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Simplifying Mixture Models Through
Function Approximation
Kai Zhang and James T. Kwok, Senior Member, IEEE

Abstract—The finite mixture model is widely used in various
statistical learning problems. However, the model obtained may
contain a large number of components, making it inefficient in
practical applications. In this paper, we propose to simplify the
mixture model by minimizing an upper bound of the approxima-
tion error between the original and the simplified model, under
the use of the � distance measure. This is achieved by first
grouping similar components together and then performing local
fitting through function approximation. The simplified model
obtained can then be used as a replacement of the original model
to speed up various algorithms involving mixture models during
training (e.g., Bayesian filtering, belief propagation) and testing
[e.g., kernel density estimation, support vector machine (SVM)
testing]. Encouraging results are observed in the experiments
on density estimation, clustering-based image segmentation, and
simplification of SVM decision functions.

Index Terms—Clustering, mixture models, support vector ma-
chine (SVM) testing.

I. INTRODUCTION

I N data analysis, it is often useful to obtain a probability den-
sity estimate for a set of independent identically distributed

(i.i.d.) observations. Such a density model can help discover
underlying structures of the data in unsupervised learning, and
can also yield asymptotically optimal discriminant procedures
[22]. In this paper, we focus on the finite mixture model [30],
which describes the distribution by a mixture of simple para-
metric functions ’s, as

(1)

Here, is the th component, ’s are the mixing coeffi-
cients such that . The most common parametric
form of is the Gaussian, leading to the well-known Gaussian
mixtures. Finite mixture models have proven powerful in
modeling complex, non-Gaussian distributions [34], [28]. It
is widely used in classification, clustering, and density esti-
mation [29], and in applications such as speech processing
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[33]. Typically, the model parameters are estimated by the
expectation–maximization (EM) algorithm [11].

In many situations, instead of obtaining the mixture model
from scratch, we are more interested in simplifying a given mix-
ture model. The resultant, more compact model can then be
used efficiently in the learning process or the subsequent testing
phase. Consider the Parzen window density estimator [32]

(2)

Here, is a set of i.i.d. observations, is a symmetric
positive-definite bandwidth matrix , and

is a multivariate kernel. This can be viewed as a special
form of the mixture model, where each sample is associated with
one component with uniform weighting. When is large, this
estimator becomes computationally expensive and a simplified
estimator is more desirable. Another example is the decision
function of the support vector machine (SVM) [36]

, where is the number of support vec-
tors and is the bias term. In case is the Gaussian kernel, the
decision function is very similar in form to the Gaussian mixture
model. How to reduce a nonsparse SVM decision function (i.e.,
the number of support vectors is large) for efficient testing
is an important research topic in kernel methods [3]. Other ex-
amples that involve mixture models include the particle filter
[20] and nonparametric belief propagation [39], [38], where the
mixture model has to be frequently used or updated during the
learning process. In these circumstances, a compact model can
greatly reduce the computational complexities.

One may argue that it might be easier to simply train a smaller
model from scratch. However, as discussed in [18], this may not
be feasible in many practical situations. For example, the orig-
inal data set may be too large and may not have been kept. More-
over, the given mixture model may not be obtained directly from
clustering but as a result of some other learning procedures. For
example, when the model is obtained by Parzen window density
estimation, it has a fixed number of components which is equal
to the number of data observations. Hence, one cannot rerun the
estimation procedure with fewer components. Another example
is standard SVM training, where the number of support vectors
cannot be specified in advance. Besides, it can be more econom-
ical in simplifying a model than retraining the whole model.

Several directions have been pursued on simplifying a given
mixture model. One is based on the observation that the mixture
component (such as the Gaussian) typically decays rapidly with
distance. Unnecessary component summations in the model
evaluation can then be circumvented by performing a neighbor-
hood search through spatial data structures, such as the kd-trees
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[25], [31]. However, such algorithms may scale poorly with
the input dimensionality. Another approach, first introduced
by [37] in the context of kernel density estimation, prebins the
data into equally spaced mesh and then uses a modified kernel
estimator on the binned data. As binning in a high-dimensional
space is computationally expensive, most algorithms along this
line [37], [21], [12] are focused on univariate data. Babich and
Camps [1], and Joen and Landgrebe [23] perform preclustering
of the data and then use the cluster centers as a reduced sample
set. Girolami and He [17] proposed a reduced set density
estimator using quadratic programming (QP) to obtain a sparse
representation. However, the resultant QP problem still scales
cubically with the sample size. Goldberger et al. [18] proposed
a novel algorithm for learning a simplified representation of
a Gaussian mixture based on the unscented transform [24].
However, this requires solving a costly eigenvalue problem
to obtain the so-called sigma points. Recently, Goldberger
and Roweis [19] and Davis and Dhillon [9] proposed another
approach for grouping components in the Gaussian mixture
model by minimizing a “local” Kullback–Leibler (KL)-based
distance defined between the original and reduced mixtures.
The algorithm is very efficient, and has been successfully
applied in various problems such as hierarchical clustering of
scenery images and handwritten digits [19], sensor networks,
and statistical debugging [9] with encouraging performance.

In this paper, we propose to simplify the mixture model by
minimizing an upper bound of the approximation error between
the original, and the simplified model, under the use of the
distance measure. This is achieved by first grouping similar
components together and then performing local fitting through
function approximation. The simplified model obtained can then
be used as a replacement of the original model to speed up var-
ious algorithms involving mixture models during training and
testing. We applied the proposed algorithm in a number of ma-
chine learning problems such as clustering and SVM testing,
and obtain encouraging results.

The rest of this paper is organized as follows. Section II de-
scribes the proposed algorithm and analyzes the relationship be-
tween the two underlying steps. Section III provides compar-
isons with related approaches, including methods that cluster
components in a mixture model and also the mean shift algo-
rithm. In Section IV, we discuss the application of the proposed
approach in simplifying the SVM decision function. The perfor-
mance of the proposed method is evaluated through a number of
experiments in Section V, and the last section gives some con-
cluding remarks. Preliminary results have been reported in the
conference paper [43].

II. SIMPLIFYING MIXTURE MODELS

Given a mixture model (1) with a
large number of components , we are interested in approxi-
mating it by a simplified mixture model

(3)

where . Here, , and are
differentiable parametric functions (details will be discussed in

Section II-B). Given a distance measure defined on func-
tions, the error induced by approximating with is

(4)

In this paper, we adopt the commonly used distance

. Since is always
nonnegative, it will be equivalent (but more convenient) to
consider minimizing the squared distance instead of

in the sequel.

A. Approximation Procedure

Since both and are composed of multiple components,
a direct minimization of in (4) is difficult. The problem
can be simplified by minimizing an upper bound of under
the use of distance function. This allows us to decompose
the optimization into easier and independent subproblems.
Suppose that the (indices of) the mixture components
are divided into disjoint clusters . By using
the Cauchy–Schwartz inequality

(5)

the model simplification error (4) can be upper bounded by

(6)

Note that this holds for any simplification of , and any par-
titioning of . Moreover, we can see
that the upper bound comprises the local model-simplifica-
tion errors ’s. Given a fixed partitioning of the mixture com-
ponents, minimizing can thus be reformulated as the easier
problem of minimizing the ’s (independent of each other).

A natural procedure consists of two steps. First, a good rep-
resentative, in (6), is used to simplify the th group of ’s
(local approximation). For clarity, let the solution be

for clarity. Then, we regroup the mixture components
into compact clusters. With this new partition we go back to the
local approximation step and find new ’s which permits once
more updating of the ’s. The procedure terminates when no
significant gains can be obtained.

Step 1: Local Approximation: With a given partitioning
of the mixture components, we mini-
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mize the local model-simplification error for each cluster
w.r.t. and , i.e.,

(7)

As will be discussed in Section II-B1, its solution
can be obtained via a combination of explicit formulas

from differential calculus, and alternating between the updates
of and the parameters in the parametric form of .

Step 2: Component Grouping: In this step we improve the
partition. The basic idea is to group similar components into
the same cluster. We measure the compactness of the th cluster
with the local quantization error

(8)

where is the cluster representative which has similar
functional forms as or . With ’s available for

, we can reassign each to
its closest1 representative w.r.t. the distance

(9)

This is close in flavor to vector quantization [15] by doing which
we actually find a local minimum of the distortion error

(10)

We have the following interesting fact that the optimal solu-
tions in the above two steps are closely related.

Proposition 1: For each , if is the optimal
solution in the local approximation step and the optimal so-
lution in the component grouping step, then

(11)

where .
Proof is in Appendix I. Proposition 1 reveals a close connec-

tion between the component clustering and local approximation
steps, namely that their representatives obtained only differ by
a data-dependent scalar under the same partitioning of mixture
components. Therefore, each iteration in the component clus-
tering step is actually a “renormalized” version of the local ap-
proximation step. In other words, the two steps are interwoven
with each other and as a result the two tasks can be achieved si-
multaneously. On the other hand, note that through component
grouping, similar components are assigned to the same cluster.
As a result, the local approximation in each cluster becomes
easier and in (6)
are expected to be small and similar to each other. Recall that the
Cauchy–Schwartz inequality (5) becomes an equality when all

1As is common in clustering algorithms, we assume that the closest represen-
tative is unique.

’s are the same. From this aspect, component grouping actu-
ally helps to maintain a tight upper bound of the model simplifi-
cation error, which is quite beneficial to the local approximation
step.

More detailed discussions of the two steps will be presented
in Section II-B. The complete algorithm works by commencing
with an initial partition and alternatively performing local ap-
proximation, component grouping, local approximation, etc.,
until no significant further gains can be obtained.

B. Detailed Procedure

In this section, we first show in Section II-B1 how to solve
the optimization problem (7) and obtain the local represen-
tative . The complete algorithm is then discussed in
Section II-B2.

We assume that the th component of takes the form

(12)

where is a nonnegative, radially symmetric kernel with
center , and is a positive-definite covariance matrix that
controls the bandwidth of the kernel. Usually, each is
bounded and satisfies the conditions

where is a normalization factor that
depends on the kernel and input dimensionality . Note
that for radially symmetric kernels, a notationally simpler way
to represent the kernel function is ,
where is called the profile of the kernel and takes the
quadratic term as input. For the Gaussian
kernel, ; for the Epanechnikov kernel,

if , and if ; whereas
for the negative exponential kernel, .
Similarly, each component is of the form

(13)

and is associated with weight , center , and covariance ma-
trix . In case is required to be normalized, ’s should sum
to 1 and this can be achieved by rescaling ’s with .

Note that the specific form of the kernel (or, equivalently,
its profile) has to be determined before a concrete algorithm
can be designed. In the following, we consider the Gaussian
kernel. In this case, it is easy to verify that

, i.e.,

(14)

This also holds for other kernels such as the negative exponential
kernel. Derivations for other types of kernels will be different
but Proposition 1 still holds in general.

1) Solving the Local Approximation Subproblem by Coor-
dinate Descent: In this section, we show how to obtain the
weighted function (with parameters and ) by
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coordinate descent. First, as is shown in Appendix II, in (6)
can be written as

(15)

where

is a constant irrelevant to the unknown variables ( and ),
and

(16)

is the squared Mahalanobis distance (normalized by )
between the original component center and the new com-
ponent center . To minimize w.r.t. the unknown variables
( and ), one can set the corresponding partial derivatives
of to zero. However, this leads to a nonlinear system which
is difficult to solve.

Here, we decouple the relations among these three parameters
and perform coordinate descent. First, recall that the quadratic
function , with , has a unique minimum at

and a minimum value of . Hence,
for which is quadratic in , we choose

(17)

One can observe that (17) leads to nonnegative ’s in the case
of nonnegative . Therefore, if the given model (1) represents
a probabilistic model (with positive ’s), then the resultant so-
lution can also be interpreted as a probabilistic model. Substi-
tuting (17) back into (15), the minimum of (for fixed values
of and ) is obtained as

(18)
The remaining task is to minimize w.r.t. and . For

this we need a number of matrix calculus formulas that may not
be well known. Some rules that are useful in our derivations are
given in Appendix IV, whose study at this point will facilitate
comprehension of the details.

On setting , we have

(19)

where

For a fixed , we can obtain by starting with an initial ,
and then iterate (19) (recall that is a function of ). As will
be discussed in Section III-B, (19) is identical to the variable
bandwidth mean shift procedure [4]. When ’s are spherical,

the local convergence of this iteration has been shown in [4] and
[8].

As for , we set and obtain

Substitute the right-hand side of
in the above, and multiply it

on the right with . The resultant formula will then have in its
left term factors . One can now isolate and obtain

(20)

where

Note that in the special case of spherical ’s and ’s, can
be simply obtained as a closed-form solution and so iteration
(20) is not needed. Details will be presented in Section IV.

Given some initial choices of and , we thus repeatedly
update (19) and (20) until both and

are close to zero (here, denotes the Frobenius
norm). After obtaining and , they are substituted into (17)
to compute . For initialization, we follow [19] and set

(21)

which are the weighted mean and covariance of the samples, re-
spectively. Both can be computed efficiently. It is worthwhile
to note that this initialization can be regarded mathematically as
moment matching, i.e., requiring (the normalized versions of)
the local component group and the reduced model

in (13) to have the same mean and covariance. In [44],
a simpler scheme is applied in simplifying a group of spherical
Gaussian components into a single one, by using the same band-
width parameter as those of the original components. Asymp-
totic behavior of such density estimator was analyzed in [44].

2) The Complete Algorithm: With the solution in
the local approximation step, the representative in the com-
ponent clustering step can also be easily obtained by the connec-
tion stated in Proposition 1. The whole algorithm is presented in
Algorithm 1. The outer loop (lines 1–28) is indexed by . Inside
this loop, we process each of the clusters .
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For each cluster, we first initialize and (lines 4–5), and
then alternate between the updating of (lines 8–11, steps)
and the updating of (lines 13–16, steps). When both and

are smaller than a small integer (1 in our algorithm), and
have converged. Then, we compute the distances between

each component and the representatives ’s (lines 20–27),
update the partitioning by assigning to the closest represen-
tative , and start the next iteration.

C. Time Complexity

Recall that is the number of components in the original
mixture, is the number of clusters, and is the data dimen-
sionality. Let be the size of cluster be the number of

steps for the outermost loop, and be the number of itera-
tions inside the loop in lines 6–19. So the overall complexity
is .

For computational efficiency, we can use diagonal or even
spherical bandwidth matrices. If the covariances of the mixture
components are also diagonal (as in kernel density estimators,
SVM testing, or belief propagation), then the term in the com-
plexity is reduced to linear, and becomes 1 [because then there
exists a closed-form solution for the iteration in lines 13–16 as
will be shown in (29)]. In practice, it is observed that the number
of iterations is typically small. In particular, we find
that is around 15; and does not quite affect the performance.
Therefore, in practice, we set to a very small number, i.e., we
only perform a few alternations between updating and in-
side each of the outer loops.
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On the other hand, the algorithm in [19] and [9] has a com-
plexity of ( is the number of iterations) when ’s
have full covariances, and when both ’s and mixture
components have diagonal covariances. Empirically, it is more
efficient than our approach since the mean/covariance of each
component can be conveniently computed in one single step as
the weighted mean/covariance of the local cluster of compo-
nents. The comparison of the time consumptions can be found
in Section V-C.

III. COMPARISON WITH RELATED METHODS

A. Component-Clustering Methods for Mixture Models

There have been several related works on grouping the com-
ponents in a mixture model. For example, Banerjee et al. [2]
propose a general clustering framework based on the Bregman
divergence, and find a local minimum of the Bregman informa-
tion similar to the quantization error in (10). Most related to ours
is the work of Goldberger and Roweis [19] that uses an itera-
tive scheme to cluster multivariate Gaussian functions. There, a
Gaussian mixture in (1) is approximated by a simpler mixture

in (3) by minimizing the following “local KL-distance”

(22)

where is the KL-divergence, and maps com-
ponent to its closest component [i.e.,

]. To minimize (22), an itera-
tive procedure is applied which alternates between finding
the partition and reassigning the components to the closest
representatives. At each iteration, the parameters ( and ) of

are determined as in (21). Davis and Dhillon [9] also derived
the same procedure by expressing the differential entropy
between two multivariate Gaussians as a convex combination
of the Mahalanobis distance between the Gaussian means and
the Burg matrix divergence between the covariance matrices.
As can be seen, Goldberger and Roweis [19] and Davis and
Dhillon [9] consider the problem of component clustering,
i.e., grouping a set of Gaussian components ’s, based on
minimizing the distortion measure in (22). On the other hand,
our algorithm is motivated from minimizing (an upper bound
of) the model simplification error, and the resultant simplified
model can be used as a replacement of the original mixture
model. Our goal is realized through the two steps of component
grouping and local approximation, and in particular, the com-
ponent grouping step helps maintain the tightness of the bound
so that our optimization can produce desired result. Moreover,
note that Goldberger and Roweis [19] and Davis and Dhillon
[9] adopt the KL-divergence in measuring the distance between
Gaussian components, while we use the distance to measure
the distance between two mixtures.

There are also interesting differences between the proposed
method and [19] and [9] in the choice of the local covariance .
This can be seen more clearly when we consider the special case
where the given mixture model is a Parzen window density
estimator (2). In other words, all the ’s have the same weight
and covariance matrix ( for , where

is the bandwidth of the original components). Bandwidth (20)
of the representative kernel can then be rewritten as

where

is a weighted covariance of the local cluster , with
being the weight on sample

. Recall that is the squared Mahalanobis distance between
and center normalized by . For kernels

such as Gaussian and Laplacian, decreases with .
Thus, can be regarded as a robust covariance estimate that
assigns smaller weights to points far away from the center .
Interestingly, this distance-based weighting is similar to that
in manifold Parzen windows [40], which is designed to handle
sparse, high-dimensional data in a more robust manner. In
contrast, Goldberger and Roweis [19] and Davis and Dhillon
[9] choose , where is simply the
(nonrobust) covariance of .

B. Mean Shift Algorithm

Mean shift [6], [13] is an iterative mode-seeking algorithm
widely used in pattern recognition and computer vision. It as-
sumes that the local maxima of the underlying density distri-
bution correspond to clusters of the data. By shifting every data
point iteratively along the gradient of the density, dominant clus-
ters can be identified. Specifically, given a sample set ,
the Parzen window density estimator (2) is

(23)

where is the kernel with prespecified
covariance . By setting , we have

After some reductions, this can be written in iterative form [6]

(24)

It has been shown [6] that iteration (24) is convergent and can
find the local maxima of the density (23). Clustering is then ob-
tained by associating each data sample with its corresponding
density maximum. The mean shift algorithm does not make
prior assumptions on the shape of the clusters, and the number
of classes can be determined automatically. It has demonstrated
great success in many vision applications, such as image seg-
mentation [5], [6], tracking [7], [20], [45], and video processing
[10], [26]. Recently, Zhang et al. introduced kernel smoothing
into the complex network analysis and successfully applied the
mean shift algorithm for multiresolution community detection
[41].
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Considering the special case of fitting Parzen window density
estimator as in Section III-A, the iteration (19) for determining
center of the representative is reduced to

(25)

Comparing this with (24), it is clear that (25) is actually a mean-
shift procedure that locates the peak of a new “surrogate” den-
sity function

(26)

Note that when the covariance matrices ’s associated with
each component are different, the iteration (25) for finding the
center will be similar to the so-called variable bandwidth
mean shift [4], [8].

IV. APPLICATION TO SVM TESTING

In this section, we consider how to speed up SVM testing
by applying the proposed model simplification scheme. We as-
sume the use of the Gaussian kernel

. The SVM decision function can be written as

(27)

where ’s are the Lagrange multipliers, and ’s are the support
vectors with corresponding labels ’s. Equation (27) is similar
in form to the Gaussian mixture model in (1), where all com-
ponents share the same (spherical) covariance ( is
the identity matrix), with weight . Care should
be taken in that 1) the component weights ’s in (27) can
be positive and negative; and 2) the components are unnormal-
ized. For the first issue, we separate the model into positive and
negative parts, and treat them separately. For the second issue,
note that the missing normalization factor is
a constant. Therefore, all the conclusions in Section II-B apply
here, except that a rescaling constant (i.e., the inverse of the
missing normalization factor) is needed when computing the co-
efficients ’s of the components ’s.

Fitting a mixture model using full covariance matrices intro-
duces variables for each component, which can greatly slow
down the kernel evaluation on high-dimensional data. So we re-
quire the covariances ’s of the simplified mixture model in
(3) to be “spherical”, i.e., . Plugging it into (18), we
obtain the local model-simplification error as

By using a similar procedure as in Section II-B, we obtain the
following analytic solution for the component center:

which is in the form of fixed-point iteration. Similarly, the up-
date equation for can be obtained as

(28)

where

Note that the iteration (28) is a simple scalar equation, which
will converge to

(29)

After fixing the component center and covariance , we
can obtain the weight for each component by using (17), as

(30)

Here, we have multiplied back the inverse of the normaliza-
tion factor , because the SVM decision function
(27) contains unnormalized mixture components. Note that an-
other choice for computing , after the mean and covari-
ance of the component are fixed, is to let and

have the same zeroth-order moment. This nat-
urally leads to , and by doing this for all the clus-
ters ’s, , the original model
and the simplified model will also have the
same zeroth-order moment. In other words, if is normalized,
then will also be normalized. In our experiments, this strategy
gives similar performance as (30).

We can also design the spherical covariance version of the
method by [19]. There, the local KL-divergence objective (22)
can be written as
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Fig. 1. Performance of model simplification with different input dimensionalities. (a) � distance. (b) KL-divergence. (c) Local KL-distance.

By noting that all the ’s are equal to , this can be simpli-
fied as

(31)

Computing the derivative of (31) w.r.t. and , we obtain the
component centers

and the spherical covariances

The weight is still the summation of the ’s based on the
moment matching criteria, i.e., with the
extra term due to the missing normalization factor. After ob-
taining the parameters ’s for the positive and nega-
tive parts of the SVM decision function (27), we can approxi-
mate the decision function by

The factor is not needed here because it is not included in
the decision function (27).

V. EXPERIMENTS

In this section, we perform several experiments to evaluate
the proposed mixture simplification scheme.2 We assume that
the original mixture is already given by the user. Issues related

2The Matlab codes of our method can be downloaded from http://www.cse.
ust.hk/~twinsen/Simplify_GMM.zip.

to how this mixture is obtained, such as model selection and
parameter estimation of the original mixture, are thus beyond
the scope of this paper.

We use a number of different tasks to evaluate the algorithm
performance. In Section V-A, we compare our method with
[19] (called “GR” in the sequel) on approximating a toy mix-
ture model with varying data dimensionality. In Section V-B,
we apply the proposed model simplification scheme to scale
up mean shift, a density-based clustering algorithm widely
used in vision problems such as image segmentation. We also
compare our approach with the spatial-structure-based method
(kd-tree) in accelerating this specific clustering algorithm. In
Section V-C, we apply the two model simplification methods
in speeding up SVM testing. The SVM decision function is
approximated by using only a model whose number of compo-
nents is only 5% of the number of support vectors.

A. Simplifying Toy Mixture Models

In this section, we generate a Gaussian mixture with 500 com-
ponents. The data is -dimensional, with the data value for each
dimension uniformly distributed in . The weight of each
Gaussian component is randomly chosen in , and its covari-
ance is fixed at 0.5. The number of components in the simpli-
fied model is fixed at . We gradually increase from 1 to
100. The experiment is repeated 10 times and we report the av-
erage model-simplification error on a test set. The error criteria
used are error, standard KL-divergence, and local KL-dis-
tance defined in (22). Note that the local KL-distance is depen-
dent on the partitioning of the components. Therefore, we use
the same partitioning for both methods in order to have a mean-
ingful comparison.

Results are shown in Fig. 1. As can be seen, in terms of the
and KL distances, our method is more accurate (on average, ours
is 60.17% and 60.49% of those by GR, respectively). With the
local KL-distance, the GR method is more accurate (on average,
it is equal to 99.90% of ours). Note that for a fixed partitioning
of the mixture components, the GR method is known to give
the optimal solution under the local KL-distance measure [19].
Moreover, observe that the errors of both methods grow expo-
nentially with dimensionality. This is because the width of the
Gaussian component has been kept constant. With increasing
dimensionality, the data points become further apart and each
Gaussian component gradually shrinks and ultimately becomes
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Fig. 2. Segmentation results. Row 1: Original image. Row 2: Standard mean shift. Row 3: Our method.

TABLE I
TIME CONSUMPTIONS (IN SECONDS) OF 1) STANDARD MEAN SHIFT; 2) ITS FAST VERSION USING KD-TREES (KD-MEAN-SHIFT); AND 3) ITS FAST VERSION USING

OUR METHOD (OURS). THE NUMBER OF COMPONENTS ��� IN THE SIMPLIFIED MODEL IS SHOWN IN BRACKETS

an impulse-like function in high-dimensional spaces. Since the
number of components is kept unchanged in the experiment, ap-
proximation becomes difficult when the dimensionality is high.

B. Clustering-Based Image Segmentation

In this section, we demonstrate the usefulness of the proposed
model simplification scheme in a practical clustering algorithm,
the mean shift [6]. As is briefly reviewed in Section III-B, the
mean shift algorithm is a density-based, nonparametric mode-
seeking algorithm that has been widely used in various com-
puter vision problems such as tracking, segmentation, and video
processing. However, the density model involved in mean shift
is the Parzen window estimator whose number of components
equals the sample size . Therefore, mean shift has a time com-
plexity of [14] and can be expensive on large data sets.
In this experiment, we start by approximating the given Parzen
window density estimator with a compact mixture , and
then perform clustering by detecting modes on the simplified
model . The complexity can then be reduced to , where

is the number of components in .
We use benchmark images that have been extensively tested

in the mean shift literature3 [6] (Fig. 2). The 3-D RGB colors
are used as features. Considering that the different images have
varying degrees of complexity, the use of a single for all the
images might not be suitable. So we take extra care in choosing
the seeds of vector quantization such that its initial partitions

3http://www.caip.rutgers.edu/~comanici/MSPAMI/msPamiResults.html

have roughly the same radius (which is set to in the ex-
periments). By doing this, images with larger variations in color
(or larger point clouds in the RGB space) will be approximated
by more components (or a larger ). Segmentation results are
shown in Fig. 2. As can be seen, our segmentation results are
very close to those of the standard mean shift algorithm. The
time consumption and the number of components are shown
in Table I. As expected, the number of components is signif-
icantly smaller than the original component size used in the
Parzen window estimator.

We also compare our approach with an accelerated variant
of mean shift (labeled “kd-mean-shift” in Table I), which uses
the kd-tree4 to speed up neighborhood search in computing the
mean shift vector. Specifically, recall that mean shift iterations
shift the point at using (24). In case of the Gaussian kernel
with bandwidth matrix , each sample is assigned a
weight which can be ignored if
is larger than a threshold (say, ). So one only needs
to search for neighbors ’s of inside . This
(spherical) range search can be done using spatial data struc-
tures like the kd-trees [35] and locality sensitive hashing [16],
[14]. The kd-trees have been used in this manner for acceler-
ating kernel summations in the EM algorithm [31]. Our method
can also utilize kd-trees for additional speedup, though this is
not implemented because the number of centers ’s in the
simplified model is already quite small (Table I). So we simply

4The code is downloaded from the ANN library (http://www.cs.umd.edu/
~mount/ANN).

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on May 18,2010 at 09:02:06 UTC from IEEE Xplore.  Restrictions apply. 



ZHANG AND KWOK: SIMPLIFYING MIXTURE MODELS THROUGH FUNCTION APPROXIMATION 653

TABLE II
BREAKDOWN OF THE TIME CONSUMPTION (IN SECONDS) BY OUR METHOD AND THE KD-TREE-BASED MEAN SHIFT

TABLE III
THE USPS DIGIT DATA SET AND THE PARAMETERS USED

TABLE IV
TESTING ERRORS (IN PERCENT) ON THE USPS DIGIT SET

compute the distances between and all centers ’s in order to
select the neighbors that are within a distance of .

As can be seen from Table I, performing mean shift on the
original Parzen window density estimator, even with the use of
kd-trees, is still slower than the proposed approach. Table II
shows a more detailed breakdown of the time consumed. As
can be seen, the kd-tree-based mean shift algorithm spends
more time on clustering (i.e., the mean shift iterations) than on
range searching. Therefore, even though the kd-tree can speed
up range searching, the bottleneck is still on the mean shift
iterations where a large number of kernels within the neighbor-
hood domain (around 3000 as shown in Table II) have to be
summed up at each iteration. In other words, for this clustering
application, directly simplifying the data representation is more
useful than improving the data indexing efficiency.

C. SVM Testing

In this section, we perform experiments on simplifying the
SVM decision function. As discussed in Section IV, we use a
spherical covariance for the simplified mixture components.

TABLE V
TIME CONSUMPTION (IN SECONDS) ON THE USPS DIGITS

The first data set is the USPS database5 for digit recognition.
It contains 7291 training samples (16 16 gray image) and
2007 test samples. Here, we perform binary classification on
some difficult digit pairs with relatively high classification
errors (larger than 1%). For each classification task, we first
use cross validation to choose the regularization parameter

and the parameter of the radial basis function (RBF)
kernel . The obtained parameter values
are listed in Table III. Then we simplify the obtained SVM
decision function using GR and our method. Note that we first
decompose the SVM decision function into two submodels,
one with components having positive ’s and the other with
components having negative ’s. For each submodel, we
then use 2.5% of components for approximation,
where is the total number of support vectors. Therefore, as
is also shown in Table III, the actual number of components

is usually smaller than 5% of . Each classification task is
repeated 100 times. For each run, both the GR and our methods
use the same initial partitioning, which is obtained by the
weighted -means using random seeds on the support vectors
and the multipliers ’s as weights.

Results on the testing error are shown in Table IV. Statistical
significance test (via the paired -test) is also performed on the
difference between the testing errors obtained by GR and our
method. A positive -value indicates that GR has a larger testing
error. As can be seen, the proposed method is more accurate
than GR. Table V compares the time consumptions of the two
methods. As can be seen, the GR method is only faster than our
approach by two to four times.

For more benchmark comparisons, we experiment with data
sets from the LibSVM data archive6 (Table VI). Some of these
data sets (including svmgd1a, splice, w1a, and adult1a)
have the training and testing splits available. We first use 20%
of the training data as validation set for determining the and

5ftp://ftp.kyb.tuebingen.mpg.de/pub/bs/data/
6http://www.csie.ntu.edu.tw/cjlin/libsvmtools/datasets/
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TABLE VI
DATA SETS FROM THE LIBSVM DATA ARCHIVE AND THE PARAMETERS USED

TABLE VII
TESTING ERRORS (IN PERCENT) ON THE LIBSVM DATA SETS

parameters. GR and our method are then used to simplify the
resultant decision function, and their prediction errors on the
test data7 are computed. We repeat both methods 100 times for
each task due to the random initialization. For the other data
sets that have only the training part provided, after we use the
validation set to choose and , we randomly split the data
into training and testing parts with the ratio for 100 times,
and for each repetition apply the two methods to simplify the
SVM decision function. The data sets and their parameters are
reported in Table VI. For most data sets, we choose the number
of components as 5% of the number of support vectors. How-
ever, for the ionosph and sonar data sets, we find that their
decision functions are relatively difficult to approximate using a
few components. So we choose as 10% of the support vectors
for these two data sets.

As can be seen from Table VII, by using only 5% of the sup-
port vectors, both methods achieve testing errors that are close
to the original SVM classifier. The difference in performance
between the two methods is not statistically significant on the
adult1a, breastcnr,australian, heart, liver, and
diabetes data sets; but for all the remaining data sets, our
method is statistically significantly better than GR with a con-
fidence level of at least 99.5%. Moreover, as can be seen from
Table VIII, the GR method is only faster than our approach by
two to four times.

To examine how the number of components affects the
performance, we perform more experiments on the ionosph

7The test sets are quite large for w1a (47 272) and adult1a (30 956), so we
randomly choose a testing subset of 1000 samples.

TABLE VIII
TIME CONSUMPTION (IN SECONDS) ON THE LIBSVM DATA SETS

and sonar data sets whose decision functions are relatively
difficult to approximate. We split them into fixed training and
test sets, and train an SVM using the parameters reported in
Table VI. In approximating the decision function, we gradually
increase from 5% to 35% of the number of support vectors,
and report the testing errors of the two methods. For each ,
we repeat the experiments 100 times using random initial start.
The results are plotted in Fig. 3. As can be seen, both methods
have improved performance when the number of components

increases.

VI. CONCLUSION

In this paper, we considered the problem of simplifying
mixture models for prospective computational saving in a po-
tentially large number of learning problems. We propose a new
method to reduce model complexity by first grouping similar
components into compact clusters and then performing local
function approximation. Encouraging results are obtained in
various tasks involving mixture models, such as kernel density
estimation, clustering, and SVM testing.

Several problems remain to be explored in the future, for ex-
ample, how to determine the optimal number of components in
the simplified model, and how to use a combination of different
types of kernels for function approximation. Our algorithm can
be deemed as a preimage problem that allows variable kernel
mapping. It would be interesting to study its performance in
tasks like feature extraction and denoising. At last, we will con-
sider how to utilize the parsimonious density model obtained
through our method to scale up eigenvalue decomposition of
kernel matrices, for which a preliminary work has been reported
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Fig. 3. Testing error versus the number of components used in our method and the GR method. (a) Sonar. (b) Ionosph.

in [42] that uses a simple divide-and-conquer strategy with nor-
malized data histogram as the density model. This is potentially
very useful for many learning algorithms such as spectral clus-
tering, manifold learning, and dimension reduction.

APPENDIX I
PROOF OF PROPOSITION 1

First we introduce a new objective , where

(32)

and . Note that both (10) and (32) are
decomposed into independent terms under the distance.
Therefore, it suffices to study the relationship for each pair of
terms (denoted and ), both of which optimize over the
representative . Note that can be written as

(33)

The first term is independent of the optimization variable .
On the other hand, can be written as

(34)

where the second term is also independent of the variable .
From (33) and (34), we can see that the two objectives and

differ by only a constant that is independent of the to

be optimized. Therefore, the representative obtained by
minimizing is the same as the representative obtained
by minimizing . Write for the commoner minimizer, i.e.,

. On the other hand, comparing (6) and (32),
we can see that their optimal solutions are connected by

. Therefore, we have .

APPENDIX II
DERIVATION OF THE LOCAL MODEL-SIMPLIFICATION

ERROR IN (15)

Using the notation of profiles, the gradient of the kernel can
be written as , where .
In the following, we first introduce two lemmas.

Lemma 1: For , and (nonsingular) positive-defi-
nite matrix , we have

where does not depend on but only on the kernel
and dimensionality .

Proof: By using the transform ,
we have by the change of variables rule for integrals,

which is
a constant depending only on the kernel and dimensionality

.
Lemma 2: For , and (nonsingular) positive-

definite , the following holds:

(35)

where

(36)

(37)

(38)

Proof: The left-hand side of (35) can be written as

(39)
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The right-hand side of (35) can be written as

(40)

where we used the simple equality by (36)
and by (37). Comparing (39) and
(40), we only need to prove

(41)

The right-hand side of (41) can be reduced as

By using
and plugging it into the obvious place in the above

equation, can be further reduced to

which is exactly the left-hand side of (41). Therefore, (41) holds
and Lemma 2 is proved based on our previous arguments.

Using Lemma 2 and (14), the multiplication of two kernels
can be simplified as

(42)

with , and given in (36), (37), and (38), respectively. Now
we begin to derive (15). Using (6), we have

The first term is independent of the unknowns. The second term
can be rewritten as

For the third term

where

(43)

From Lemma 1, , so we
further reduce it to

By combining all three terms, we obtain (15).

APPENDIX III
DERIVATION OF

According to Proposition 1,
. Moreover, (15) is equal to

. Therefore, can be
deemed as a simpler version of (15), and can be obtained
easily by setting the following in (15): 1) ; 2)

; and 3) .

APPENDIX IV
MATRIX DERIVATIVES

In differentiating the objective function w.r.t. the vari-
ables ( and ), we need to use rules from matrix calculus.
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For the readers’ convenience, we list in the following several
rules that may not be well known but play an important role in
our derivations. For more rules on matrix derivatives, interested
readers are referred to [27].

1) (Chain rule) For any , and are
differentiable real-valued functions, then

2) Derivative of determinant: For any nonsingular

3) For any nonsingular and

REFERENCES

[1] G. A. Babich and O. I. Camps, “Weighted Parzen windows for pattern
classification,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 18, no. 5,
pp. 567–570, May 1996.

[2] A. Banerjee, S. Merugu, I. S. Dhillon, and J. Ghosh, “Clustering with
Bregman divergences,” J. Mach. Learn. Res., vol. 6, pp. 1705–1749,
2005.

[3] C. J. C. Burges and B. Schölkopf, “Improving the accuracy and speed
of support vector machines,” in Advances in Neural Information
Processing Systems 9. Cambridge, MA: MIT Press, 1996, pp.
375–381.

[4] D. Comaniciu, “An algorithm for data-driven bandwidth selection,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 25, no. 2, pp. 281–288,
Feb. 2003.

[5] D. Comaniciu and P. Meer, “Mean shift analysis and applications,” in
Proc. Int. Conf. Comput. Vis., 1999, vol. 2, pp. 1197–1204.

[6] D. Comaniciu and P. Meer, “Mean shift: A robust approach toward
feature space analysis,” IEEE Trans. Pattern Anal. Mach. Intell., vol.
24, no. 5, pp. 603–619, May 2002.

[7] D. Comaniciu, V. Ramesh, and P. Meer, “Kernel-based object
tracking,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 25, no. 5, pp.
564–577, May 2003.

[8] D. Comaniciu, V. Ramesh, and P. Meer, “The variable bandwidth mean
shift and data-driven scale selection,” in Proc. IEEE Int. Conf. Comput.
Vis., 2001, vol. 1, pp. 438–445.

[9] J. V. Davis and I. Dhillon, “Differential entropic clustering of multi-
variate Gaussians,” in Advances in Neural Information Processing Sys-
tems 19. Cambridge, MA: MIT Press, 2007.

[10] D. DeMenthon and D. Doermann, “Video retrieval using spatio-tem-
poral descriptors,” in Proc. 11th ACM Int. Conf. Multimedia, Berkeley,
CA, 2003, pp. 508–517.

[11] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood
from incomplete data via the EM algorithm,” J. R. Statist. Soc. B, vol.
39, no. 1, pp. 1–38, 1977.

[12] J. Fan and J. S. Marron, “Fast implementations of nonparametric curve
estimators,” J. Comput. Graph. Statist., vol. 3, no. 1, pp. 35–56, Mar.
1994.

[13] K. Fukunaga and L. D. Hostetler, “The estimation of the gradient of a
density function, with applications in pattern recognition,” IEEE Trans.
Inf. Theory, vol. 21, no. 1, pp. 32–40, Jan. 1975.

[14] B. Georgescu, I. Shimshoni, and P. Meer, “Mean shift based clustering
in high dimensions, a texture classification example,” in Proc. 9th IEEE
Int. Conf. Comput. Vis., 2003, pp. 456–463.

[15] A. Gersho and R. M. Gray, Vector Quantization and Signal Compres-
sion. Boston, MA: Kluwer, 1992.

[16] A. Gionis, P. Indyk, and R. Motwani, “Similarity search in high di-
mensions via hashing,” in Proc. 25th Int. Conf. Very Large Data Bases,
1999, pp. 518–529.

[17] M. Girolami and C. He, “Probability density estimation from optimally
condensed data samples,” IEEE Trans. Pattern Anal. Mach. Intell., vol.
25, no. 10, pp. 1253–1264, Oct. 2003.

[18] J. Goldberger, H. Greenspan, and J. Dreyfuss, “Simplifying mixture
models using the unscented transform,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 30, no. 8, pp. 1496–1502, Aug. 2008.

[19] J. Goldberger and S. Roweis, “Hierarchical clustering of a mixture
model,” in Advances in Neural Information Processing Systems 17, L.
K. Saul, Y. Weiss, and L. Bottou, Eds. Cambridge, MA: MIT Press,
2005, pp. 505–512.

[20] B. Han, D. Comaniciu, Y. Zhu, and L. Davis, “Incremental density
approximation and kernel-based Bayesian filtering for object tracking,”
in Proc. Int. Conf. Comput. Vis. Pattern Recognit., 2004, vol. 1, pp.
638–644.

[21] W. Härdle and D. W. Scott, “Smoothing by weighted averaging of
rounded points,” Comput. Stat., vol. 7, pp. 97–128, 1992.

[22] A. J. Izenman, “Recent developments in nonparametric density estima-
tion,” J. Amer. Stat. Assoc., vol. 86, no. 413, pp. 205–224, 1991.

[23] B. Jeon and D. A. Landgrebe, “Fast Parzen density estimation using
clustering based branch and bound,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 16, no. 9, pp. 950–954, Sep. 1994.

[24] S. Julier, J. Uhlmann, and H. F. Durrant-Whyte, “A new method for
the nonlinear transformation of means and covariances in filters and
estimators,” IEEE Trans. Autom. Control, vol. 45, no. 3, pp. 477–482,
Aug. 2002.

[25] T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko, R. Sil-
verman, and A. Y. Wu, “An efficient �-means clustering algorithm:
Analysis and implementation,” IEEE Trans. Pattern Anal. Mach. In-
tell., vol. 24, no. 7, pp. 881–892, Jul. 2002.

[26] K. I. Kim, K. Jung, and J. H. Kim, “Texture-based approach for text
detection in images using support vector machines and continuously
adaptive mean shift algorithm,” IEEE Trans. Pattern Anal. Mach. In-
tell., vol. 25, no. 12, pp. 1631–1639, Dec. 2003.

[27] H. Lütkepohl, Handbook of Matrices. New York: Wiley, 1996.
[28] J. S. Marron and M. P. Wand, “Exact mean integrated squared error,”

Ann. Stat., vol. 20, no. 2, pp. 712–736, 1992.
[29] G. McLachlan, Discriminant Analysis and Statistical Pattern Recogni-

tion. New York: Wiley, 1992.
[30] G. McLachlan and D. Peel, Finite Mixture Models. New York: Wiley,

2000.
[31] A. W. Moore, “Very fast EM-based mixture model clustering using

multiresolution kd-trees,” in Advances in Neural Information Pro-
cessing Systems 11, M. S. Kearns, S. A. Solla, and D. A. Cohn,
Eds. San Mateo, CA: Morgan Kaufmann, 1998, pp. 543–549.

[32] E. Parzen, “On estimation of a probability density function and mode,”
Ann. Math. Stat., vol. 33, pp. 1065–1075, 1962.

[33] L. R. Rabiner, “A tutorial on hidden Markov models and selected appli-
cations in speech recognition,” Proc. IEEE, vol. 77, no. 2, pp. 257–286,
Feb. 1989.

[34] K. Roeder, “Density estimation with confidence sets exemplified by
superclusters and voids in the galaxies,” J. Amer. Stat. Assoc., vol. 85,
no. 411, pp. 617–624, 1990.

[35] H. Samet, Applications of Spatial Data Structures: Computer
Graphics, Image Processing, and GIS. Boston, MA: Ad-
dison-Wesley, 1990.

[36] B. Schölkopf and A. J. Smola, Learning With Kernels. Cambridge,
MA: MIT Press, 2002.

[37] D. W. Scott and S. J. Sheather, “Kernel density estimation with binned
data,” Commun. Stat. A—Theory Methods, vol. 14, pp. 1353–1359,
1985.

[38] E. B. Sudderth, A. T. Ihler, W. T. Freeman, and A. S. Willsky, “Dis-
tributed occlusion reasoning for tracking with nonparametric belief
propagation,” in Advances in Neural Information Processing Systems
17. Cambridge, MA: MIT Press, 2005, pp. 1369–1376.

[39] E. B. Sudderth, A. T. Ihler, W. T. Freeman, and A. S. Willsky, “Non-
parametric belief propagation,” in Proc. Int. Conf. Comput. Vis. Pattern
Recognit., 2003, pp. 605–612.

[40] P. Vincent and Y. Bengio, “Manifold Parzen windows,” in Advances
in Neural Information Processing Systems 15, S. Becker, S. Thrun,
and K. Obermayer, Eds. Cambridge, MA: MIT Press, 2003, pp.
825–832.

[41] J. Zhang, K. Zhang, X. Xu, C. K. Tse, and M. Small, “Seeding the
kernels in graphs: Toward multi-resolution community analysis,” New
J. Phys., vol. 11, 2009, 113003.

[42] K. Zhang and J. T. Kwok, “Density-weighted Nyström method for
computing large kernel eigensystems,” Neural Comput., vol. 21, no.
1, pp. 121–146, 2009.

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on May 18,2010 at 09:02:06 UTC from IEEE Xplore.  Restrictions apply. 



658 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 21, NO. 4, APRIL 2010

[43] K. Zhang and J. T. Kwok, “Simplifying mixture models through func-
tion approximation,” in Advances in Neural Information Processing
Systems 17, B. Schölkopf, J. Platt, and T. Hoffman, Eds. Cambridge,
MA: MIT Press, 2007, pp. 1577–1584.

[44] K. Zhang, M. Tang, and J. T. Kwok, “Applying neighborhood consis-
tency for fast clustering and kernel density estimation,” in Proc. Int.
Conf. Comput. Vis. Pattern Recognit., 2005, vol. 2, pp. 1001–1007.

[45] X. S. Zhou, D. Comaniciu, and A. Gupta, “An information fusion
framework for robust shape tracking,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 27, no. 1, pp. 115–129, Jan. 2005.

Kai Zhang received the Ph.D. degree in computer
science from the Hong Kong University of Science
and Technology, Kowloon, Hong Kong, in 2008.

Then, he joined Life Science Division, Lawrence
Berkeley National Laboratory, Berkeley, CA. His re-
search interest is machine learning and pattern recog-
nition, in particular, large scale unsupervised learning
and dimension reduction algorithms. He also works
on applications in data mining, bioinformatics, and
complex networks.

James T. Kwok (M’98–SM’07) received the Ph.D.
degree in computer science from the Hong Kong Uni-
versity of Science and Technology, Kowloon, Hong
Kong, in 1996.

He then joined the Department of Computer Sci-
ence, Hong Kong Baptist University, as an Assistant
Professor. He returned to the Hong Kong University
of Science and Technology in 2000, where he is now
an Associate Professor at the Department of Com-
puter Science and Engineering. His research inter-
ests include kernel methods, machine learning, pat-

tern recognition, and artificial neural networks.
Dr. Kwok is an Associate Editors of the IEEE TRANSACTIONS ON NEURAL

NETWORKS and Neurocomputing. He received the IEEE TRANSACTIONS ON

NEURAL NETWORKS Outstanding 2004 Paper Award in 2006.

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on May 18,2010 at 09:02:06 UTC from IEEE Xplore.  Restrictions apply. 


