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Moderating the Outputs of Support
Vector Machine Classifiers

James Tin-Yau Kwok,Member, IEEE

Abstract— In this paper, we extend the use of moderated
outputs to the support vector machine (SVM) by making use
of a relationship between SVM and the evidence framework. The
moderated output is more in line with the Bayesian idea that the
posterior weight distribution should be taken into account upon
prediction, and it also alleviates the usual tendency of assigning
overly high confidence to the estimated class memberships of
the test patterns. Moreover, the moderated output derived here
can be taken as an approximation to the posterior class prob-
ability. Hence, meaningful rejection thresholds can be assigned
and outputs from several networks can be directly compared.
Experimental results on both artificial and real-world data are
also discussed.

Index Terms—Bayesian, evidence framework, moderated out-
put, support vector machine.

I. INTRODUCTION

I N RECENT years, there has been a lot of interest in
studying the support vector machine (SVM) [1]–[7]. SVM

is based on the idea ofstructural risk minimization(SRM)
[6], which shows that the generalization error is bounded by
the sum of the training set error and a term depending on the
Vapnik–Chervonenkis dimension of the learning machine. By
minimizing this upper bound, high generalization performance
can be achieved. Moreover, unlike other machine learning
methods, SVM’s generalization error is related not to the input
dimensionality of the problem, but to the margin with which
it separates the data. This explains why SVM can have good
performance even in problems with a large number of inputs
[8]–[11]. To date, SVM has been applied successfully to a wide
range of problems, such as classification (e.g., [3], [12]–[14]),
regression [15], [16], time series prediction [17] and density
estimation [18]. In this paper, we will focus on classification
problems.

Despite its many successes, SVM relies on only one weight
solution (indirectly represented by the set of Lagrangian mul-
tipliers) in making predictions. However, from a Bayesian
perspective, the weights of any machine, even after learning,
still take a certain posterior distribution. Using just one weight
solution as the sole representative thus neglects posterior
uncertainty in the weights. This often leads to more extreme
predicted outputs during testing, and in turn indicates an overly
high confidence that the pattern belongs to a particular class.
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Under the Bayesian framework, the proper way to handle
these weight parameters is by marginalization, which involves
integrating them out from the conditional distribution. MacKay
called the resultant marginalized output themoderated output,
and this has been shown to be better in the context of neural
networks [19].

Another concern is that the output from a SVM classifier
has no clear relationship to posterior class probabilities. Such a
connection, if exists, would offer a number of advantages [20],
such as the meaningful assignment of rejection thresholds and
a direct comparison or combination of outputs from several
networks. Hastie and Tibshirani [21] proposed a crude estimate
by assuming that the posterior class probability distribution
to be a single Gaussian. Dumaiset al. [22] used regularized
maximum likelihood fitting.1 Otherad hoccalibration schemes
such as simple binning [24] may also be used. Notice that these
methods, in contrast to the previous discussion on moderated
output, are not Bayesian in nature and hence do not take the
posterior uncertainty of the weights into account.

In this paper, we extend the use of moderated outputs to
SVM by making use of a relationship2 [27], [28] between
the evidence framework [29] and the SVM. The evidence
framework is a Bayesian framework proposed by MacKay and
has been applied successfully to the learning of feedforward
neural networks in both classification and regression problems
[19], [30]–[33]. In general, such a Bayesian approach is
attractive in being logically consistent, simple and flexible
[34], [35]. Moreover, because of the Bayesian nature of our
approach, the resultant moderated output also serves as an
approximation to the posterior class probability. The rest of
this paper is organized as follows. A brief summary of the
SVM and its relationship to the evidence framework will be
described in Sections II and III, respectively. The moderated
output for SVM will be derived in Section IV. Simulation
results are then presented in Section V, and the last section
gives some concluding remarks.

II. SUPPORTVECTOR MACHINE FOR CLASSIFICATION

In this section, we briefly review the use of SVM in
classification problems. Interested readers may consult [1]–[3],
[6], and [7] for details.

Let the training set be , with each input
and the output label . The SVM first maps

from the input space to in a feature space

1Details of this method are expected to be in a forthcoming paper [23].
2Connections between the SVM and other Bayesian ideas have also been

discussed in [25] and [26].
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. Consider the case when the data is linearly separable in.
The SVM constructs a hyperplane in for which
the separation between the positive and negative examples
is maximized. The for this “optimal” hyperplane can be
written as , where can
be found by solving the following quadratic programming
(QP) problem: maximize

(1)

with respect to , under the constraints and ,
where and is a symmetric
matrix with elements . To obtain , one
does not need to use the mappingto explicitly get and

. Instead, under certain conditions, one can find akernel3

such that , and is then computed
as . For example, the kernel for a
polynomial classifier of degreeis .
Moreover, notice that is always positive semidefinite and
so there is no local optima for the QP problem. For those

’s greater than zero, the corresponding training examples
must lie along the margins of the decision boundary (by
the Kuhn–Tucker theorem), and these are called thesupport
vectors.

During testing, for a test vector , we first compute

(2)

and then its class label is given by

otherwise.
(3)

When the training set is not separable in, the SVM
algorithm introduces nonnegative slack variables

[3]. The resultant problem becomes

minimize (4)

subject to . Here, is a
user-defined regularization parameter controlling the tradeoff
between model complexity and training error, andmeasures
the (absolute) difference between and . Again,
minimization of (4) can be transformed to a QP problem:
maximize (1) subject to the constraints and

.

III. RELATIONSHIP BETWEEN THE

EVIDENCE FRAMEWORK AND THE SVM

The evidence framework is divided into three levels of
inference. In this section, we recapitulate the relationship
between the first level of inference and the SVM as described
in [27] and [28].

A model , with a -dimensional parameter vector ,
consists of its functional form , the distribution
that the model makes about the data, and a prior parameter

3For a full discussion on the possible choices of the kernels, interested
readers are referred to [25].

distribution with a regularization parameter. The
first level of inference infers the posterior distribution of
for a given value of by using the Baye’s rule

(5)

Assuming that the patterns are independently identically dis-
tributed (i.i.d.), then

and (5) becomes

(6)

Now, consider the following probability model.

• The prior over is the Gaussian prior
.

• The probability distribution for
is given by

(7)
where as defined in (2) and

.

Substituting these probabilities into (6), we obtain

constant

This cannot be cast readily under the SVM framework. How-
ever, if we take the approximation that

(8)

where is the slack variable in (4). Then, on substituting this
approximated probability model back into (6), we get

constant

The last two terms on the right do not depend on. Hence,
by setting , optimizing (4) can be regarded as
finding the maximum a posteriori(MAP) estimate of

. In other words, training of the SVM can be regarded as
approximately performing the first level of inference in the
evidence framework. Moreover, in the light of this corre-
spondence, traditional SVM can be considered as using
as the sole representative of the whole posterior distribution
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Fig. 1. True and approximated probabilities.

upon prediction. A comparison of the true and approximated
probability distributions is shown in Fig. 1.

The second and third levels of inference in the evidence
framework can also be applied to SVM [27], [28]. The second
level of inference determines the value ofby maximizing

, whereas the third level of
inference ranks different models by examining their posterior
probabilities . As discussed in [27]
and [28], applying these two levels of inference to SVM allows
automatic adjustment of the regularization parameter and the
kernel parameter to their near-optimal values, without the need
to set data aside in a validation set.

IV. M ODERATING THE SVM OUTPUT

The approximated class probabilities (8) in Section III can
be written out more explicitly as4

otherwise
and

otherwise.

As mentioned in Section I, the Bayesian approach of handling
the unwanted parameter is to integrate it out from the
conditional distribution. Here, as in the evidence framework,
we assume that the posterior distribution ofcan be approxi-
mated by a single Gaussian at . Since

4For simplicity of notations, we will dropH in the sequel.

, therefore the posterior distribution of will also be
Gaussian , with mean and
variance

(9)

where is the Hessian.
Thus

N N

erfc

(10)

and

N N

erfc

(11)

Here, erfc is the complementary
error function [36] and can be readily computed. Recall that
(8) is only an approximation of (7), consequently (10) and
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Fig. 2. Moderated output as a function ofaMP and s.

(11) have to be normalized

We call the moderated outputof the SVM
for pattern . Fig. 2 shows the variation of the moderated
output as a function of and . As can be seen, when

increases, changes in the moderated output becomes more
gradual to changes in . And when becomes very
large, the moderated output stays near 0.5. As the moderated
output estimates the posterior class probability, this indicates
maximum uncertainty in predicting the class membership of

. Moreover, notice that the moderated output passes through
0.5 at . Hence, if the class label of is obtained by
thresholding the moderated output at 0.5, then it will be the
same as the MAP-based decision rule in (3).

To compute in (9), we have to determine the Hessian
. First, define the sigmoid function

for some , and . Using results
in [27], can be approximated as

(12)

where

(13)

and

(14)

Here, the ’s are orthogonal, is the number of significant
eigenvalues in the matrix with entries

, while and
are obtained from the eigensystem

.
Later on, it will be more convenient to have .

This is satisfied by ensuring that the set is orthonormal.
Let the required normalizing factor for be and define

. Then,

Hence, the required normalizing factor for is

Utilizing (12)–(14) and the fact that , in
(9) can then be computed as

(15)
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Fig. 3. Training data for the toy problem.

V. SIMULATION

In this section, we report simulation results on three data
sets. The polynomial kernel
is used throughout. Here, we do not address the issue of
model selection. This, in general, can be handled by the
use of a separate validation set [17], or by utilizing an
upper bound on the generalization error predicted from
the SRM theory [6]. As mentioned in Section III, the
evidence framework can also be used to address this issue.
Interested readers may refer to [27], [28], and the references
therein.

A. Toy Problem

This is an artificial two-class classification problem, with
data generated from five Gaussians (Fig. 3). The training
set has 500 patterns and the test set has 10 201 patterns.
Polynomial kernel with is used.

Fig. 4 compares the following outputs obtained from the
SVM:

1) MAP output ;
2) clipped at ;
3) unmoderated probability estimate

(16)

4) another unmoderated probability estimate produced by
regularized maximized likelihood fitting5 [22];

5) moderated output .

The MAP output does not show any meaningful pattern in
general, while the clipped MAP output and both unmoderated
probability outputs show high confidence (with output values
near 1 and , respectively) in most parts of the input space,
even far beyond the decision boundary and in regions of low
data density. In comparison, the moderated output becomes
less certain as the pattern moves away from the training data.

As discussed in Section IV, if the classifier output is ob-
tained by thresholding the moderated output at 0.5, then it
will be the same as the MAP-based decision rule in (3). In
order to obtain a numerical comparison of the performance
from various SVM outputs, we use

(17)

5Our implementation of regularized maximum likelihood fitting is as
follows. After training the SVM, we fit a sigmoid toaMP to produce
~o(xi; wMP) = 1=(1 + exp(�!(aMP + c))). For a given regularization
parameter� > 0, parameters! andc are determined by minimizing

1

2
i

~o(xi; wMP)�
1 + yi

2

2

+ �!2:

An appropriate value for� is estimated from a validation set.
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(a)

(b)

Fig. 4. Various outputs from the SVM: (a) MAP outputaMP, (b) aMP clipped at�1.
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(c)

(d)

Fig. 4. (Continued.) Various outputs from the SVM: (c) unmoderated output, (d) regularized unmoderated output.
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(e)

Fig. 4. (Continued.) Various outputs from the SVM: (e) moderated output.

TABLE I
VALUES OF G FROM VARIOUS SVM OUTPUTS

as in [19]. Here, is the output for pattern, and
is the size of the independent test set (equals 10 201 in

this experiment). As mentioned in [19], can be
interpreted as the data likelihood. The smaller the value of,
the more likely is the data generated by the model. Table I
shows the results for the various outputs. For the clipped
MAP solution, there are some misclassified test patterns (i.e.,

but , or vice versa) and goes infinite.
Similarly is the case for the unmoderated estimate (16). The
value of obtained from regularized maximum likelihood
fitting is also inferior to that based on the moderated output.

B. Image Segmentation Problem

The second data set is the image segmentation data from
the UCI machine learning repository [37]. Each pattern has 19
continuous attributes and corresponds to a 33 region of an
outdoor image. The problem is to classify the pattern into one
of the seven classes: , , , ,

, , and . There are 210 patterns in the training
set and 2100 patterns in the test set (each class has 300 test
patterns). Polynomial kernel with is used.

We take the usual approach of formulating this multiclass
classification problem as a series of binary classification prob-
lems [38], [39]. Seven classifiers are constructed, with one for
each class (e.g., the classifier separates patterns
belonging to the class from those that do not).
For a particular test pattern, the classifier with the highest
output value is selected as winner and the corresponding class
label assigned. Table II shows the misclassification errors on
incorporating the classes one by one (in alphabetical order).
The performance of the moderated output is always better
than that of the MAP output. Moreover, performance can
be improved further by rejecting some uncertain patterns. As
the moderated output estimates the posterior class probability,
meaningful rejection thresholds can be set on the winning
classifier and the resultant improvement is shown in Table III.
In contrast, selection of meaningful rejection thresholds in
a traditional SVM is not easy, as its output has no clear
relationship to the posterior class probability.

C. Text Categorization Problem

In this experiment, we use the Reuters-21 578 Distribution
1.0 test collection.6 This is a set of 21 578 Reuters newswire
stories from the year 1987 that have been manually indexed
into 135 financial topic categories to support document rout-

6The Reuters-21 578 Distribution 1.0 test collection is available from
http://www.research.att.com/˜lewis. Arrangements for access were made by
David Lewis.
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TABLE II
RESULTS ON THE IMAGE SEGMENTATION PROBLEM (FOR COMPARISON, THE PERCENTAGE ERROR OF THE

ONE NEAREST-NEIGHBOR CLASSIFIER IN THE DISCRIMINATION OF ALL SEVEN CLASSES IS 12.3%)

Fig. 5. Variation of the average posterior variance in the test set with the number of training documents belonging to the category (each point corresponds
to one category).

TABLE III
PERFORMANCE AFTER SETTING A REJECTION THRESHOLD

ON THE MODERATED OUTPUT OF THE WINNING CLASSIFIER

ing and retrieval by Reuters customers. Here, we use the
ModApte (Modified Apte) split of the test collection, which
contains 9603 training documents and 3299 test documents.
Documents are coded using the traditional (term
frequency—inverse document frequency) representation [40]

where is the frequency of term in document ,
is the total number of documents, and the number of
documents containing . Polynomial kernel with is
used for all the categories.
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(a)

(b)

Fig. 6. Recall-precision curve for the text categorization problem: (a) range of recall: 0–100% and (b) zoomed-in range of recall: 0–65%.

Instead of using the misclassification error, performance in
text categorization tasks is usually measured byrecall and
precision [41]. Recall is the percentage of total documents
for a given category that are correctly classified. Precision is
the percentage of predicted documents for a given category
that are correctly classified. The point at which recall equals

precision is thebreak-evenpoint, and is often used as a single
summarizing measure for comparison of results. Moreover,
because the text categorization problem is also analyzed as a
set of dichotomous classification problems as in Section V-B,
we use bothmicro-averagingand macro-averaging[41] to
evaluate overall performance across the entire set of categories.
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Fig. 7. Variations of recall and precision with the rejection threshold on the moderated output.

Fig. 8. Plot showing the percentage of test patterns with moderated output in the range (0.4, 0.5), versus the average posterior variance in the test set
(each point corresponds to one category).

In micro-averaging, the performance tables for each of the
categories are added and the overall recall and precision
are computed. In macro-averaging, performance measures are
computed separately for each category, and then the mean is
reported.

With macro-averaging, both the MAP and the moderated
output yield the same break-even point of 72.0%. This is
because, for most of the categories, the posterior variances
in (9) for the test patterns are too small to make a difference
(Fig. 5). From the figure, one can also observe the clear
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(a)

(b)

Fig. 9. Recall-precision curve with the modified scheme: (a) range of recall: 0–100% and (b) zoomed-in range of recall: 0–65%.

inverse relationship between the number of training documents
belonging to the category and the average posterior variance
for the corresponding classifier.

The difference becomes more apparent in micro-averaging,
when outputs from different dichotomous classifiers are ranked
together. Moderated output yields slightly better precision at

medium recall levels7 [Fig. 6(b)], but is worse at high recall
levels [Fig. 6(a)]. The sudden deterioration can be understood
by observing the effect of using a rejection threshold (Fig. 7).

7Note that although the improvement in precision is small, this may still be
useful when the text categorizer is used in information extraction applications
[24].
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There is a large drop in precision near a threshold of 0.5. This
is because for those classifiers with large average posterior
variance, almost all the test patterns yield moderated outputs
close to 0.5 (Fig. 8), indicating maximum uncertainty in the
predictions. To have a high recall in micro-averaging, one
has to label all these uncertain patterns as belonging to the
corresponding category, thus seriously hampering the overall
precision.

To alleviate this problem, one alternative is to first label
patterns that the classifiers have high confidence, and come
back to the uncertain patterns only when a very high recall
level is required. Fig. 9 shows the resulting performance with
this modified scheme. The use of moderated output still yields
improved precision at medium recall levels, while worsens
only at very high recall levels. However, in general, we
recommend the use of the rejection threshold instead, which
offers direct control over the acceptance of uncertain patterns.
For example, with a rejection threshold of 0.5, we can obtain
reasonably good precision and recall values of 92.2 and 78.5%,
respectively.

Finally, notice that our results also concur with others [8],
[22] that the SVM is very suitable for text categorization. The
micro-averaged break-even point obtained here is 85%, which
is among the best known results in this collection.8 Favorable
results using the SVM have also been reported on the older
Reuters-22 173 collection [9].

VI. CONCLUSION

In this paper, we extend the use of moderated output
to SVM based on the evidence framework. Because of the
Bayesian nature of this approach, the moderated output derived
serves naturally as an approximation to the posterior class
probability. Consequently, meaningful rejection thresholds can
be assigned and outputs from several networks (as in using
dichotomous networks for multiclass problems) can be directly
compared. Moreover, unlike the use of unmoderated outputs
in approximating the posterior class probabilities (as in [22]),
the moderated output is more in line with the Bayesian idea
that the posterior weight distribution should be taken into
account on prediction, and this alleviates the usual tendency of
assigning overly high confidence to its predictions in regions
of low training data density. Experimentally, performance
improvements on both artificial and real-world data sets are
observed, especially in cases when the posterior variance is
not too small and the moderated output is used in tandem
with the rejection threshold.

In this paper, we have focused on classification problems.
Extension to regression problems for the calculation of er-
ror bars is also straight-forward. Potentially, the ability to

8On this Reuters-21 578 collection, Dumaiset al. obtained 87% [22] and
Joachims obtained 84.2% [8] by using SVM. The best result so far is 87.8%
[42], obtained using a system with 100 decision trees. The best previously
reported result is 85% [43]. However, notice that each of these schemes
typically uses a slightly different text representation and preprocessing. For
example, here we used stemming, thetf � idf representation and without
feature selection. Dumaiset al. [22], on the other hand, did not perform
stemming and used a simpler binary representation (which encodes whether a
particular word appears in the document or not), but required feature selection
based on the mutual information.

transform SVM output to posterior class probability estimate
can yield a lot more benefits [20], such as compensating
for different prior probabilities and using an ensemble of
networks. These will be investigated in the future. Finally, as
this work is based on the evidence framework, variability in the
hyperparameter [i.e., the regularization parameterin (5)] is
ignored. This issue will be studied and the application of other
Bayesian techniques, like Markov Chain Monte Carlo methods
[44] and the Gaussian process [45], will also be considered.
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