is again a simple relationship between the dot
product in the feature space and the dot product

in the input space [11]

(12)

Moreover, is often invertible. For example, for the poly-
nomial kernel where is the polynomial order,

when is odd. Similarly, for the sigmoid

8In this paper, we use the n nearest neighbors in the feature space. Alterna-
tively, we can use the neighbors in the input space with similar results.

9A kernel is isotropic if k(x ;x ) depends only on the distance kx �x k .

kernel where are parameters,
. The corresponding squared

distance in the input space is then

(13)

Thus, in summary, we can often use (9) and (11) for isotropic
kernels, or (8), (12), and (13) for dot product kernels, to con-
struct the input-space distance vector in (10).

C. Using the Distance Constraints

For the neighbors obtained in
Section III-B, we will first center them at their centroid

and define a coordinate system in their
span. First, construct the matrix .
Using the centering matrix in (1), will center
the ’s at the centroid (i.e., the column sums of are
zero). Assuming that the training patterns span a -dimensional
space (i.e., is of rank ), we can obtain the singular value
decomposition (SVD) of the matrix as

where is a matrix with orthonormal
columns and is a matrix with columns

being the projections of onto the ’s. Note that the com-
putational complexity for performing SVD on an ma-
trix is , where and are constants [16].
Hence, using only the neighbors instead of all training pat-
terns can offer a significant speed-up. Besides, the squared dis-
tance of to the origin, which is still at the centroid, is equal
to . Again, collect these into an -dimensional vector, as

.
Recall from Section II-B that the approximate pre-image

obtained in [1] is in the span of the training patterns, with the
contribution of each individual dropping exponentially with
its distance from . Hence, we will assume in the following
that the required pre-image is in the span of the neighbors.
As mentioned in Section III, its location will be obtained by
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Fig. 7. Denoised results using the proposed method with the polynomial kernel (“salt and pepper” noise). Top: 300 training images. Bottom: 60 training images.
(a) p = 0:3. (b) p = 0:4. (c) p = 0:5. (d) p = 0:7. (e) p = 0:3. (f) p = 0:4. (g) p = 0:5. (h) p = 0:7.

requiring to be as close to those values obtained in
(10) as possible, i.e.,

In the ideal case, we should have exactly preserved these dis-
tances. However, as mentioned in Section I, in general there is
no exact pre-image in the input space and so a solution satis-
fying all these distance constraints may not even exist. Hence,
we will settle for the least-square solution . Following [17],
this can be shown to satisfy:

Now, because of the centering. Hence, the pre-image
can be obtained as

This is expressed in terms of the coordinate system defined by
the ’s. Transforming back to the original coordinate system
in the input space we, thus, have

IV. EXPERIMENT

A. Pre-Images in Kernel PCA

In this section, we report denoising results on the USPS data
set consisting of 16 16 handwritten digits.10 For each of the ten
digits, we randomly choose some examples ( 300 and 60,
respectively) to form the training set, and 100 examples as the
test set. Kernel PCA is performed on each digit separately.

Two types of additive noise are then added to the test set.
The first one is the Gaussian noise with variance .
The second type is the “salt and pepper” noise with noise level

, where is the probability that a pixel flips to black or

10The USPS database can be downloaded from http://www.kernel-ma-
chines.org.

TABLE III
SNRS (IN dB) OF THE DENOISED IMAGES USING THE POLYNOMIAL KERNEL,

AT DIFFERENT NUMBER OF TRAINING SAMPLES AND DIFFERENT NOISE

VARIANCES (� ) OF THE GAUSSIAN NOISE

TABLE IV
SNRS (IN dB) OF THE DENOISED IMAGES USING THE POLYNOMIAL KERNEL,

AT DIFFERENT NUMBER OF TRAINING SAMPLES AND DIFFERENT NOISE

LEVELS (p) OF THE “SALT AND PEPPER” NOISE

Fig. 8. Cluster centroids after performing kernel k-means clustering on the
USPS data set. (a) Using input space averaging. (b) Using the proposed method.

white (Fig. 3). As the model selection problem for the number
of eigenvectors is not the main focus of this paper, this

is side-stepped by using information on the test set, and we
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Fig. 9. Morphing results on the USPS digits. (a) Using cross fading. (b) Using the proposed pre-image method.

simply choose , where is
the noisy image and is the original (clean) image. Ten neigh-
bors are used in locating the pre-image. Moreover, comparison
will be made with the traditional method in [1].

1) Gaussian Kernel: We first experiment with the
Gaussian kernel , where we set

with ’s being the
training patterns. Figs. 4 and 5 show some typical denoised
images based on 300 and 60 training images. Tables I and
II show the corresponding numerical comparisons using the
signal-to-noise ratio (SNR). As can be seen, the proposed
method produces better results both visually and quantitatively.

2) Polynomial Kernel: Next, we perform experiment on the
polynomial kernel with . Following the expo-
sition of [1] in Section II-B, we develop an iteration scheme for
polynomial kernels as follows. First, (5) now becomes

. On setting its derivative w.r.t.
to zero, we obtain an iteration formula for the polynomial kernel

However, this iteration scheme fails to converge in the experi-
ments, even after repeated restarts. On the other hand, our pro-
posed method is noniterative and can always obtain reasonable

pre-images (Fig. 6 for the Gaussian noise and Fig. 7 for the “salt
and pepper” noise), though its performance is slightly inferior
to that of the Gaussian kernel. Tables III and IV show the cor-
responding resulting SNRs.

B. Pre-Images in Kernel -Means Clustering

In this section, we perform the kernelized version of -means
clustering algorithm as described in [6] (the technical report ver-
sion of [8]), and then use the proposed method to find pre-im-
ages of the cluster centroids. A total of 3000 images are ran-
domly selected from the USPS data set. The same Gaussian
kernel as used in Section IV-A-1 is employed, and is set to
ten, the number of digits. For comparison, cluster centroids are
also obtained by averaging in the input space over all patterns
belonging to the same cluster. Fig. 8 compares the resultant sets
of pre-images. Clearly, the proposed method yields centroids
that are visually more appealing.

Besides finding the cluster centroids, we can also visualize the
transitions from one digit to another. For each pair of cluster cen-
troids in the feature space, we draw a line connecting them and
then obtain pre-images for the intermediate points uniformly
spaced on this line. For comparison, we also apply the tradi-
tional method of cross fading [18] in the input space. As can be
seen from Fig. 9, our proposed method again produces images
that are visually better than those obtained from cross fading.
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In general, note that the cluster centroids (and similarly for
the intermediate morphing results) obtained may have to be in-
terpreted with caution. As in ordinary -means clustering, the
(exact or approximate) pre-images of the cluster centroids may
sometimes fall outside of the data distribution.

V. CONCLUSION

In this paper, we address the problem of finding the pre-
image of a feature vector in the kernel-induced feature space.
Unlike the traditional method in [1] which relies on nonlinear
optimization and is iterative in nature, our proposed method
directly finds the location of the pre-image based on distance
constraints. It is noniterative, involves only linear algebra and
does not suffer from numerical instabilities or the local min-
imum problem. Moreover, it can be applied equally well to both
isotropic kernels and certain dot product kernels. Experimental
results on denoising the USPS data set show significant im-
provements over [1].

In the future, we plan to apply this method to other kernel ap-
plications that also require computation of the pre-images. An
example will be information retrieval applications with the use
of kernels, in which we may want to find pre-images of the query
vectors residing in the feature space [19]. Moreover, we have
only addressed isotropic kernels and dot product kernels in this
paper. In the future, other classes of kernel functions will also
be investigated, especially those that are defined on structured
objects, in which the pre-image problem then becomes an im-
portant issue [20].
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