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Building Sparse Multiple-Kernel SVM Classifiers
Mingqing Hu, Yiqiang Chen, and James Tin-Yau Kwok

Abstract—The support vector machines (SVMs) have been very
successful in many machine learning problems. However, they can
be slow during testing because of the possibly large number of sup-
port vectors obtained. Recently, Wu et al. (2005) proposed a sparse
formulation that restricts the SVM to use a small number of ex-
pansion vectors. In this paper, we further extend this idea by inte-
grating with techniques from multiple-kernel learning (MKL). The
kernel function in this sparse SVM formulation no longer needs to
be fixed but can be automatically learned as a linear combination
of kernels. Two formulations of such sparse multiple-kernel clas-
sifiers are proposed. The first one is based on a convex combina-
tion of the given base kernels, while the second one uses a convex
combination of the so-called “equivalent” kernels. Empirically, the
second formulation is particularly competitive. Experiments on a
large number of toy and real-world data sets show that the re-
sultant classifier is compact and accurate, and can also be easily
trained by simply alternating linear program and standard SVM
solver.

Index Terms—Gradient projection, kernel methods, mul-
tiple-kernel learning (MKL), sparsity, support vector machine
(SVM).

I. INTRODUCTION

T HE support vector machine (SVM), which is solidly based
on the theory of structural risk minimization in statistical

learning [23], has outperformed many traditional learning al-
gorithms. It is now generally recognized as a powerful tool for
various machine learning problems [8], [20], [19]. As is well
known, the SVM first maps the inputs to a high-dimensional
(possibly infinite-dimensional) feature space and then finds a
large margin hyperplane between the two classes. Computa-
tionally, this leads to a quadratic programming (QP) problem,
which can be easily solved even with off-the-shelf optimiza-
tion software. Moreover, the SVM relies only on the dot product
in the feature space, which can be computed efficiently via the
so-called kernel trick.
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An essential ingredient of the SVM and other kernel methods
is the kernel. In principle, the kernel can be chosen by stan-
dard model selection methods such as cross validation. How-
ever, recent research has focused on developing more efficient
kernel optimization algorithms [1]–[3], [10]–[12], [14]–[17],
[21], [22], [26]. Often, the key idea is to learn the kernel from
a prescribed family of kernels , which is often required to
be convex. An objective function defined on the kernel is then
specified and optimized over . As a result, the obtained classi-
fier may include multiple homogeneous or even heterogeneous
kernels, and this framework is usually called multiple-kernel
learning (MKL) [3], [16], [26].

Besides having to choose the kernel, another potential dis-
advantage of the SVM is that it is often not as compact as the
other classifiers such as neural networks. This in turn results in
slower prediction on testing. Recently, this problem has been
studied extensively for single-kernel SVM classifiers. Various
remedies are introduced, such as the reduced set method
[6], [19], bottom-up method [13], building of a sparse large
margin classifier [24], [25], and the incremental building of
a reduced-complexity classifier [9]. In particular, the reduced
set and bottom-up methods can be viewed as postprocessing
techniques, where an SVM has to be first trained. On the other
hand, approaches in [9], [24], and [25] attempt to obtain a
sparse SVM directly by modifying the SVM’s optimization
problem.

In this paper, we will focus on the sparse SVM formulation
proposed in [24] and [25]. In order to obtain both a good kernel
and a compact representation of the SVM, we integrate MKL
methods with the sparse single-kernel SVM in [24] and [25].
We propose two methods to construct a sparse multiple-kernel
SVM, where the kernel can be automatically selected during the
optimization process.

The rest of this paper is organized as follows. Introductions
to MKL and the sparse single-kernel SVM are provided in
Sections II and III, respectively. Section IV then describes the
proposed sparse multiple-kernel SVM formulations. Experi-
mental results are presented in Section V, and the last section
gives some concluding remarks.

In the sequel, vectors and matrices are denoted in boldface.
Moreover, the transpose of a vector/matrix (in both the input and
feature spaces) will be denoted by the superscript .

II. MULTIPLE-KERNEL LEARNING

In a binary classification problem, we are given pairs of
training examples , where (the input space)
and . Each in is then mapped to a in
the kernel-induced feature space, which is related to the kernel
function by for any . The
standard SVM tries to find a hyperplane that has
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large margin and small training error. Mathematically, this leads
to the following optimization problem:

(1)

Here, is the vector of slack variables for the er-
rors, and is a user-defined regularization parameter that trades
off the margin with error.

Instead of having a single kernel , suppose that we have
a set of base kernels , with the corresponding
kernel-induced feature maps . The following MKL
formulation is first introduced in [3] and then further developed
in [16], [17], and [21]:

(2)

where and is the weight for component
. As shown in [3], the optimality conditions require these
’s to be written as

where , and

and (3)

Note that in (2) is regularized with a mixed -norm
instead of the standard -norm in (1). As discussed in [21], the

part of this mixed norm encourages the sparsity of at the
kernel level, i.e., sparsity in the obtained.
Moreover, the resultant kernel is a convex combination of the
base kernels ’s

(4)

From the learned and , the resultant decision function can
be obtained as

The number of numerical operations required in predicting is
thus proportional to the product of the number of support vectors
and the number of active base kernels selected.

Note that the mixing coefficients ’s are a product of the
optimality conditions of (2) and do not appear explicitly in the

optimization problem. To make these coefficients of the convex
combination explicit, we follow another MKL formulation pro-
posed recently in [26]

(5)

Similar to the part of the mixed norm in (2), the constraint
on encourages a sparse solution, and thus the resultant clas-
sifier selects a sparse combination of base kernels. Interestingly,
for the binary classification scenario considered in this paper, it
can be shown that the dual of (5) is identical to the dual of (2)
[26].

On the computational aspect, a number of techniques have
been proposed to solve the apparently more challenging opti-
mization problem. Examples include sequential minimization
optimization (SMO) [3], convex quadratically constrained
quadratic programming (QCQP) [26], semi-infinite linear
programming (SILP) [26], projected gradient [16], and reduced
gradient methods [17].

III. SPARSE SINGLE-KERNEL SVM

To build a sparse SVM classifier, Wu et al. [24], [25] modified
the primal problem in (1) to:

(6)

where ’s are called the expansion vectors (XVs). The con-
straint in (6) is used to explicitly control the sparsity of SVM.
Substituting (6) into the objective and constraints, we obtain

(7)

where

(8)

and is the kernel matrix defined on the ’s

(9)
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In the sequel, we assume that is positive definite (pd) and
thus invertible. This can be easily enforced by adding a small
ridge to its diagonal.

The dual of (7) can be easily shown to be

(10)

where

(11)

is often called the “equivalent” kernel. It is easy to see that the
matrix is pd. Thus, for a fixed set of expansion vec-
tors , problem (10) can be simply solved by training
a standard SVM with kernel . Moreover, can be recovered
from the learned as

(12)

To learn the expansion vectors ’s, they are also treated as
variables to be optimized in (10), leading to

(13)

where . Consider the inner optimization
subproblem over [i.e., problem (10)], and define its optimal
objective value as a function of . Because of the con-
straint (6), is nonconvex and so we perform gradient de-
scent on . Since is pd, the kernel matrix
is also pd. By using a theorem1 due to Bonnans and Shapiro [4],
the relevant gradients of can be obtained by the following
lemma [24], [25].

Lemma III.1: Let be the th component of
. The derivative of with respect to

(w.r.t.) is

(14)

where maximizes (10) for the given .
In other words, the partial derivative of is computed as

if is not dependent on . The
term in (14) can in turn be obtained from (11), as

and

1For completeness, this theorem is reproduced in the Appendix.

The optimization algorithm then alternates between standard
SVM training [to obtain from (10) for a fixed ] and gra-
dient descent on (to obtain ).

Finally, on using (6) and (12), the decision function can be
obtained as

Since can be precomputed and
, prediction on involves only multiplica-

tions and additions.

IV. SPARSE MULTIPLE-KERNEL SVM

As mentioned in Section I, because of the central role of the
kernel function, a good choice of the kernel is imperative to
the success of any kernel method. Naturally, this also holds for
the sparse single-kernel SVM in Section III. Note that while
learning of the expansion vectors will adapt the corresponding
“equivalent” kernel in (11) and so can be viewed as some
form of kernel learning, one cannot expect to be a good
kernel unless the original kernel is good. Indeed, recall that
the main motivation for having a sparse single-kernel SVM is to
obtain a compact, but not necessarily more accurate, classifier.
Hence, if the original SVM classifier (with an inappropriately
chosen kernel) does not perform well, one should not expect that
its sparsified version will be an accurate classifier. So, instead of
using a single, carefully selected kernel, we will borrow MKL
techniques in Section II to the construction of sparse SVM clas-
sifiers. Consequently, not only can we obtain a compact clas-
sifier, but also an appropriate kernel (in the form of a convex
combination of some given kernels) can be automatically deter-
mined during the optimization process.

In Section IV-A, we proceed by adding an explicit sparsity
constraint to the multiple-kernel SVM, in a manner analogous
to that discussed in Section III. In other words, the desired kernel
is simply a convex combination of the given base kernels. How-
ever, a problem with this formulation is that the resultant op-
timization problem is quite complicated. In Section IV-B, we
provide another formulation by utilizing the “equivalent” ker-
nels introduced in Section III. Similar to the sparse single-kernel
SVM, both extensions require the learning of expansion vectors,
and this will be discussed in Section IV-C.

A. Convex Combination of Base Kernels

In this section, we consider the use of a convex combination
of kernels , with the corresponding kernel-in-
duced feature maps . Using the MKL formulation
in (5), for a fixed , the primal in (6) is extended to

(15)
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where . Obviously, when , this re-
duces to that of the sparse single-kernel SVM.

Proceeding as in Section III, we put
back into the objective and constraints, and obtain

where the kernel matrix is now

and

with . Its dual can
be easily shown to be

(16)

where

(17)

and we have denoted the optimal objective value of this opti-
mization problem as a function of .

Finally, to learn , we also minimize w.r.t. the mixing coef-
ficients of the convex combination, leading to

(18)

Note that because of the presence of the constraint
, we will have a sparse solution.

However, in (17) is neither linear nor convex in
. Hence, even for fixed and ,

one cannot reduce (18) to a convex QP and solve for the ’s.
Instead, we will employ the method of gradient projection
[18]. First, by again using Theorem 1 (in the Appendix) as

in Section III, the gradient of in (16) w.r.t. can be
computed in an analogous manner as follows.

Lemma IV.1: The derivative of in (16) w.r.t. is

(19)

where

(20)

and maximizes (16) for the given .
From (17), the partial derivative of w.r.t.

in (20) can be computed as

where

and

If the constraints on in (18) (i.e., and )
do not exist, the search direction will simply be the negative of
the gradient in (19). However, to cater for these constraints, we
use the gradient projection method [18] that projects the nega-
tive gradient onto the subspace orthogonal to the subspace de-
fined by the active inequality constraints and equality constraint.
Moving in this direction not only guarantees a decrease of the
objective value, but also ensures that both the inequality and
equality constraints are satisfied. We then alternate between gra-
dient projection and standard SVM training.

Finally, from the optimal and , the decision function
can be obtained as

(21)
Recall that , then the number of numerical op-
erations required in computing is thus proportional to the
product of the number of expansion vectors and the number
of active base kernels.

B. Convex Combination of “Equivalent” Kernels

As can be seen in the previous section, the kernel function
in (17) leads to a complicated expression for the gradient. In
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this section, we provide another formulation of the sparse mul-
tiple-kernel SVM, which is based on the “equivalent” kernels
introduced in Section III.

Recall that the “equivalent” kernel in (11) plays a key
role in deriving the sparse single-kernel classifier in Section III.
Given base kernels , we have corresponding
equivalent kernels . As information about the ex-
pansion vectors has already been absorbed into these equivalent
kernels, we now consider constructing a new kernel based on a
convex combination of them. In other words, we assume that

(22)

where

(23)

Note that, unlike the kernel in (17), this new is now
linear in ’s. This will be very useful later in the optimization.

Putting the new multiple kernel (22) into problem (10), we
obtain

(24)

and we denote its optimal objective value as a function
of . One can also derive the primal of (24) as

(25)

This is almost identical to (1) except that

On also optimizing as in Section IV-A, we have

(26)

Note that for a fixed , (26) reduces to a standard SVM opti-
mization problem (with kernel ) for the solving of . For a
fixed , since is now linear in ’s, both the objective and
constraints in (26) are linear in and so (26) reduces
to a standard linear programming (LP) for . Hence, unlike the
formulation considered in Section IV-A, here we can learn a
sparse multiple-kernel classifier by simply alternating between
LP and standard SVM training.

As an aside, instead of using an LP solver to solve for
(with a fixed ), one can also use gradient projection as in
Section IV-A. In this case, the th component of the gradient
of in (24) is

(27)

where , maximizes (24) for the given .
From the optimal and , the decision function can be

obtained as

(28)

Recall that and . Hence, again
as in Section IV-A, the number of numerical operations required
in computing is proportional to the product of the number
of expansion vectors and the number of active base kernels.

As a short summary, we have presented two different ap-
proaches to design a sparse multiple-kernel SVM. The previous
section first constructs a linear combination of kernels and then
derives the equivalent (sparse) multiple kernel in (17), while
this section first constructs the individual equivalent kernels and
then combines them in a convex manner to form (22). From the
computational perspective, the kernel in (17) and the subsequent
optimization are more complicated as the mixing coefficients

appear nonlinearly in the kernel. On the other hand,
the kernel in (22) is linear in and the resultant classifier can be
more easily trained by alternating linear program and standard
SVM solver.

C. Learning the Expansion Vectors

In this section, we address the issue of learning the expan-
sion vectors . The general approach applies to both
formulations in Sections IV-A and IV-B. Let denote the
optimal objective value function [(18) in Section IV-A or (26) in
Section IV-B] as a function of . As in Section III, we will use
gradient descent to solve this nonconvex optimization problem
and thus require the computation of the gradient . How-
ever, in this multiple-kernel case, the joint optimization problem
over is not convex and so Theorem 1 cannot be applied
directly for computing the gradient. Recall that, as mentioned
in Section III, the motivation of employing the gradient to up-
date is to minimize the objective function . Hence, up-
dating of in the sparse MKL problems should follow the same
principle. Thus, we design an updating procedure (shown in Al-
gorithm 1) to minimize the objective function . The main
idea is to assume that is constant when updating . Then, The-
orem 1 can be used to calculate the gradient . Moreover,
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TABLE I
DATA SETS USED IN THE EXPERIMENTS

TABLE II
AVERAGE NUMBER OF ACTIVE KERNELS USED IN THE SMKC1 AND SMKC2
SOLUTIONS. THE METHOD THAT OBTAINS A SPARSER SOLUTION IS MARKED

WITH � WHEN THE DIFFERENCE IS STATISTICALLY SIGNIFICANT

(AT A LEVEL OF 5%)

on searching for the step size, the evaluation of only in-
volves optimizing over the variable .

Algorithm 1 Learning the expansion vectors.

1: Perform -means clustering (where ) and choose
the cluster centers as initial expansion vectors.

2: repeat

3: Solve problem (18) [or (26)] at given and obtain
the solution and . Set .

4: Use (29) [or (30)] to compute the gradient .

5: Perform line search to find the optimal step
size with objective value of problem (18) [or (26)]
evaluated at constant , and return the updated .

6: until the minimum of objective function value is
achieved or the maximum number of iterations is reached.

The partial derivative of in (16) w.r.t. can be
written as

(29)

where

Similarly, for (24), we have

(30)

where

Since it is essentially performing coordinate descent, the proce-
dure converges to a locally optimal solution as in [25]. Note, on
the other hand, that the standard (nonsparse) MKL formulations
in Section II are convex and hence can have globally optimal so-
lutions. Hence, it is a price that one has to pay for having a sparse
classifier.

V. EXPERIMENTS

In this section, we perform classification experiments on
a number of toy and real-world data sets2: Banana, Breast
Cancer, Titanic, Waveform, German, Image, Heart, Diabetes,
Ringnorm, Thyroid, Twonorm, Flare Solar, and Splice (Table I).
The first six have also been used in [24] and [25] for the sparse
single-kernel SVM. Each data set has 100 training/test splits.
Following the scheme in [24] and [25], we will report results
averaged over the first 30 splits.

In the sequel, the two sparse multiple-kernel SVM formula-
tions proposed in Sections IV-A and IV-B will be denoted as
SMKC1 and SMKC2, respectively. In the experiments, they will
be compared with the following:

1) SK-SVM: standard (single-kernel) SVM;
2) SSKC: the sparse version of SK-SVM discussed in

Section III;
3) MK-SVM: the multiple-kernel SVM in Section II.

The MK-SVM and its sparse formulations (SMKC1/SMKC2)
are implemented in Matlab and C , and the LIBSVM [7]
package is used to solve the inner SVM optimization problem.

2http://ida.first.fraunhofer.de/projects/bench/
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Fig. 1. Test error rates (in percent) for SSKC (abscissa) and SMKC1/SMKC2 (ordinate), with the expansion vectors fixed. The standard deviation is shown by
the vertical/horizontal lines, and the diagonal line indicates where the two error rates are equal. (a) SMKC1, � �� � 2%. (b) SMKC1, � �� � 4%.
(c) SMKC2, � �� � 2%. (d) SMKC2, � �� � 4%.

LIBSVM is also used for the implementation of SK-SVM. The
SSKC implementation3 is obtained from [24] and [25].

We will use the Gaussian kernel

By taking over the values of , we form
nine base kernels for MK-SVM, SMKC1, and SMKC2. The ini-
tial value of is set to , so that
all base kernels have the same initial weight. For SK-SVM,
there is only one Gaussian kernel and its optimum is pro-
vided with the data sets, whereas for SSKC, its is selected
by cross validation. As for the parameter, it is individually

3http://www.kyb.tuebingen.mpg.de/bs/people/mingrui/SKM.zip

tuned over the range by cross validation
for each of SSKC, MK-SVM, SMKC1, and SMKC2, while that
for SK-SVM is again provided with the data sets. Moreover, the

-means clustering scheme is used to initialize the expansion
vectors of SSKC, SMKC1, and SMKC2.

In our implementation, step 5 in Algorithm 1 is implemented
via the minimizer routine.4 Line search using the quadratic and
cubic polynomial approximations and the Wolfe–Powell stop-
ping criteria [5] are used together with the slope ratio method
[18] for guessing the initial step sizes. Experiments are per-
formed on a 1.8-GHz AMD machine with 2-GB RAM.

4Available online at http://www.kyb.tuebingen.mpg.de/bs/people/carl/code/
minimize/
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Fig. 2. Test error rates (in percent) for SMKC1 and SMKC2 with the expansion vectors fixed (abscissa) versus optimized (ordinate). (a) SMKC1, � �� �

2%. (b) SMKC1, � �� � 4%. (c) SMKC2, � �� � 2%. (d) SMKC2, � �� � 4%.

A. Importance of Optimizing the Expansion Vectors

In this section, we demonstrate the importance of optimizing
the expansion vectors ’s. We first study the performance that
can be achieved by only optimizing . In other words, we do not
update the ’s, which are simply chosen as the cluster centers
obtained by the -means algorithm on the training data.

We experiment with two sparsity settings: 2%
and 4%, where is the number of support vec-
tors obtained by SK-SVM, and is the number of expansion
vectors that can be used by SSKC/SMKC1/SMKC2. Detailed
results are in Table V of the Appendix. Here, we only show the
results that are statistically significant (based on the paired -test
at the significance level of 5%). As can be seen from Fig. 1, it is
not sufficient to only optimize . In particular, from the detailed

results in Table V, SSKC outperforms SMKC1 on nine data sets
at 2% and on seven data sets at 4%,
and outperforms SMKC2 on eight data sets at 2%
and on four data sets at 4%.

Next, we demonstrate that the performance of SMKC can
be significantly improved when the expansion vectors are op-
timized. We follow the same setup above, but with the expan-
sion vectors in SMKC1 and SMKC2 optimized with the gra-
dient method in Section IV-C.

Detailed results can be found in Table VI of the Appendix.
Here, we again only show the results that are statistically sig-
nificant. First, as expected, Fig. 2 shows that optimizing the ex-
pansion vectors greatly improves the accuracies of both SMKC1
and SMKC2. Indeed, as can be seen from Fig. 3, SMKC1 now
becomes comparable with SSKC and SMKC2 is even better

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on July 6, 2009 at 04:29 from IEEE Xplore.  Restrictions apply.



HU et al.: BUILDING SPARSE MULTIPLE-KERNEL SVM CLASSIFIERS 835

Fig. 3. Test error rates (in percent) for SSKC (abscissa) and SMKC1/SMKC2 (ordinate). (a) SMKC1, � �� � 2%. (b) SMKC1, � �� � 4%.
(c) SMKC2, � �� � 2%. (d) SMKC2, � �� � 4%.

than SSKC. To be more specific, SMKC2 outperforms SSKC
on four data sets at 2% and on five data sets at

4%. Recall that the kernel parameter in SSKC
is obtained by careful cross validation. Hence, similar to the
use of MKL in training nonsparse classifiers, SMKC2 has the
strong advantage over SSKC that it can automatically choose a
good combination of kernels while attaining comparable or even
better generalization performance.

B. Varying the Sparsity Requirement

In the last section, we only experimented with
2% and 4%. Here, we vary from 1% to

10% to better demonstrate the effects of on both the
test error (Fig. 4) and the training time (Fig. 5). Here, we only
show the results on the Banana data set. Similar trends can be
observed on the other data sets.

As can be seen, there is a tradeoff between accuracy and spar-
sity. Nevertheless, the generalization performance of SMKC2
is relatively stable over a large range of , and is even
slightly better than the nonsparse classifiers when the sparsity
requirement is relaxed to 10%. As for the training
time, in general, it increases as more expansion vectors are
used, though the difference is still within the range of statistical
fluctuations.
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TABLE III
TRAINING TIME (IN SECONDS) OF SMKC1/SMKC2. THE FASTER METHOD THAT IS STATISTICALLY SIGNIFICANT AT A LEVEL OF 5% IS MARKED WITH �

TABLE IV
AVERAGE NUMBER OF SUPPORT VECTORS (#SV) OBTAINED BY MK-SVM AND THE AVERAGE NUMBER OF EXPANSION

VECTORS (#XV) IN SMKC1/SMKC2, TOGETHER WITH THE AVERAGE NUMBER OF ACTIVE KERNELS USED

Fig. 4. Test error rates of SMKC1/SMKC2 on the Banana data set, when
� �� varies from 1% to 10%.

C. SMKC1 Versus SMKC2

Results in the previous sections show that SMKC2 is more ac-
curate than SMKC1. Here, we look at another attribute, namely,
sparsity. Recall that nine base kernels are provided for SMKC1
and SMKC2. Table II compares the number of active kernels
used in the final solutions. As can be seen, the models obtained

Fig. 5. Training time (in seconds) of SMKC1/SMKC2 on the Banana data set,
when � �� varies from 1% to 10%.

by both SMKC1 and SMKC2 are sparse, with the SMKC1 so-
lution sometimes slightly sparser.

The last desideratum is training time. As shown in Algorithm
1, the differences between SMKC1 and SMKC2 lie in steps 3
and 4. For step 4, SMKC1 and SMKC2 turn out to have the same
computational complexity as both require computing the inverse
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Fig. 6. Test error rates (in percent) for MK-SVM (abscissa) and SMKC2 (ordinate). (a) � �� � 2%. (b) � �� � 4%.

TABLE V
TEST ERROR RATES (IN PERCENT) FOR THE VARIOUS METHODS (WITH ��� ’s FIXED FOR SMKC1 AND SMKC2), WHEN � �� � 2% AND 4%.

THE SYMBOL � (RESPECTIVELY, �) INDICATES THAT THE DIFFERENCE BETWEEN SSKC AND SMKC1 (RESPECTIVELY, SMKC2)
IS STATISTICALLY SIGNIFICANT AT A LEVEL OF 5%

of an matrix. However, for step 3, the gradient com-
putation of SMKC1 in (20) requires computing the inverse of

, which incurs an additional time over SMKC2.
Hence, overall, SMKC1 training is slower than SMKC2. This is
also experimentally confirmed by the timing results in Table III
and Fig. 5.

Overall, SMKC2 is more accurate, faster on training, and
its kernel combination obtained is almost as sparse as that of
SMKC1. Hence, we recommend the use of SMKC2 instead of
SMKC1.

D. Comparison With MK-SVM

In this section, we compare with the multiple-kernel SVM
(MK-SVM) in Section II. Recall that because of the con-
straint on , a sparse solution is encouraged and the resultant
MK-SVM classifier can select a sparse combination of base ker-
nels. This is also experimentally verified in Table IV. However,

unlike SMKC1 and SMKC2, its number of support vectors is not
explicitly controlled and so MK-SVM can require a much larger
number of support vectors. Recall that the main motivation of
building a sparse classifier is to reduce its prediction time. As
discussed in Sections III, IV-A, and IV-B, this is proportional to
the product of the number of support vectors for MK-SVM (or
the number of expansion vectors for SMKC1/SMKC2) and the
number of active kernels selected. As can be seen from Table IV,
the product values for SMKC1/SMKC2 are smaller than those
of MK-SVM by two to three orders of magnitude. Hence, their
prediction speeds are also much faster.

However, there is a price to pay for faster prediction. As can
be seen from Fig. 6, the test error rate for SMKC2 is slightly
higher than that for MK-SVM at 4%. Neverthe-
less, the difference is usually small and SMKC2, despite having
a sparse solution, is still very competitive. Such a sparsity–accu-
racy tradeoff can also be observed in the single-kernel case be-
tween the (nonsparse) SK-SVM and (sparse) SSKC (Table VI).
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TABLE VI
TEST ERROR RATES (IN PERCENT) FOR THE VARIOUS METHODS. THE SYMBOL � (RESPECTIVELY, �) INDICATES THAT THE DIFFERENCE

BETWEEN SSKC AND SMKC1 (RESPECTIVELY, SMKC2) IS STATISTICALLY SIGNIFICANT AT A LEVEL OF 5%. SIMILARLY,
THE SYMBOL ® INDICATES THE DIFFERENCE BETWEEN MK-SVM AND SMKC2 AT � �� � 4%

VI. CONCLUSION

In this paper, we incorporated MKL into the construction
of sparse SVM classifiers. We proposed two formulations that
allow a convex combination of kernels to be automatically
learned from the data. In particular, the one that is based on
a convex combination of equivalent kernels (SMKC2) is very
competitive. Computationally, the SMKC2 classifier can also
be easily trained by alternating linear program and standard
SVM solver. Consequently, not only can we obtain a com-
pact classifier that is useful for fast prediction, an appropriate
kernel can also be easily determined, which then ensures good
generalization. Experimental results on a number of toy and
real-world data sets demonstrate that the resultant classifier is
both compact and accurate.

APPENDIX

A THEOREM DUE TO BONNANS AND SHAPIRO [4]

Theorem 1: Let be a metric space and be a normed
space. Suppose that for all , the function is differ-
entiable, that and [the derivative of ]
are continuous on , and let be a compact subset of .
Let define the optimal value function as .
The optimal value function is directionally differentiable. Fur-
thermore, if for has a unique minimizer over

, then is differentiable at and .

SOME DETAILED EXPERIMENTAL RESULTS

In this section, we report the detailed statistical results of
SK-SVM, MK-SVM, SSKC, SMKC1, and SMKC2 for the
cases when the expansion vectors in SMKC1/SMKC2 are fixed
(Table V) and when they are optimized (Table VI).
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