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A Class of Single-Class Minimax Probability
Machines for Novelty Detection
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Abstract—Single-class minimax probability machines (MPMs)
offer robust novelty detection with distribution-free worst case
bounds on the probability that a pattern will fall inside the normal
region. However, in practice, they are too cautious in labeling pat-
terns as outlying and so have a high false negative rate (FNR). In
this paper, we propose a more aggressive version of the single-class
MPM that bounds the best case probability that a pattern will fall
inside the normal region. These two MPMs can then be used to-
gether to delimit the solution space. By using the hyperplane lying
in the middle of this pair of MPMs, a better compromise between
false positives (FPs) and false negatives (FNs), and between recall
and precision can be obtained. Experiments on the real-world
data sets show encouraging results.

Index Terms—Kernel methods, minimax probability machines
(MPMs), novelty detection.

I. INTRODUCTION

I N recent years, there has been a lot of interest on using ker-
nels in various aspects of machine learning, such as classifi-

cation, regression, clustering, ranking, and principal component
analysis [1]. A well-known example in supervised learning are
the support vector machines (SVMs). The basic idea of kernel
methods is to map the data from an input space to a feature space

via some map , and then apply a linear procedure there. It is
now well known that the computations do not involve explic-
itly, but depend only on the inner product defined in , which in
turn can be obtained efficiently from a suitable kernel function
(the “kernel trick”).

In this paper, we will focus on the use of kernels in nov-
elty detection. Here, the goal is to differentiate the known ob-
jects (normal patterns) from the unknown objects (outliers) [2],
[3]. Novelty detection has found many real-world applications,
such as the detection of unusual vibration signatures in jet en-
gines [4]. Traditionally, novel patterns are detected by either es-
timating the density function of the normal patterns or by finding
a small set such that for some fixed
(quantile estimation). However, they both depend critically on
the parametric form of the density function and can fail miser-
ably when this assumption is incorrect.
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Instead of estimating the density or quantile, a simpler task
is to model the support of the data distribution directly. Tax and
Duin proposed the support vector data description (SVDD) [5],
which uses a small ball to enclose most of the data. Computa-
tionally, this leads to a quadratic programming (QP) problem,
which has the important advantage that the solution obtained
is always globally optimal. Moreover, as with other kernel
methods, SVDD works well with high-dimensional data and
can be easily kernelized by replacing the dot products between
patterns with the corresponding kernel evaluations.

Besides balls, hyperplanes have also been used. Schölkopf
et al. proposed the one-class SVM [6] that uses a hyperplane
to separate normal patterns from the outliers with maximum
margin. Again, this leads to a QP problem. Moreover, when
Gaussian kernels are used, the one-class SVM solution is equiv-
alent to that of the SVDD. Instead of using QP formulations as
in both SVDD and one-class SVM, a linear programming (LP)
formulation has also been proposed [7].

Recently, Lanckriet et al. proposed the single-class minimax
probability machine (MPM) [8] that is also based on the use of
hyperplanes. However, it is distinctive in that a distribution-free
probability bound, based on the use of generalized Chebychev
inequalities [9], can be provided. Specifically, given only the
mean and covariance matrix of a distribution and without
making any other distributional assumption, it seeks the smallest
half-space for the normal patterns, not
containing the origin, that bounds the worst case probability of
a data pattern falling inside of (Fig. 1). Mathematically, given

, the single-class MPM ensures that

(1)

where denotes the class of distributions with the
given values of mean and covariance matrix .

Despite its interesting theoretical properties, the single-class
MPM has a high false negative rate (FNR) in practice (in this
paper, outliers are treated as positives while normal patterns
as negatives) [10]. This can be explained by noting that (1) is
equivalent to

(2)

In other words, the probability of having a data pattern falling
outside (i.e., an outlier), for every distribution with given
values of and , is upper bounded by . Thus, single-class
MPMs are too cautious in labeling a pattern as outlying. To al-
leviate this problem, Lanckriet et al. [10] suggested the provi-
sion of some uncertainty information on the covariance matrix.
Another possibility is to also use higher order moments (where
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Fig. 1. Single-class MPM. Here, we follow the convention that the outliers are
treated as positives while normal patterns are treated as negatives.

order ) to better characterize the tail probability behavior
of the data distribution. However, when , it can be shown
that obtaining tight bounds for the corresponding generalized
Chebychev inequalities is NP-hard [9]. Moreover, since typi-
cally we do not know the moments in advance, they have to be
replaced by plug-in estimates based on the empirical data. Very
often, only the first- and second-order moments can be reliably
estimated, making the use of higher order moments difficult in
practice.

In this paper, we address this problem by considering the
other side of the coin. We first propose a variant of the single-
class MPM that bounds instead the distribution-free, best case
probability of a pattern falling inside the normal region. It will
be seen that this MPM will be more aggressive in labeling pat-
terns as outliers. By using this aggressive version in tandem with
the traditional, more conservative single-class MPM, improved
novelty detection performance can be obtained. The rest of this
paper is organized as follows. First, Section II reviews the tra-
ditional single-class MPM. Then, Section III describes the two
proposed variants. Experimental results on real-world data sets
are presented in Section IV, and Section V gives some con-
cluding remarks.

II. SINGLE-CLASS MPM

Similar to the one-class SVM [6], the single-class MPM seeks
to separate the normal patterns from the origin with the max-
imum margin. Given the mean and the covariance matrix of
a distribution (and without making any other distributional as-
sumption), the single-class MPM finds the smallest half-space
(Fig. 1)

(3)

for the normal patterns, not containing the origin, that minimizes
the worst case probability of a data pattern falling inside . The

size of in (3) can be minimized by maximizing the distance
of from the origin, i.e., . Hence, for a given

, this leads to the following constrained optimization
problem:

(4)

For novelty detection, is typically chosen close to 1 so that
most of the patterns are contained in the half-space while
those outside are the outliers.

An important tool in deriving the MPM is the generalized
Chebychev inequality [9]. Over all distributions of having the
given values of mean and covariance matrix , the general-
ized Chebychev inequality bounds the probability of a random
pattern falling in a convex set . Mathematically

where . Lanckriet et al. [11]
showed that the constraint in (4) is the same as

(5)

where

(6)

Denote

(7)

They also showed that if

(8)

the optimal values of and (denoted and , respectively)
in (4) are obtained as

(9)

otherwise, the problem is infeasible. Note that one can multiply
and by the same constant without changing the hyper-

plane. On testing, a pattern will be predicted as an outlier if
it lies on the side of the hyperplane containing the origin, i.e.,

.
Similar to the traditional techniques of the principal compo-

nent analysis and Fisher discriminant analysis [12], MPM also
relies heavily on the use of the covariance matrix. In practice,
it is not known a priori and has to be estimated from the data.
To improve robustness, Lanckriet et al. [8], [11] suggested the
incorporation of uncertainties on and into the optimization
problem. In particular, consider an uncertainty set of the form

(10)
where and are the nominal estimates of and , de-
notes the Frobenious norm, and are the corresponding
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uncertainties. Then, if , the problem is strictly fea-
sible and in (9) will be changed to

while the value of remains unchanged. Alternatively, robust
covariance matrix estimation methods (such as [13] and [14])
can also be used.

III. FAMILY OF SINGLE-CLASS MPMS

If the underlying data distribution is known, one no longer
needs the infimum operator in (4). However, this is often im-
possible. Alternatively, nonparametric density estimation may
be employed, though it is costly and difficult on high-dimen-
sional data. Instead, the single-class MPM in Section II guar-
antees a certain probability mass for the normal region in the
worst case. However, typically, the actual data distribution does
not correspond to this worst case. Thus, this MPM is very con-
servative in classifying patterns as outliers and often misses a
lot of the outliers in practice. To improve its outlier detection
capability, obviously one should not move the hyperplane solu-
tion in Fig. 1 further down, for otherwise even more
patterns will be classified as normal. A simple remedy is thus
to move the hyperplane up by adjusting the bias . However, it
is unclear why only the bias needs to be adjusted. Moreover, as

, there is the question of how to set the bias in
this infinite range.

A. Best Case Scenario: Aggressive Single-Class MPM

In this section, instead of considering the worst case scenario
as in Section II, we consider the best case scenario. While the
worst case corresponds to the infimum operator in (4), the best
case corresponds to the supremum operator. This new single-
class MPM will thus be more aggressive in labeling patterns as
outliers, though also liable to having a higher false alarm rate.
Interestingly, it can be shown that these two extreme versions
of the single-class MPM differ only in the value of the bias.
Thus, one can then move between these two extremes by simply
varying the bias (Section III-B).

1) Formulation: Considering now the best case situation, the
optimization problem in (4) becomes

(11)

As in the traditional single-class MPM, has to be positive in
order for not to contain the origin. Moreover, (11) is also
homogeneous in . Hence, without loss of generality, we
can set and rewrite (11) as

(12)

There are the following two cases to consider.

Case 1: From the proof of [11, Lemma 1],
the left-hand side of the constraint in (12) is given by

, where

(13)

The constraint in (12) then becomes

(14)
on using (13) and the definition of in (6). As we are con-
sidering the case , and (14)
reduces to

(15)

Then, the constrained optimization problem in (12) can be
written as

(16)

With the change of notations and ,
this further becomes

(17)

where denotes the usual Euclidean norm. This can be easily
solved by using the method of Lagrange multipliers, yielding

In other words, for some . Obviously, has
to be positive,1 for otherwise when a pattern moves from the
origin (which must be an outlier according to the definition of
the single-class MPMs) towards , the value of will
decrease, leading to the counterintuitive prediction that is even
more likely to be an outlier. Hence, with where ,
(17) can be written as

Obviously, , and so

(18)

Case 2: . In this case, we can just take and
, and so the constraint in (12)

is automatically satisfied. To find , we have to solve

(19)

1For � < 0, it can be shown that a = ��x=(�(1 � �)k�xk � k�xk ) when
�(1� �) > k�xk, and has no feasible solution otherwise.
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With the change of notations and ,
this becomes

(20)

Using the method of Lagrange multipliers, we again obtain
for some . As in Case 1, has to be positive. Hence,

with where , (20) can be written as

yielding , and so

(21)

As for , the value of the objective
function obtained by (18) is smaller than that obtained by
(21). In other words, Case 1 yields the optimal solution. Trans-
forming the solution in (18) back to the original coordinates, the
optimal values of and (denoted and , respectively) are
then

(22)

Prediction is still performed as for the traditional single-class
MPM, i.e., a test pattern will be predicted as an outlier if

.
2) Remarks: Recall that one can multiply and by the same

constant without changing the hyperplane. Hence, this pair of
the single-class MPMs share the same direction and differ only
in the value of . Moreover, it can be easily seen that they are
identical when , but then move in different directions as

increases. Moreover, as in the traditional MPM, uncertainties
on and in the form of (10) can also be easily incorporated.
It can be shown that the optimal values of and in (22) are
subsequently changed to

where in (7) is changed accordingly to .
It can also be kernelized in an analogous manner, thus effec-
tively allowing the use of nonlinear boundaries to separate out-
liers from normal patterns.

Finally, consider the special case where is indeed normally
distributed as . It can be shown, in a manner analogous
to that for the two-class MPM in [11], that the only change for
the original single-class MPM in Section II is to replace
in (9) by , where is the cu-
mulative distribution function for a standard univariate normal
distribution. Similarly, for the aggressive single-class MPM, one
has to replace by . As
for , the hyperplane is shifted in parallel away
from the origin, while the hyperplane is shifted in
parallel towards the origin. This, again, is in accordance with
the fact that the traditional single-class MPM corresponds to the

worst case situation, while the aggressive single-class MPM cor-
responds to the best case situation.

B. Moderate Single-Class MPM

The traditional single-class MPM is conservative in labeling
patterns as outliers, and has a low false positive rate (FPR) but
a high FNR. On the other hand, the new one is aggressive, and
has a low FNR but high FPR. Nevertheless, patterns that are pre-
dicted as outliers by the conservative MPM are very likely to be
true outliers, while those predicted as normal by the aggressive
MPM are very likely to be truly normal. In classification prob-
lems, one sometimes has the option of rejecting patterns that are
not unrecognizable. Analogously, we can obtain a more reliable
novelty detector by combining these two single-class MPMs as
follows.

1) If the test pattern is predicted to be an outlier by the
conservative MPM, predict that is an outlier.

2) If is predicted as normal by the aggressive MPM, predict
that is normal.

3) Otherwise ( is predicted as normal by the conservative
MPM but as an outlier by the aggressive MPM), the confi-
dence is low and is rejected as being unrecognizable.

However, such a reject option may not be feasible in applications
where the cost for rejects is high. Moreover, a large amount of
patterns may also have to be rejected.

Note that the traditional and aggressive single-class MPMs
are at different ends of the solution space. Moving up the hy-
perplane solution of the aggressive MPM
will classify even more patterns as outliers, while moving down
that of the traditional MPM will classify
even more patterns as normal. Thus, both are clearly undesir-
able. Recall that and are parallel. Hence, an “optimal”
solution can be obtained by simply varying the bias in the fi-
nite range . However, this is still difficult unless one is
willing to make assumptions on the data distribution. Alterna-
tively, one may assume the presence of labeled normal patterns
and outliers (that may be artificially generated [15]) and then,
use resampling procedures such as cross validation to determine
the optimal value of . However, many novelty detection prob-
lems do not have the luxury of labeled data available, while the
use of artificially generated data implicitly assumes the under-
lying data distribution. Besides, when labeled data is present,
it is often better to address the novelty detection problem as a
two-class, rather than one-class, classification problem [16].

As the actual data distribution is likely to correspond to nei-
ther the worst case nor the best case scenario, studying the av-
erage case situation will be more useful. However, without ad-
ditional information such as some distributional assumption on
the data, a formal analysis of the average case is impossible.
In the following, we attempt to approximate the average case
scenario. An intuitive compromise is struck by translating the
hyperplane such that it is furthest away from both extremes, re-
sulting in the hyperplane that is midway between

and . This can also be viewed as the Bayes point ma-
chine [17] located at the center of mass of the solution space

. Moreover, recall that patterns predicted as



782 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 18, NO. 3, MAY 2007

outliers by the conservative MPM are very likely to be true out-
liers, while those predicted as normal by the aggressive MPM
are very likely to be truly normal. This “moderate” variant of the
MPM is also the maximum-margin hyperplane that separates the
confidently labeled outliers from the confidently labeled normal
patterns. Recall that one can multiply and by the same
arbitrary constant without changing the hyperplane; it can be
shown that

(23)

Similar to its predecessors, this MPM can also be easily kernel-
ized.2 As will be demonstrated by the experiments in Section IV,
empirically, it is a better compromise between false positives
(FPs) and false negatives (FNs) than both of its conservative and
aggressive predecessors.

IV. EXPERIMENTS

In this section, we compare the performance of the various
single-class MPMs on a number of real-world data sets. For
simplicity of notations, we will denote the single-class MPMs
in Sections II, III-A, and III-B as MPM1, MPM2, and MPM3,
respectively.

A. Setup

Four real-world data sets3 (Table I) from the University of
California at Irvine (UCI) machine learning repository [18] are
used in the experiments. All these are two-class problems. For
each data set, we take the larger class as normal data and the
other as outliers. We follow the setup in [8] by randomly sam-
pling 80% of the normal patterns for training (no outlier is used).
The remaining 20% of the normal patterns and all the outliers
are used for testing. To reduce statistical variability, results here
are based on averages over 100 random repetitions. Note that
as only one class of patterns (the normal class) is used during
training, standard resampling techniques such as cross valida-
tion cannot be used to determine the “optimal” bias.

To alleviate the possible problem of different scalings for dif-
ferent dimensions, we use the automatic relevance determina-
tion (ARD) kernel that automatically adapts different widths for
each dimension [19]. It is defined as

, where s (and, similarly, for s) are the compo-
nents of and is the 90% quantile of the value of
over the training data.4 As in [11], we add (where )
to the plug-in estimate of the covariance matrix. The setting of

is typically unknown. In the experiments, we vary its value to
study the performance of the various MPMs.

The following popular performance criteria will be adopted:
1) FP rate: FPR FP/(TN FP);

2Given a kernel function k, define K = [k(x ;x )] 2 the kernel
matrix, `̀̀ = [` ; . . . ; ` ] , where ` = (1=N) k(x ;x ) and L =

(1=
p
N)(K�1 `̀̀ ), where 1 = [1; . . . ; 1] 2 . It can be shown that the

hyperplane solution is  k(x ;x) + b , where  = [ ; . . . ;  ] =

(L L) `̀̀ and b = `̀̀ (L L) `̀̀ + ((�(1� �)� �(�))=2) `̀̀ (L L) `̀̀.
3Experiments have been performed on more data sets. However, because of

the lack of space, only results on these four representative data sets are reported
here.

4As in [19], this value is estimated from a 20% random sample of the training
data.

TABLE I
DATA SETS USED IN THE EXPERIMENTS

2) FN rate: FNR FN/(TP FN);
3) balanced loss: (FPR FNR)/2;
4) -value recall precision/(recall precision).

The two performance criteria, precision (TP 1)/(TP
FP 1) and recall TP/(TP FN), have also been used. As
expected, a low FPR empirically corresponds to high precision
while low FNR corresponds to high recall, and vice versa.
Hence, to reduce clutter, figures on precision and recall are not
shown here.

Recall that outliers are treated as positives while normal pat-
terns as negatives. The balanced loss can be regarded as an
aggregate performance measure for FPR and FNR, while the

-value is another aggregate for precision and recall. As can be
seen from Table I, the sizes of the normal patterns and outliers
are very different in the test set, and the balanced loss has been
shown to be particularly suitable in such an imbalanced setting
[20]. A good novelty detector should attain low values on FPR,
FNR, and , however, high values on precision, recall, and

-value. The receiver operating characteristic (ROC) graph is
also a common tool for performance evaluation [21]. However,
as the three MPMs differ only in the bias, they share the same
ROC and so ROC analysis cannot be applied here.

B. Experimental Results

Results on the data sets are shown in Fig. 2. As increases,
note from (9), (22), and (23) that the biases of all three MPMs
decrease and move closer to the origin. Consequently, all their
FPRs decrease while their FNRs increase. Besides, MPM3 is
almost identical to MPM2 when is small. In particular, when

, both and approach , as can be seen from (22)
and (23), and, consequently, all the patterns are classified as out-
liers by MPM2 and MPM3. Hence, a small value of should
not be used for MPM2 and MPM3. As a rule of thumb, we rec-
ommend the setting of . This is not overly restric-
tive as we assume that outliers form the minority class (and so

). Moreover, as MPM1 (and, consequently, MPM3) be-
comes infeasible, when (8) is violated and in (8) is mono-
tonically increasing with , cannot be too large.

As can be seen from Fig. 2, the various MPMs have different
strengths and weaknesses and its appropriateness depends on
the specific situations. If the goal is to obtain low FPR and high
precision, MPM1 is the most desirable. This is then followed
by MPM3, and the last one is MPM2. On the other hand, for
good FNR and recall, the rankings are reversed: MPM2 now be-
comes the best, which is then followed by MPM3 and the worst
is MPM1. The results in Fig. 2 also confirm our previous dis-
cussion that MPM1 is reluctant to label patterns as outliers. On
the other hand, MPM2 is too aggressive in detecting outliers.
Hence, many patterns are labeled as outliers and the FPR ob-
tained is high (often close to one even when is large). Clearly,
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Fig. 2. Novelty detection results. First row: FPR. Second row: FNR. Third row: balanced loss. Fourth row: F -value. (a), (e), (i), and (m) Adult. (b), (f), (j), and
(n) Breast cancer. (c), (g), (k), and (o) Ionosphere. (d), (h), (l), and (p) wdbc.

this reflects that the underlying data distributions of these data
sets correspond to neither the worst case nor the best case sit-
uations as considered by the MPM models. On the other hand,
the MPM3, which corresponds to the “average case,” obtains a
better tradeoff between FPR and FNR than both of its conser-
vative and aggressive predecessors, especially when is set in
the recommended range of [0.6, 0.8].

As for the aggregated performance measures of the balanced
loss and -value, the specific rankings of the MPMs again de-
pend on the value of . As discussed earlier, a small value of
leads to the poor performance for both the MPM2 and MPM3.
However, with as suggested, the empirical perfor-
mance of MPM3 is almost always close to the best performance
achievable by the other MPMs over the whole range of . In par-
ticular, MPM3 is clearly superior on the ionosphere and wdbc
data sets.

For comparison, we also perform experiments with the one-
class SVM [6]. To reduce clutter, we only show the graphs for
the -value and balanced loss in Fig. 3. As can be seen, MPM3
with often leads to a lower balanced loss and a
higher/comparable -value than the one-class SVM.

V. CONCLUSION

In this paper, we propose a simple and intuitive method for
performing novelty detection. This is based on a more aggres-
sive version of the single-class MPM that guarantees a certain
probability mass for the normal region in the best case situation.
By using a moderate version that is midway between this pair of
single-class MPMs, we obtain good FNR and precision (which
is typical of a conservative novelty detector) as well as good
FPR and recall (typical of an aggressive novelty detector). Ex-
periments on the real-world data sets show encouraging results,
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Fig. 3. Comparing the MPM3 with one-class SVM. Top row: F -value. Bottom row: balanced loss. (a) and (e) Adult. (b) and (f) Breast cancer. (c) and (g) Iono-
sphere. (d) and (h) wdbc.

especially in terms of the aggregated performance measures of
balanced loss and -value.

In general, FPs and FNs may have different costs. In the fu-
ture, we will explore the computation of probabilistic outputs
for this moderate version of the single-class MPM, which can
then be used for cost-sensitive novelty detection. Moreover, the
effect of using robust estimators for the mean and covariance
matrix (such as [13] and [14]) will also be studied.

REFERENCES

[1] B. Schölkopf and A. Smola, Learning With Kernels. Cambridge, MA:
MIT Press, 2002.

[2] M. Markou and S. Singh, “Novelty detection: a review, part I: Statistical
approaches,” Signal Process., vol. 83, no. 12, pp. 2481–2497, 2003.

[3] S. Marsland, “Novelty detection in learning systems,” Neural Comput.
Surv., vol. 3, pp. 157–195, 2003.

[4] P. Hayton, B. Schölkopf, L. Tarassenko, and P. Anuzis, “Support vector
novelty detection applied to jet engine vibration spectra,” in Advances
in Neural Information Processing Systems 13, T. Leen, T. Dietterich,
and V. Tresp, Eds. Cambridge, MA: MIT Press, 2001.

[5] D. Tax and R. Duin, “Support vector domain description,” Pattern
Recognit. Lett., vol. 20, no. 14, pp. 1191–1199, 1999.

[6] B. Schölkopf, J. Platt, J. Shawe-Taylor, A. Smola, and R. Williamson,
“Estimating the support of a high-dimensional distribution,” Neural
Comput., vol. 13, no. 7, pp. 1443–1471, Jul. 2001.

[7] C. Campbell and K. Bennet, “A linear programming approach to nov-
elty detection,” in Advances in Neural Information Processing Systems
14, T. Dietterich, S. Becker, and Z. Ghahramani, Eds. Cambridge,
MA: MIT Press, 2002.

[8] G. Lanckriet, L. El Ghaoui, and M. Jordan, “Robust novelty detec-
tion with single-class MPM,” in Advances in Neural Information Pro-
cessing Systems 15, S. Becker, S. Thrun, and K. Obermayer, Eds.
Cambridge, MA: MIT Press, 2003.

[9] D. Bertsimas and I. Popescu, “Optimal inequalities in probability
theory: a convex optimization approach,” SIAM J. Optim., vol. 15, no.
3, pp. 780–804, 2005.

[10] G. Lanckriet, L. El Ghaoui, and M. Jordan, “Robust novelty detection
with single-class MPM,” in IMA Workshop Semidefinite Programm.
Robust Optim., 2003.

[11] G. Lanckriet, L. El Ghaoui, C. Bhattacharyya, and M. Jordan, “A robust
minimax approach to classification,” J. Mach. Learn. Res., vol. 3, pp.
555–582, 2002.

[12] R. Duda, P. Hart, and D. Stork, Pattern Classification, 2nd ed. New
York: Wiley, 2001.

[13] F. Alqallaf, K. Konis, R. Martin, and R. Zamar, “Scalable robust
covariance and correlation estimates for data mining,” in Proc. 8th Int.
Conf. Knowl. Discovery Data Mining (ACM SIGKDD), Edmonton,
AB, Canada, 2002, pp. 14–23.

[14] N. Wang and A. Raftery, “Nearest neighbor variance estimation
(NNVE): Robust covariance estimation via nearest neighbor cleaning
(with discussion),” J. Amer. Statist. Assoc., vol. 97, no. 460, pp.
994–1019, 2002.

[15] D. Tax and R. Duin, “Uniform object generation for optimizing
oneclass classifiers,” J. Mach. Learn. Res., vol. 2, pp. 155–173, 2001.

[16] I. Steinwart, D. Hush, and C. Scovel, “A classification framework for
anomaly detection,” J. Mach. Learn. Res., vol. 6, pp. 211–232, 2005.

[17] R. Herbrich, T. Graepel, and C. Campbell, “Bayes point machines,” J.
Mach. Learn. Res., vol. 1, pp. 245–279, 2001.

[18] C. Blake, E. Keogh, and C. Merz, “UCI repository of machine learning
databases,” Dept. Inf. Comput. Sci., Univ. California, Irvine, 1998 [On-
line]. Available: http://www.ics.uci.edu/~mlearn/MLRepository.html

[19] C. Ong, A. Smola, and R. Williamson, “Learning the kernel with hy-
perkernels,” J. Mach. Learn., vol. 6, pp. 1043–1071, 2005.

[20] B. Schölkopf, J. Weston, E. Eskin, C. Leslie, and W. Noble, “A kernel
approach for learning from almost orthogonal patterns,” in Proc. 13th
Eur. Conf. Mach. Learn., Helsinki, Finland, Aug. 2002, pp. 511–528.

[21] A. Bradley, “The use of the area under the ROC curve in the evaluation
of machine learning algorithms,” Pattern Recognit., vol. 30, no. 7, pp.
1145–1159, 1997.

James T. Kwok received the Ph.D. degree in
computer science from the Hong Kong University of
Science and Technology (HKUST), Hong Kong, in
1996.

He then joined the Department of Computer
Science, Hong Kong Baptist University, Hong Kong,
as an Assistant Professor. He returned to HKUST
in 2000 and is now an Associate Professor in the
Department of Computer Science. His research
interests include kernel methods, machine learning,
pattern recognition, and artificial neural networks.

Dr. Kwok is an Associate Editor for the IEEE TRANSACTIONS ON NEURAL

NETWORKS and the Journal of Neurocomputing.



KWOK et al.: CLASS OF SINGLE-CLASS MPMS FOR NOVELTY DETECTION 785

Ivor Wai-Hung Tsang received the B.Eng. and
M.Phil. degrees in computer science, in 2001 and
2003, respectively, from the Hong Kong University
of Science and Technology (HKUST), Hong Kong,
where he is currently working toward the Ph.D.
degree.

He was awarded the IEEE TRANSACTIONS ON

NEURAL NETWORKS Outstanding 2004 Paper Award,
the Microsoft Fellowship in 2005, the Best Paper
Award from the IEEE Hong Kong Chapter of Signal
Processing Postgraduate Forum in 2006, and also an

Honor Outstanding Student in 2001. His scientific interests includes machine
learning and kernel methods.

Jacek M. Zurada (M’82–SM’83–F’96) received the
M.S. and Ph.D. degrees in electrical engineering from
the Technical University of Gdansk, Gdansk, Poland.

He is the Samuel T. Fife Alumni Professor, and
Chair of the Electrical and Computer Engineering
Department, University of Louisville, Louisville,
KY. He was the coeditor of Knowledge-Based
Neurocomputing (MIT Press: 2000), the author of
Introduction to Artificial Neural Systems (PWS:
1992), contributor to the 1994 and 1995 volumes of
Progress in Neural Networks (Ablex), and coeditor

of Computational Intelligence: Imitating Life (IEEE Press: 1994). He is the
author or coauthor of more than 250 journal and conference papers in the area
of neural networks, computational intelligence, data mining, image processing,
and very large scale integration (VLSI) circuits. He has delivered numerous
invited plenary conference presentations and seminars throughout the world. In
March 2003, he was conferred the Title of Professor by the President of Poland,
Aleksander Kwasniewski, the Honorary Professorship of Hebei University in
China, and, since 2005, he has been serving as a Foreign Member of the Polish
Academy of Sciences.

Dr. Zurada was an Associate Editor of the IEEE TRANSACTIONS ON CIRCUITS

AND SYSTEMS—PART I: REGULAR PAPERS and the IEEE TRANSACTIONS ON

CIRCUITS AND SYSTEMS—PART II: EXPRESS BRIEFS. From 2001 to 2003, he was
a member of the Editorial Board of the IEEE PROCEEDINGS. From 1998 to 2003,
he was the Editor-in-Chief of the IEEE TRANSACTIONS ON NEURAL NETWORKS.
He is an Associate Editor of Neurocomputing. He has received a number of
awards for distinction in research and teaching, including the 1993 Presidential
Award for Research, Scholarship and Creative Activity. In 2001, he received the
University of Louisville President’s Distinguished Service Award for Service to
the Profession. He is the Past President and a Distinguished Speaker of IEEE
Computational Intelligence Society.


