
1126 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 17, NO. 5, SEPTEMBER 2006

Generalized Core Vector Machines
Ivor Wai-Hung Tsang, James Tin-Yau Kwok, and Jacek M. Zurada, Fellow, IEEE

Abstract—Kernel methods, such as the support vector machine
(SVM), are often formulated as quadratic programming (QP)
problems. However, given training patterns, a naive implemen-
tation of the QP solver takes (3) training time and at least
(2) space. Hence, scaling up these QPs is a major stumbling

block in applying kernel methods on very large data sets, and a
replacement of the naive method for finding the QP solutions is
highly desirable. Recently, by using approximation algorithms
for the minimum enclosing ball (MEB) problem, we proposed the
core vector machine (CVM) algorithm that is much faster and
can handle much larger data sets than existing SVM implemen-
tations. However, the CVM can only be used with certain kernel
functions and kernel methods. For example, the very popular
support vector regression (SVR) cannot be used with the CVM.
In this paper, we introduce the center-constrained MEB problem
and subsequently extend the CVM algorithm. The generalized
CVM algorithm can now be used with any linear/nonlinear kernel
and can also be applied to kernel methods such as SVR and the
ranking SVM. Moreover, like the original CVM, its asymptotic
time complexity is again linear in and its space complexity is
independent of . Experiments show that the generalized CVM
has comparable performance with state-of-the-art SVM and SVR
implementations, but is faster and produces fewer support vectors
on very large data sets.

Index Terms—Approximation algorithms, core vector ma-
chines (CVMs), kernel methods, minimum enclosing ball (MEB),
quadratic programming, support vector machines (SVMs).

I. INTRODUCTION

KERNEL methods have been highly successful in various
machine learning and pattern recognition problems. Ex-

amples include the support vector machine (SVM) and support
vector regression (SVR), which are especially prominent for
classification and regression tasks [1]. Often, kernel methods
are formulated as quadratic programming (QP) problems, which
have the important computational advantage of not suffering
from the problem of local minima. However, given training
patterns, a naive implementation of the QP solver takes
training time and at least space [2]. Hence, a major stum-
bling block in applying kernel methods on large data sets is how
to scale up these QPs, and a replacement of the naive method for
finding QP solutions posed by an SVM is highly desirable.

In recent years, a variety of approaches have been proposed
in the context of kernel methods. A popular technique is to re-
place the kernel matrix by some low-rank approximation. These

Manuscript received September 2, 2005; revised January 19, 2006. This work
was supported in part by the Research Grants Council of the Hong Kong Special
Administrative Region under Grant 615005.

I. W.-H. Tsang and J. T.-Y. Kwok are with the Department of Computer Sci-
ence, The Hong Kong University of Science and Technology, Clear Water Bay,
Hong Kong (e-mail: ivor@cs.ust.hk; jamesk@cs.ust.hk).

J. M. Zurada is with the Department of Electrical and Computer Engi-
neering, the University of Louisville, Louisville, KY 40292 USA (e-mail:
jacek.zurada@louisville.edu).

Color versions of Figs. 2–7 are available online at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TNN.2006.878123

approximations can be obtained by various methods including:
the Nyström method [3], greedy approximation [4], sampling
[5], or matrix decompositions [6]. Another approach to scale
up kernel methods is by chunking [7] or more sophisticated
decomposition methods [8]–[11]. Going to the extreme, the
well-known sequential minimal optimization (SMO) algorithm
[10], [12] breaks the original QP into a series of smallest
possible QPs, each involving only two variables. Similar in
spirit to decomposition algorithms are methods that scale down
the training data before inputting to the SVM (such as [2], [13],
and the reduced SVM [14]). Other scaleup methods include the
kernel adatron [15], SimpleSVM [11], and [16]. For a more
complete survey (for works before 2003), interested readers
are referred to [17] and [1, Ch. 10]. By incorporating these
speed-up strategies, state-of-the-art SVM implementations
have an empirical training time complexity that scales between

and in practice [10]. This can be further driven
down to with the use of parallel mixtures [2]. However,
these time complexities are only empirical observations and
not theoretical guarantees.

Recently, Tsang et al. proposed the core vector machine
(CVM) [18] by exploiting the “approximateness” in the design
of SVM implementations. The key observation is that practical
SVM implementations, as in many numerical routines, only
approximate the optimal solution by an iterative strategy.
Typically, the stopping criterion utilizes either the precision
of the Lagrange multipliers or the duality gap. For example,
in SMO, SVM and SimpleSVM, training stops when the
Karush–Kuhn–Tucker (KKT) conditions are fulfilled within a
tolerance parameter . Experience with this software indicates
that near-optimal solutions are often good enough in practical
applications. By utilizing an approximation algorithm for the
minimum enclosing ball (MEB) problem in computational
geometry, the CVM algorithm achieves an asymptotic1 time
complexity that is linear in and a space complexity that is
independent of . Experiments on large classification data
sets also demonstrated that the CVM is as accurate as existing
SVM implementations, but is much faster and can handle much
larger data sets than existing scale-up methods. For example,
CVM with the Gaussian kernel produces superior results on
the KDDCUP-99 intrusion detection data, which has about five
million training patterns, in only 1.4 s on a 3.2 GHz Pentium-4
PC.

However, as mentioned in [18], applicability of the CVM al-
gorithm depends critically on the following two requirements
being satisfied:

1) the kernel function satisfies constant for any
pattern ;

1As we are interested in handling very large data sets, an algorithm that is
asymptotically more efficient (in time and space) will be the best choice. How-
ever, on smaller problems, this may be outperformed by algorithms that are not
as efficient asymptotically.

1045-9227/$20.00 © 2006 IEEE

TSANG et al.: GENERALIZED CORE VECTOR MACHINES 1127

2) the QP problem for the kernel method is of a special form.
In particular, there can be no linear term in the QP’s objec-
tive function.

The first condition is satisfied for a variety of kernels, including
the following:

1) the isotropic kernel (e.g., Gaussian
kernel);

2) the dot product kernel (e.g., polynomial
kernel) with normalized inputs;

3) any normalized kernel .
As for the second condition, it has been shown in [18] that this
holds for kernel methods including the one-class SVM [19] and
two-class SVM.

However, there are still some popular kernel methods that vi-
olate these conditions and so cannot be used with the CVM.
For example, when the SVM is applied on imbalanced data sets,
each class (or sometimes even each individual training pattern)
is often penalized differently. As will be shown in Section IV-A,
although the resultant QP problem can be rewritten in the re-
quired form, the corresponding “kernel” does not satisfy condi-
tion 1). Similarly, this is also the case with the ranking SVM
commonly used in information retrieval [20] (Section IV-B).
Likewise, there are kernel methods whose QPs simply cannot
be written into the required form. One such example is SVR
[21] as will be discussed in Section III-A.

In this paper, we propose an extension of the CVM that al-
lows for a more general QP formulation. As the CVM is closely
related to the MEB problem in computational geometry, the key
here is to extend the original MEB problem to what will be
called the center-constrained MEB problem in Section III-B.
The resultant QP problem then allows a linear term in the dual
objective. While so far the original CVM has only been shown
to be applicable to the one-class and two-class SVMs [18], the
proposed relaxed QP formulation allows a significantly larger
repertoire of kernel methods to be cast as (center-constrained)
MEB problems. Moreover, it turns out that this also allows the
(first) condition on the kernel function to be lifted. In other
words, the proposed algorithm can now be used with any linear/
nonlinear kernel.

The rest of this paper is organized as follows. Section II
gives a review on the original CVM algorithm and the MEB
problem. Section III then describes the proposed extension
(generalized CVM), and shows how this can be used to scale
up SVR. Section IV provides more kernel method examples,
besides SVR, that can also benefit from this extension. These
include the SVM for imbalanced data and the ranking SVM
[20]. Experimental results are presented in Section V, and
Section VI gives some concluding remarks. A preliminary and
abridged version (without proofs and details) of this paper,
which focused only on extending the CVM to the regression
setting, has appeared in [22].

II. CORE VECTOR MACHINE (CVM)

In this section, we first review the CVM algorithm as pro-
posed in [18] and [23]. The CVM utilizes an approximation al-
gorithm for the MEB problem, which will be briefly introduced
in Section II-A. The connection between the MEB problem and
kernel methods, particularly the one-class and two-class SVMs,

Fig. 1. Inner circle is the MEB of the set of squares and its (1 + �) expansion
(the outer circle) covers all the points. The set of squares is a core-set.

will then be described in Section II-B. Finally, the CVM algo-
rithm and some of its properties are summarized in Section II-C.

A. Approximate Minimum Enclosing Ball

Given a set of points , where , the
minimum enclosing ball of [denoted MEB] is the smallest
ball that contains all the points in . Traditional algorithms for
finding exact MEBs are not efficient for problems with large
(e.g.,). Hence, it is of practical interest to study faster
approximation algorithms that only aim at returning a good ap-
proximate solution. Approximation algorithms have long been
used in the field of theoretical computer science for tackling
computationally difficult problems [24]. For an input size , an
approximation algorithm is said to have an approximation ratio

if , where is the cost of the
solution returned by an approximate algorithm, and is the
cost of the optimal solution. Intuitively, this ratio measures how
bad the approximate solution is compared with the optimal so-
lution. A large (small) approximation ratio means the solution
is much worse than (more or less the same as) the optimal solu-
tion. If the ratio does not depend on , we may just write and
call the algorithm an -approximation algorithm.

Given an , a ball2 is an -ap-
proximation of MEB if and

. In many shape-fitting problems (which include the MEB
problem), it is found that solving the problem on a subset, called
the core-set, of points from can often give an accurate and
efficient approximation [25]. More formally, a subset is
a core-set of if an expansion by a factor of its MEB con-
tains , i.e., , where MEB
(Fig. 1). A breakthrough on achieving such an -approx-
imation was recently obtained by Bădoiu and Clarkson [26].
They used a simple iterative scheme: At the th iteration, the
current estimate is expanded by including the furthest
point outside the -ball . This is repeated
until all the points in are covered by . De-
spite its simplicity, a surprising property is that the number of
iterations, and thus the size of the final core-set, depends only
on but not on or .

2In this paper, we denote the ball with center c and radius R by B(c; R).
Also, the center and radius of a ball B are denoted by c and r , respectively.
Moreover, vector/matrix (in both the input and feature spaces) transpose is de-
noted by the superscript .

1128 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 17, NO. 5, SEPTEMBER 2006

B. Kernel Methods as MEB Problems

In [18], we showed that the MEB problem is closely related
to many kernel-related problems. In particular, the exact MEB
problem is equivalent to the technique of hard-margin support
vector data description (SVDD) [27] used in novelty detection.
Moreover, it can also be straightforwardly used to find the ra-
dius component of the radius-margin bound [7]. Besides these
two obvious connections, we showed in [18] that the soft-margin
one-class and two-class SVMs can also be viewed as MEB prob-
lems, and these will be briefly reviewed in this section.

1) Hard-Margin SVDD: First, consider the hard-margin
SVDD. Its primal is

subject to (1)

where denotes the feature map associated with a given kernel
, and is the desired MEB in the kernel-induced feature

space. Its dual is the QP problem

(2)

subject to (3)

where is the vector of Lagrange multi-
pliers, and are -vectors, and

is the corresponding
kernel matrix. Assuming that satisfies

(4)

a constant, we have using the constraint
in (3). Dropping this constant term from the objective function

in (2), we obtain the simpler QP problem

subject to (5)

Conversely, whenever the kernel satisfies (4), any QP
problem of the form (5) can be regarded as a MEB problem.
As shown in [18], this establishes an important connection
between the MEB problem and kernel methods. In Section
II-B2, we will consider two such examples, the two-class SVM
and the one-class SVM.

2) Two-Class SVM: In a two-class classification problem,
denote the training set by , where

is the class label. The L2-SVM constructs a hyperplane
for which the separation (i.e., the so-called margin3

) between the positive and negative examples is maxi-
mized, while at the same time the training errors (represented

3The standard SVM has a margin of 2=kwk, i.e., � is equal to 2. In [18], we
have slightly altered its primal to (6), so that the resultant dual is of the desired
form. Note that a large margin is still favored as in the original SVM, as we
minimize kwk and maximize � in (6).

by the slack variables ’s) is minimized. Formulating as an op-
timization problem, this is achieved by solving the following
primal problem:

subject to

(6)

where is a parameter that controls the tradeoff between
the margin and training error. Using the standard method of La-
grange multipliers, its dual can be obtained as

subject to (7)

where is an ma-
trix and if and 0 otherwise. Obviously, can
be regarded as the kernel matrix of the modified kernel function

defined on the
training examples. If satisfies (4), then satisfies

, a constant. Hence, the two-class L2-SVM corre-
sponds to a MEB problem.

3) One-Class SVM: Another example discussed in [18] is the
one-class L2-SVM, which has the dual

subject to (8)

where . Again, if the
original kernel function satisfies (4), we have

, a constant. Thus, the one-class L2-SVM can also be re-
garded as a MEB problem.

Note that the two-norm error has been used. This allows a
soft-margin L2-SVM to be transformed to a hard-margin one
and so the MEB algorithm does not need to consider outliers.
Fitting the MEB with outliers is possible [28], though a major
limitation is that the number of outliers has to be moderately
small in order for the fitting to be computationally effective. In
theory, the use of the two-norm error could be less robust in the
presence of outliers. However, experimentally, its generalization
performance is often comparable to that of the L1-SVM [18],
[29].

C. The CVM Algorithm

The CVM algorithm is shown in Algorithm 1. Here, the core-
set, the ball’s center, and radius at the th iteration are denoted
by , , and , respectively. Moreover, denotes the feature
map corresponding to the transformed kernel . Similar to many
SVM solvers such as SMO, the CVM algorithm requires the
input of a termination parameter . Note that while Steps 2)
and 3) appear to make use of in the (transformed) feature
space which is possibly infinite-dimensional, we never need to
explicitly compute in practice thanks to the kernel trick.
For details of the algorithm, interested readers are referred to
[18]. A nice property of the CVM is that its approximation ratio
can be obtained. In particular, it can be shown that when ,

TSANG et al.: GENERALIZED CORE VECTOR MACHINES 1129

CVM outputs the exact solution of the kernel problem. When
, it becomes an -approximation algorithm.

Algorithm 1 CVM [18].

Step 1): Initialize S0, c0, and R0.

Step 2): Terminate if there is no training
point z such that ~'(z) falls outside the
(1 + �)-ball B(ct; (1 + �)Rt).

Step 3): Find (core vector) z such that ~'(z)
is furthest away from ct. Set St+1 = St [fzg.
This can be made more efficient by using the
probabilistic speedup method in [4] that finds
a z which is only approximately the furthest.

Step 4): Find the new MEB(St+1) and set
ct+1 = cMEB(S) and Rt+1 = rMEB(S).

Step 5): Increment t by 1 and go back to Step
2).

III. THE GENERALIZED CVM ALGORITHM

Although the CVM allows some kernel methods, such as the
two-class SVM, to be run on very large data sets with great
success [18], its applicability to other kernel methods is limited
by the following two requirements:

1) is a constant for any pattern ;
2) the QP problem is of the form in (5).

As mentioned in Section I, unfortunately there are some pop-
ular kernel methods that do not satisfy these requirements. As
an example, we will demonstrate in Section III-A that the dual
objective of SVR contains a linear term and thus violates re-
quirement 2). In Section III-B, we propose an extension of the
MEB problem, and consequently a generalized CVM algorithm,
that allows for the inclusion of a linear term in the QP problem.
It turns out that this has the added benefit of allowing require-
ment 1) on the kernel function to be lifted.

A. Motivating Example: L2-SVR

In this section, we show that SVR cannot benefit from the
original CVM algorithm. Recall that in a regression problem,
we are given a training set with input
and output . SVR constructs a linear function

in the kernel-induced feature space so that it deviates
least from the training data according to the -insensitive loss
function4

if
otherwise

(9)

while at the same time is as “flat” as possible (i.e., is as
small as possible). Using slack variables ’s and ’s, we adopt
the following primal which is similar to that of -SVR [1]:

subject to

(10)

4To avoid confusion with the � in (1+ �)-approximation, we add a bar to the
" in the "-insensitive loss function.

for . Here, is a parameter (which is anal-
ogous to the parameter in -SVR) that controls the size of .
Also, as in Section II, the bias is penalized and the two-norm
errors (and) are used. Note that the constraints
are automatically satisfied. Standard application of the method
of Lagrange multipliers yields the dual

subject to (11)

where , and ,
are the Lagrange multipliers (dual

variables), and

(12)
is a 2m 2m “kernel matrix.”

After solving for the dual variables and , the primal vari-
ables can be recovered as

(13)

(14)

and

(15)

By plugging the constraint in (11) into (14),
we obtain

Recall that and are slack variables for the regression error
. Thus, the parameter, analogous to the param-

eter in -SVR, can be interpreted as the expected error
.

Note that although (11) is a standard QP problem, it is not of
the required form in (5) because of the presence of the linear
term. Consequently, the original CVM algorithm cannot be ap-
plied. In Section III-B, we will see how the algorithm can be
extended to cover this case.

B. The Center-Constrained MEB Problem

The MEB problem in (1) finds the smallest ball containing all
in the feature space. In this section, we first augment

an extra to each , forming . Then, we

find the MEB for these augmented points, while at the same
time constraining the last coordinate of the ball’s center to be

zero (i.e., of the form) (Fig. 2). The primal in (1) is thus

changed to

subject to

(16)

1130 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 17, NO. 5, SEPTEMBER 2006

Fig. 2. Center-constrained MEB problem.

It can be easily shown that the corresponding dual is again a QP
problem

subject to (17)

where

(18)

From the optimal solution, we can recover and as

(19)

Besides, the squared distance between the center and any

point is

(20)

which does not depend explicitly on the feature map .
Because of the constraint in (17), an arbitrary mul-

tiple of can be added to the objective without affecting its
solution. In other words, for an arbitrary , (17) yields

the same optimal as

subject to (21)

Using the same argument as in Section II, any QP problem of the
form (21), with , can also be regarded as a MEB problem
(16). Note that (21) allows a linear term in the objective. Be-
sides, unlike that in Section II, it does not require the kernel to
satisfy condition (4).

Returning to the QP problem in (11), define
and

(22)

for large enough such that , (11) can then be written as

subject to

This is thus of the form in (21). In other words, L2-SVR can
now be regarded as a center-constrained MEB problem (16).

Recall that this QP problem involves variables. Thus, in
the equivalent MEB problem, there are also points in the fea-
ture space. Indeed, from (12), each training pattern
() in the regression problem can be seen to corre-
spond to the two points

and

where is the -dimensional vector with all zeroes except
that the th position is equal to one, and is the th component
of as defined in (18) and (22). The CVM algorithm in Sec-
tion II-C also has to be modified slightly. The only modification
is to use (20) for the distance computation between the MEB’s

center and any point in Steps 2) and 3).

This extension is also useful in training the one-class and two-
class L2-SVMs in Section II-B when the kernel does not satisfy
(4). By defining

the linear term in the objective function of (21) disappears. Both
duals (7) and (8) are then of the form in (21) and thus both SVMs
are also center-constrained MEB problems.

TSANG et al.: GENERALIZED CORE VECTOR MACHINES 1131

C. Properties

As the proposed algorithm is an extension of the CVM, one
would naturally expect its properties to be analogous to those
of the original CVM in [18]. In this section, we confirm this
by following the proof procedure in [18]. Note, however, that
the detailed proofs (which are in the Appendix) are different
because the QP formulations associated with the generalized
CVM are much more complicated.

1) Bound on the Number of Iterations: To ensure good
scaling behavior of the CVM, a key property is that it converges
in at most iterations, independent of the dimensionality
in the kernel-induced feature space and the size of [26].
Theorem 1 shows that this still holds for the generalized CVM.

Theorem 1: There exists a set of size such that
the distance between and any point of is at most

.
As a direct consequence of Theorem 1, the generalized CVM

algorithm inherits from the original CVM algorithm its low
time and space complexities. In particular, when probabilistic
speedup is not used in Step 3), the overall time for
iterations can be shown to be , linear in
for a fixed . With the use of probabilistic speedup, this can
be further reduced to , which is independent of for
a fixed . As for the space complexity, the whole algorithm
requires only space, independent of for a fixed
(here, we have ignored the space required for storing
the training patterns, as they may be stored outside the core
memory). Detailed derivations are the same as for the CVM
and can be found in [18].

2) Convergence to (Approximate) Optimality: Points outside
MEB have zero ’s and so violate the KKT conditions of
the dual problem. As in the original CVM algorithm, we also
have the following properties.

3) Property 1: Choosing the point furthest away from the
current center in Step 3) is the same as choosing the worst vio-
lating pattern corresponding to the KKT constraint.

The proof is very similar to that in [18] and so is skipped here.
Moreover, when the generalized CVM is used in the regression
setting (Section III-A), we have Property 2.

4) Property 2: In the regression setting, all the training pat-
terns satisfy loose KKT conditions when the generalized CVM
terminates.

As for the original CVM algorithm, this generalized version
is also an -approximation algorithm.

5) Property 3: When , the generalized CVM al-
gorithm outputs the exact solution of the kernel problem.
When and it terminates at the th iteration, the optimal
primal objective of the kernel problem in (10) satisfies

.

IV. EXAMPLE APPLICATIONS TO OTHER KERNEL METHODS

In [18], we showed that the one-class SVM (for novelty detec-
tion) and the two-class SVM (for classification) are MEB prob-
lems. By introducing the center-constrained MEB problem, we
showed in Section III-B that SVR (for regression) is also a MEB
problem. In this section, we give some more examples that can
also be regarded as (center-constrained) MEB problems. This

significantly extends the repertoire of kernel methods that can
be used with the (generalized) CVM. Of course, this is not in-
tended to cover the full list of such kernel methods. Moreover, in
using the CVM algorithm, the primal formulations of the cor-
responding kernel methods often have to be changed slightly.
In particular, as in the previous sections, we will adopt the two-
norm error instead of the more commonly used one-norm error.

A. Two-Class SVM for Imbalanced Data

In Section II-B, we considered the two-class L2-SVM where
all the slack variables ’s receive the same penalty factor .
However, many real-world data sets are imbalanced and the ma-
jority class has much more training patterns than the minority
class. As a result, the resultant hyperplane will be shifted to-
wards the majority class. A common remedy is to use different

’s for the two classes. In the more general case, each training
pattern can have its own penalty factor . The primal in (6) is
then changed to

subject to

and the corresponding dual is

subject to (23)

where . Note that
as the ’s are different in general, the diagonal entry

is not constant even if is.
Hence, although (23) is of the form in (5), the underlying kernel
does not satisfy condition (4). In other words, the original CVM
cannot be applied but the generalized formulation, which does
not require (4), can still be used.

B. Ranking SVM

A kernel method commonly used in the field of information
retrieval is the ranking SVM [20]. Let ’s be documents in the
database and be the th query in a set of queries . The match
between query and document is described by a feature map

. As an example, in [20] involves features
such as the cosine between and , the cosine between
and the words in ’s title, etc. The desired document ranking
for query is represented by a set of document pairs

, where means that document should
be ranked higher than document according to the query .

The ranking SVM tries to find a linear ranking func-
tion such that for

. As for the standard SVM, this condition may
be violated and so a slack variable is introduced for the
soft constraint associated with query and document pair

. Again using the two-norm error, we write the
primal as

subject to

1132 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 17, NO. 5, SEPTEMBER 2006

TABLE I
BENCHMARK DATA SETS USED

There are a total of constraints (where
denotes the size of the set). Denote the corresponding -di-
mensional vector of Lagrange multipliers by . It can
be easily shown that the corresponding dual is

subject to (24)

where is the “kernel matrix” with

Clearly, the diagonal entry of

is not constant for all -triples in general. Hence, (24) is of
the form in (5) but the underlying kernel does not satisfy (4),
and the generalized formulation in Section III-B again comes to
help.

V. EXPERIMENTS

In this section, we use the proposed generalized CVM to im-
plement SVR (Section III-A) and the two-class SVM on im-
balanced data (Section IV-A). Our implementation5 is based on
the previous CVM implementation described in [18], which,
in turn, is adapted from the LIBSVM software [8]. SMO is
used in solving each QP subproblem in Step 4). For simplicity,
shrinking [30] is not used in our current implementation. As in
LIBSVM, our implementation uses caching and stores all the
training patterns in main memory. Besides, we employ the prob-
abilistic speedup method in Step 3). Following [4], a random
sample of size 59 is used. The value of is fixed at in all the
experiments. As in other decomposition methods, the use of a
very stringent stopping criterion is not necessary in practice. Our
experience on the CVM indicates that is acceptable
for most tasks. Using an even smaller does not show improved
generalization performance, but may increase the training time
unnecessarily. All the experiments are performed on a 3.2 GHz
Pentium-4 machine with 512 M RAM, running Windows XP.

A. Core Vector Regression

In this section, the following large benchmark regression data
sets are used6 (Table I).

5It can be downloaded from http://www.cs.ust.hk/~ivor/cvm.html
6The census housing data set is from http://www.cs.toronto.edu/~delve/data/

census–house/desc.html, while others are from http://www.niaad.liacc.up.pt/
~ltorgo/Regression.

1) Census housing: The task is to predict the median price
of the house based on certain demographic information.
Following [31], we use 121 features for prediction.

2) Computer activity: Given a number of computer systems
activity measures, the task is to predict the portion of time
CPUs run in user mode.

3) Elevators: The task is related to an action taken on the ele-
vators of an F16 aircraft.

4) Friedman: This is an artificial data set used in [32]. The
input attributes () are generated independently,
each of which uniformly distributed over [0, 1]. The target
is defined by

(25)

where is the noise term which is normally dis-
tributed with mean 0 and variance 1. Note that only

are used in (25) while are
noisy irrelevant input attributes.

5) Pole Telecomm: The data describes a telecommunication
problem. Details are not available.

Because the Friedman data is a toy problem, we have the liberty
of generating a larger training set than the one provided on the
web so as to better study the scaling behavior. In the experiment,
we use a maximum of 200 000 patterns for training, and generate
another 10 000 patterns for validation and another 10 000 pat-
terns for testing. For the other real-world data sets, 10%–80%
of the provided set is used for training, another 10% for val-
idation, and the remaining 10% for testing. Our implementa-
tion will be denoted CVR in this particular context. For com-
parison, we also run the latest7 versions of two state-of-the-art
SVR implementations: LIBSVM (version 2.8) and SVM
(version 6.01).8 All implementations are in C++. We use the
Gaussian kernel , with

. The and parameters in (10) are
determined by using a validation set. Parameters in the LIBSVM
and SVM implementations are tuned in a similar manner.

The following two criteria are used for evaluating the gener-
alization performance based on a test set of patterns:

1) root-mean-square error

RMSE

7Similar results have been reported in [22] based on the older version (2.7) of
LIBSVM. The results there show the same trend, though are not exactly iden-
tical, as those reported here. Recall that our CVR implementation is adapted
from the LIBSVM, and so it is also reimplemented with the latest version (2.8)
of the LIBSVM.

8LIBSVM and SVM can be downloaded from http://www.csie.ntu.
edu.tw/~cjlin/libsvm/ and http://svmlight.joachims.org/, respectively.

TSANG et al.: GENERALIZED CORE VECTOR MACHINES 1133

Fig. 3. RMSEs on the five data sets. (a) Census housing. (b) Computer activity. (c) Elevators. (d) Friedman. (e) Pole telecomm.

2) mean relative error

MRE

Figs. 3 and 4 show the RMSEs and MREs, respectively, of the
different implementations on the five data sets. As can be seen,
although CVR uses the L2-norm error, its generalization per-
formance is comparable to those of the L1-norm-based imple-

mentations. CVR is only noticeably inferior when the data set
is small. However, as we advocate the use of CVR only on very
large data sets, this undesirable effect on small data sets is not
relevant. Note also that SVM has to be terminated early on
the friedman data set because of its excessive training time with
200 000 training patterns.

Fig. 5 compares the training speeds of the various implemen-
tations. As can be seen, CVR is much faster (with the only ex-
ception on the elevator data set) than the two state-of-the-art
solvers, especially when the training set is large. This is also in

1134 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 17, NO. 5, SEPTEMBER 2006

Fig. 4. MREs on the five data sets. (a) Census housing. (b) Computer activity. (c) Elevators. (d) Friedman. (e) Pole telecomm.

line with our experience with the CVM on classification prob-
lems [18]. On the elevator data set, CVR is only slightly slower
than the LIBSVM implementation when the full training set is
used [Fig. 5(c)]. By examining the growth rates of the curves
in Fig. 5(c), we expect CVR to be faster than LIBSVM if the
training set were larger.

Finally, Fig. 6 compares the numbers of support vectors ob-
tained after the training process. As can be seen, CVR produces
far fewer support vectors than the other implementations on all
the data sets used in the experiment. Subsequently, CVR is also
much faster on testing as the number of kernel evaluations be-

tween the test patterns and the support vectors has been signifi-
cantly reduced.

B. Two-Class SVM for Imbalanced Data

In this section, we use the generalized CVM to implement
the two-class SVM in an imbalanced data setting. This will be
studied in the context of face detection with an extended ver-
sion of the Massachusetts Institute of Technology (MIT), Cam-
bridge, face database9 developed in [33]. The original MIT data

9http://cbcl.mit.edu/cbcl/software-datasets/FaceData2.html

TSANG et al.: GENERALIZED CORE VECTOR MACHINES 1135

Fig. 5. Training time (in seconds) on the five data sets, shown in log scale. (a) Census housing. (b) Computer activity. (c) Elevators. (d) Friedman. (e) Pole
telecomm.

set has 6977 training images (with 2429 faces and 4548 non-
faces) and 24 045 test images (472 faces and 23 573 nonfaces).
The training set is enlarged by generating artificial samples (de-
tails are in [18]). Finally, three training sets are created and their
data characteristics are summarized in Table II. Different s are
used for these two classes, which are determined by using an in-
dependent validation set with 242 faces and 10 000 nonfaces. In
this experiment, faces are treated as positives while nonfaces as

negatives. Moreover, each image is of size 19 19, leading to a
361-dimensional feature vector which is typically dense. Hence,
instead of using a sparse format for the features as in the orig-
inal LIBSVM, here we have used a dense data format in all the
implementations.

Because of the imbalanced nature of this data set, the usual
classification error is inappropriate for performance evaluation
here. Instead, the following performance measures will be used.

1136 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 17, NO. 5, SEPTEMBER 2006

Fig. 6. Numbers of support vectors obtained on the five data sets. (a) Census housing. (b) Computer activity. (c) Elevators. (d) Friedman. (e) Pole telecomm.

TABLE II
NUMBER OF FACES AND NONFACES IN THE FACE DETECTION DATA SETS

1) The balanced loss [34]

TP TN

where

TP
positives correctly classified

total positives

TN
negatives correctly classified

total negatives

are the true positive and true negative rates, respectively.
2) The AUC (area under the ROC curve), which has been

commonly used for face detectors. The ROC (receiver op-

TSANG et al.: GENERALIZED CORE VECTOR MACHINES 1137

Fig. 7. Results on the extended MIT face data set. Note that the time shown in (a) is in log scale. (a) CPU time. (b) Number of support vectors. (c) Balanced loss.
(d) AUC.

erating characteristic) curve [35] plots TP on the -axis
and the false positive rate

FP
negatives incorrectly classified

total negatives

on the -axis. The AUC is always between 0 and 1. A
perfect face detector will have unit AUC, while random
guessing will have an AUC of 0.5.

Results are shown in Fig. 7. Again, the generalized CVM
implementation is significantly faster than the LIBSVM imple-
mentation and has much fewer support vectors. Moreover, the
use of different s can improve the performance of both L1-
and L2-SVMs in general. However, on the highly imbalanced
set , the L1-SVM does not perform well in terms of the bal-
anced loss even with the use of different s. On the other hand,
the CVM implementation of the L2-SVM shows a steady im-
provement and is less affected by the skewed distribution.

VI. CONCLUSION

The original CVM algorithm is restricted to kernels satis-
fying constant, and to certain kernel methods whose
dual objectives do not have a linear term. In this paper, we
introduced the center-constrained minimum enclosing ball
problem and consequently a generalized CVM formulation that

allows for a more general form for the dual objective and also
any linear/nonlinear kernel to be handled. In particular, kernel
methods such as SVR, ranking SVM, and two-class SVM for
imbalanced data can now be performed under this framework.
The resultant procedure inherits the simplicity of CVM, and has
small asymptotic time and space complexities. Experimentally,
it is as accurate as other state-of-the-art implementations, but is
much faster and produces far fewer support vectors (and thus
faster testing) on large data sets. The ability to perform regres-
sion on large data sets is particularly attractive for geometric
modeling with implicit surfaces [36]. Encouraging preliminary
results on using the proposed extension for implicit surface
modeling is recently reported in [22].

While any kernel function can be used with the generalized
CVM, additional speedup may be possible by employing kernel-
specificcomputationaltricks.Forexample,Sonnenburgetal.[37]
recentlyproposedtheuseofspecialdatastructuresandsuffixtrees
for computing string kernels on sequence data. The possible in-
tegration of these data structures into the generalized CVM will
be studied in the future. Moreover, an experimental evaluation
of the ranking SVM proposed in Section IV-B will also be con-
ducted. With the explosion of customer click-through data in on-
line shopping websites, we expect that the ability of the general-
ized CVM in handling very large data sets will be very useful in

1138 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 17, NO. 5, SEPTEMBER 2006

this real-world context. Besides, recall that the two-norm error
is used in the CVM formulation. Extending the CVM to handle
the one-norm error will be further studied in the future.

APPENDIX

PROOFS

In the following, we denote the center of MEB by

.

Lemma 1: There exists a point on the boundary of the
MEB such that the angle between the two vectors
and is 90 .

Proof: Let be the point inside MEB

that is furthest away from . First, consider the special
case where this is directly above . In other words,

. As is on the boundary of MEB ,

the radius of MEB is . From Step 2)

of Algorithm 1, if there exists a point

such that , then
it is added to the core set; otherwise, the algorithm termi-

nates. As is constrained to be of the form , so

is orthogonal to .

In other words, the angle between these two vectors is 90 .
On the other hand, if is not directly above , then, as in

the proof of Lemma 2 in [38], any closed halfspace bounded by
a hyperplane that contains and orthogonal to the plane whose

last coordinate is 0, i.e., , must also contain a point at

the boundary. Otherwise, we can shift the center towards the

opposite side along , and construct a smaller MEB ,

leading to a contradiction. Therefore, we can choose this point in
the halfspace that does not contain and the angle between

and is 90 .
Theorem 1: There exists a set of size such that

the distance between and any point of is at most
.

Proof: The proof is adapted from that of Theorem 2.2 in
[26] with minor modifications.10 For completeness, we present

10The only modification required is in the proving of (26) and (27). The other
parts in the proof are identical.

the whole proof. Let . If all the points in

are at distances at most from , then we are

done. Otherwise, there exists a point

such that . Define
. This will be added to MEB . By

the triangle inequality, we have

(26)

From Lemma 1, there exists a point on the boundary of
MEB such that the angle between and is

90 . Using the cosine rule

(27)

Define . Then, combining (26) and (27), we have

(28)

The bound on is the smallest with respect to when
. On using (28), this reduces to

or . Therefore, to get
, we only need .

Property 2: In the regression setting, all the training pat-
terns satisfy loose KKT conditions when the generalized CVM
terminates.

Proof: At any iteration , each training point may fall into
one of the following three categories.

1) Core vectors: Obviously, they satisfy the loose KKT con-
ditions as they are involved in the QP.

2) Noncore vectors inside/on the ball: Recall that all the ’s
(except those of the initial core vectors) are initialized to
zero. Hence, for noncore vectors inside/on the ball, their

’s are zero and so the KKT conditions are satisfied.
3) Points lying outside : For any such point , its

is zero (by initialization). We can rewrite (15) as (29),
shown at the bottom of the page.

When the algorithm terminates at the th iteration, all ’s out-
side must lie inside/on the -ball

[using (22)]

[using (19)]

(29)

TSANG et al.: GENERALIZED CORE VECTOR MACHINES 1139

[using (20)]

[using (22)]

if
if

[since and on using (12), (13)]
if
if

[using (29)]

if
if

. Hence, we have the equation shown at the top of the page.
As this holds for all ’s, it can be simplified to

which implies

(30)

by using the definition of the -insensitive loss function in (9).

Using , we obtain from

(22). Now, all the diagonal elements of a positive–semidefinite
(psd) matrix must be nonnegative, so

(31)

Thus

[using (19)]

[using (22)]

[using (31)]

Combining with (30), we have

which is a loose KKT condition on pattern [which has
and , and thus and , respectively, by (14)].

Property 3: When , the generalized CVM algo-
rithm outputs the exact solution of the kernel problem. When

and it terminates at the th iteration, the optimal
primal objective of the kernel problem in (10) satisfies

.

Proof: When , as the number of core vectors in-
creases in each iteration and the training set size is finite, so
the algorithm must terminate in a finite number (say,) of it-
erations. Using the same argument as in [18], MEB must
be the exact MEB enclosing all the whole training set on ter-
mination. On the other hand, when ,

by definition. It can be easily seen that ,
where is the optimal dual objective in (11); , in turn, is
related to as by comparing (17) and
(21). Thus, as , we can bound as

.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers for
their constructive comments on an earlier version of this paper.

REFERENCES

[1] B. Schölkopf and A. Smola, Learning with Kernels. Cambridge, MA:
MIT Press, 2002.

[2] R. Collobert, S. Bengio, and Y. Bengio, “A parallel mixture of SVMs
for very large scale problems,” Neural Comput., vol. 14, no. 5, pp.
1105–1114, May 2002.

[3] C. Williams and M. Seeger, , T. Leen, T. Dietterich, and V. Tresp,
Eds., “Using the Nyström method to speed up kernel machines,” in Ad-
vances in Neural Information Processing Systems. Cambridge, MA:
MIT Press, 2001, vol. 13, pp. 682–688.

[4] A. Smola and B. Schölkopf, “Sparse greedy matrix approximation for
machine learning,” in Proc. 7th Int. Conf. Mach. Learn., Stanford, CA,
Jun. 2000, pp. 911–918.

[5] D. Achlioptas, F. McSherry, and B. Schölkopf, “Sampling techniques
for kernel methods,” in Advances in Neural Information Processing
Systems, T. Dietterich, S. Becker, and Z. Ghahramani, Eds. Cam-
bridge, MA: MIT Press, 2002, vol. 14, pp. 335–342.

[6] S. Fine and K. Scheinberg, “Efficient SVM training using low-rank
kernel representations,” J. Mach. Learn. Res., vol. 2, pp. 243–264, Dec.
2001.

[7] V. Vapnik, Statistical Learning Theory. New York: Wiley, 1998.
[8] C.-C. Chang and C.-J. Lin, LIBSVM: A Library for Support Vector

Machines 2004 [Online]. Available: http://www.csie.ntu.edu.tw/~cjlin/
libsvm

[9] E. Osuna, R. Freund, and F. Girosi, “Training support vector machines:
An application to face detection,” in Proc. Conf. Comput. Vis. Pattern
Recognit., San Juan, PR, Jun. 1997, pp. 130–136.

[10] J. Platt, , B. Schölkopf, C. Burges, and A. Smola, Eds., “Fast training
of support vector machines using sequential minimal optimization,” in
Advances in Kernel Methods – Support Vector Learning. Cambridge,
MA: MIT Press, 1999, pp. 185–208.

[11] S. Vishwanathan, A. Smola, and M. Murty, “SimpleSVM,” in Proc.
20th Int. Conf. Mach. Learn., Washington, D.C., Aug. 2003, pp.
760–767.

1140 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 17, NO. 5, SEPTEMBER 2006

[12] N. Takahashi and T. Nishi, “Rigorous proof of termination of SMO
algorithm for support vector machines,” IEEE Trans. Neural Netw., vol.
16, no. 3, pp. 774–776, May 2005.

[13] D. Pavlov, J. Mao, and B. Dom, “Scaling-up support vector machines
using boosting algorithm,” in Proc. Int. Conf. Pattern Recognit.,
Barcelona, Spain, Sep. 2000, vol. 2, pp. 2219–2222.

[14] Y.-J. Lee and O. Mangasarian, “RSVM: Reduced support vector ma-
chines,” in Proc. 1st SIAM Int. Conf. Data Mining, San Jose, CA, 2001,
pp. 184–200.

[15] T. Friess, N. Cristianini, and C. Campbell, “The Kernel-Adatron al-
gorithm: A fast and simple learning procedure for support vector ma-
chines,” in Proc. 15th Int. Conf. Mach. Learn., Madison, WI, Jul. 1998,
pp. 188–196.

[16] W. Chu, C. Ong, and S. Keerthi, “An improved conjugate gradient
scheme to the solution of least squares SVM,” IEEE Trans. Neural
Netw., vol. 16, no. 2, pp. 498–501, Mar. 2005.

[17] V. Tresp, “Scaling kernel-based systems to large data sets,” Data
Mining Knowl. Discovery, vol. 5, no. 3, pp. 197–211, 2001.

[18] I. W. Tsang, J. T. Kwok, and P.-M. Cheung, “Core vector machines:
Fast SVM training on very large data sets,” J. Mach. Learn. Res., vol.
6, pp. 363–392, 2005.

[19] B. Schölkopf, J. Platt, J. Shawe-Taylor, A. Smola, and R. Williamson,
“Estimating the support of a high-dimensional distribution,” Neural
Comput., vol. 13, no. 7, pp. 1443–1471, Jul. 2001.

[20] T. Joachims, “Optimizing search engines using clickthrough data,” in
Proc. 8th ACM SIGKDD Int. Conf. Knowl. Discovery and Data Mining,
Edmonton, AB, Canada, 2002, pp. 133–142.

[21] A. Smola and B. Schölkopf, “A tutorial on support vector regression,”
Stat. Comput., vol. 14, no. 3, pp. 199–222, Aug. 2004.

[22] I. W. Tsang, J. T. Kwok, and K. T. Lai, “Core vector regression for
very large regression problems,” in Proc. 22nd Int. Conf. Mach. Learn.,
Bonn, Germany, Aug. 2005, pp. 913–920.

[23] I. Tsang, J. Kwok, and P.-M. Cheung, “Very large SVM training using
core vector machines,” in Proc. 10th Int. Workshop Artif. Intell. Stat.,
Barbados, Jan. 2005, pp. 349–356.

[24] M. Garey and D. Johnson, Computers and Intractability: A Guide to the
Theory of NP-Completeness. San Francisco, CA: Freeman, 1979.

[25] P. Agarwal, S. Har-Peled, and K. Varadarajan, , E. Welzl, Ed., “Geo-
metric approximation via coresets,” in Current Trends in Combina-
torial and Computational Geometry. Cambridge, U.K.: Cambridge
Univ. Press, 2005.

[26] M. Bădoiu and K. Clarkson, “Optimal core-sets for balls,” presented
at the DIMACS Workshop Comput. Geometry, Piscataway, NJ, Nov.
2002.

[27] D. Tax and R. Duin, “Support vector domain description,” Pattern
Recognit. Lett., vol. 20, no. 14, pp. 1191–1199, 1999.

[28] S. Har-Peled and Y. Wang, “Shape fitting with outliers,” SIAM J.
Comput., vol. 33, no. 2, pp. 269–285, 2004.

[29] O. Mangasarian and D. Musicant, “Lagrangian support vector ma-
chines,” J. Mach. Learn. Res., vol. 1, pp. 161–177, 2001.

[30] T. Joachims, , B. Schölkopf, C. Burges, and A. Smola, Eds., “Making
large-scale support vector machine learning practical,” in Advances in
Kernel Methods – Support Vector Learning. Cambridge, MA: MIT
Press, 1999, pp. 169–184.

[31] D. Musicant and A. Feinberg, “Active set support vector regression,”
IEEE Trans. Neural Netw., vol. 15, no. 2, pp. 268–275, Mar. 2004.

[32] J. Friedman, “Multivariate adaptive regression splines (with discus-
sion),” Ann. Stat., vol. 19, no. 1, pp. 1–141, 1991.

[33] K.-K. Sung, “Learning and Example Selection for Object and Pattern
Recognition,” Ph.D. dissertation, Artif. Intell. Lab. and Cntr. Biol.
Comput. Learn., MIT, Cambridge, MA, 1996.

[34] J. Weston, B. Schölkopf, E. Eskin, C. Leslie, and S. Noble, “Dealing
with large diagonals in kernel matrices,” in Principles of Data Mining
and Knowledge Discovery. Helsinki, Finland: Springer-Verlag, 2002,
vol. 243, Lecture Notes in Computer Science, pp. 494–511.

[35] A. Bradley, “The use of the area under the ROC curve in the evaluation
of machine learning algorithms,” Pattern Recognit., vol. 30, no. 7, pp.
1145–1159, 1997.

[36] J. Bloomenthal, Introduction to Implicit Surfaces. San Francisco,
CA: Morgan Kaufmann, 1997.

[37] S. Sonnenburg, G. Rätsch, and B. Schölkopf, “Large scale genomic se-
quence SVM classifiers,” in Proc. 22nd Int. Conf. Mach. Learn., Bonn,
Germany, Aug. 2005, pp. 849–856.

[38] P. Kumar, J. Mitchell, and A. Yildirim, “Approximate minimum en-
closing balls in high dimensions using core-sets,” ACM J. Exp. Algo-
rithmics, vol. 8, p. 1.1, Jan. 2003.

Ivor Wai-Hung Tsang received the B.Eng. and
M.Phil. degrees in computer science, in 2001 and
2003, respectively, from the Hong Kong University
of Science and Technology (HKUST), Hong Kong,
where he is currently working toward the Ph.D.
degree.

He was an Honor Outstanding Student in 2001,
and was awarded the Microsoft Fellowship in 2005,
and the Best Paper Award from the Second IEEE
Hong Kong Chapter of Signal Processing Postgrad-
uate Forum in 2006. His scientific interests includes

machine learning and kernel methods.

James Tin-Yau Kwok received the Ph.D. degree in
computer science from the Hong Kong University of
Science and Technology (HKUST), Hong Kong, in
1996.

He then joined the Department of Computer
Science, Hong Kong Baptist University, Hong Kong,
as an Assistant Professor. He returned to HKUST
in 2000 and is now an Assistant Professor in the
Department of Computer Science. His research
interests include kernel methods, machine learning,
pattern recognition, and artificial neural networks.

Dr. Kwok is an Associate Editor for the IEEETRANSACTIONS ON NEURAL

NETWORKS and the Journal of Neurocomputing.

Jacek M. Zurada (M’82–SM’83–F’96) received the
M.S. and Ph.D. degrees in electrical engineering from
the Technical University of Gdansk, Gdansk, Poland.

He is the Samuel T. Fife Alumni Professor, and
Chair of the Electrical and Computer Engineering
Department, University of Louisville, Louisville,
KY. He was the coeditor of Knowledge-Based
Neurocomputing (MIT Press: 2000), the author of
Introduction to Artificial Neural Systems (PWS:
1992), contributor to the 1994 and 1995 volumes of
Progress in Neural Networks (Ablex), and coeditor

of Computational Intelligence: Imitating Life (IEEE Press: 1994). He is the
author or coauthor of more than 250 journal and conference papers in the
area of neural networks, computational intelligemce, data mining, image
processing, and VLSI circuits. He has delivered numerous invited plenary
conference presentations and seminars throughout the world. In March 2003,
he was conferred the Title of Professor by the President of Poland, Aleksander
Kwasniewski, the Honorary Professorship of Hebei University in China, and,
since 2005, he serves as a Foreign Member of the Polish Academy of Sciences.

Dr. Zurada was an Associate Editor of IEEE TRANSACTIONS ON CIRCUITS

AND SYSTEMS—PART I: REGULAR PAPERS and IEEE TRANSACTIONS ON

CIRCUITS AND SYSTEMS—PART II: EXPRESS BRIEFS. From 2001 to 2003, he
was a member of the Editorial Board of the IEEE PROCEEDINGS. From 1998
to 2003, he was the Editor-in-Chief of IEEE TRANSACTIONS ON NEURAL

NETWORKS. He is an Associate Editor of Neurocomputing. He has received a
number of awards for distinction in research and teaching, including the 1993
Presidential Award for Research, Scholarship and Creative Activity. In 2001, he
received the University of Louisville President’s Distinguished Service Award
for Service to the Profession. He is the Past President and a Distinguished
Speaker of IEEE Computational Intelligence Society.

