
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 25, NO. 12, DECEMBER 2014 2275

Mandatory Leaf Node Prediction in Hierarchical
Multilabel Classification

Wei Bi and James T. Kwok

Abstract— In hierarchical classification, the output labels
reside on a tree- or directed acyclic graph (DAG)-structured
hierarchy. On testing, the prediction paths of a given test example
may be required to end at leaf nodes of the label hierarchy.
This is called mandatory leaf node prediction (MLNP) and is
particularly useful, when the leaf nodes have much stronger
semantic meaning than the internal nodes. However, while there
have been a lot of MLNP methods in hierarchical multiclass
classification, performing MLNP in hierarchical multilabel clas-
sification is difficult. In this paper, we propose novel MLNP
algorithms that consider the global label hierarchy structure.
We show that the joint posterior probability over all the node
labels can be efficiently maximized by dynamic programming
for label trees, or greedy algorithm for label DAGs. In addition,
both algorithms can be further extended for the minimization
of the expected symmetric loss. Experiments are performed on
real-world MLNP data sets with label trees and label DAGs. The
proposed method consistently outperforms other hierarchical and
flat multilabel classification methods.

Index Terms— Bayesian decision, hierarchical classification,
integer linear program (ILP), multilabel classification.

I. INTRODUCTION

IN MANY real-world classification problems, the output
labels are organized in a hierarchy, and an example can

belong to a certain label only if it also belongs to that label’s
parent in the hierarchy. For example, in bioinformatics, a gene
is assigned with its gene functions arranged in the form of a
tree in the functional catalog (Funcat) or as a directed acyclic
graph (DAG) in the gene ontology (GO) [1]; in music, the
musical signals are organized in an audio taxonomy [2]; and
in Wikipedia, its documents are classified into different topics
from the category graph. Yet, many classification algorithms
are flat, in the sense that they simply ignore the label structure
and treat the labels separately. Hierarchical classification algo-
rithms, on the other hand, utilize these hierarchical relation-
ships between labels in making predictions. Not surprisingly,
they can often achieve better prediction performance.

Hierarchical classification algorithms can be categorized
along several dimensions. First, they can be classified as either:

Manuscript received March 26, 2013; revised February 19, 2014; accepted
February 19, 2014. Date of publication May 6, 2014; date of current version
November 17, 2014. This work was supported by the Research Grants Council
of the Hong Kong Special Administrative Region under Grant 614012.

The authors are with the Department of Computer Science and Engineering,
Hong Kong University of Science and Technology, Hong Kong (e-mail:
weibi@cse.ust.hk; jamesk@cs.ust.hk).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TNNLS.2014.2309437

1) hierarchical multiclass classification (HMC), in which the
labels of each example are on a single path in the hierarchy
or 2) HMC, in that the labels can fall on a union of multiple
paths [3]. An everyday example of HMC is that a docu-
ment/image/song/video may have multiple tags from different
meta-categories [3]–[6]. Similarly, in bioinformatics, a gene
may be associated with more than one biological functions
on different parts of a functional ontology [7]. Because of this
great practical significance, HMC has been studied extensively
in recent years.

Hierarchical (multiclass or multilabel) classification algo-
rithms can also be categorized based on the depths in the label
hierarchy of which their predictions end. Some algorithms
ensure that the label predictions always lie on a path from
the root to the leaf(s) (full-path prediction); whereas some
produce predictions that might stop at an internal node (partial-
path prediction) [5]. Following the terminology in a recent
survey in [8], the first prediction mode is called mandatory
leaf node prediction (MLNP); whereas the second one is called
nonmandatory leaf node prediction (NMLNP). Depending
on the application domain and how the label hierarchy is
generated, either one of these prediction modes may be more
relevant. For example, in the taxonomies of musical signals [2]
and genes [7], the leaf nodes have much stronger seman-
tic/biological meanings than the internal nodes, and MLNP
is more important. Besides, sometimes the label hierarchy is
learned from the data, using methods, such as hierarchical
clustering [9], Bayesian network structure learning [10], and
label tree methods [11], [12]. In these cases, the internal nodes
are only artificial and MLNP is again more relevant. In the
recent second Pascal challenge on large-scale hierarchical text
classification (LSHTC), the tasks also require MLNP.

Most of the existing HMC algorithms are designed for
NMLNP [1], [3]–[6]. As far as we are aware of, the only
HMC algorithm designed specifically for MLNP is the recent
HMC-label powerset (HMC-LP) algorithm [13]. Its main idea
is to reduce the hierarchical problem to a nonhierarchical
one by running the (nonhierarchical) multilabel classification
method of label powerset (LP) [14] at each level of the
hierarchy. However, this relies on the powerset of all labels
at the same level, making it unsuitable for large label hierar-
chies. In addition, as it processes the hierarchy level-by-level,
this cannot be applied on DAGs, where levels are not well
defined.

While there have been a lot of MLNP methods in HMC [8],
they cannot be easily extended to the HMC setting. Recall that

2162-237X © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

2276 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 25, NO. 12, DECEMBER 2014

in HMC, for each internal node labeled positive in an MLNP,
exactly one of its children is positive [15], [16]. In contrast,
for HMC, one has to consider at each node the more difficult
question of how many and which child/children are to be
labeled positive. Even after these decisions are made (e.g., by
adjusting the classification threshold heuristically), it is hard
to ensure that all the prediction paths will end at leaf nodes,
and so a lot of partial paths may be resulted.

To address this problem, one possibility is to first predict
the number of leaf labels (k) that the test example has, and
then pick the k leaf labels whose posterior probabilities are the
largest. However, learning k can be difficult and computation-
ally expensive. In addition, the posterior probability computed
at each leaf l corresponds only to a single prediction path
from the root to l, while the target multilabel in HMC can
have multiple paths. A better justified approach is to compute
the posterior probabilities of all subtrees/subgraphs that have
k leaf nodes; and pick the one with the highest probability.
However, as there are

(N
k

)
such possible subsets (where N is

the number of leafs), this can be expensive when N is large.
In this paper, we propose efficient algorithms for MLNP

in both tree- and DAG-structured hierarchical multilabel clas-
sification. The target multilabel is obtained by maximizing
the posterior probability over all the feasible multilabels.
For label trees, we show that this maximization can be effi-
ciently performed by dynamic programming. For label DAGs,
by adopting a weak nested approximation assumption, the
probability can be maximized in a greedy manner.

Besides, as in any classification problem, the loss function
plays an important role [17]. In flat multilabel classifica-
tion, Dembczynski et al. [18] showed how to minimize the
expected risks corresponding to the hamming loss (H-loss),
rank loss, subset zero-one loss, and F1 score. In HMC,
Cesa-Bianchi et al. [6] proposed the B-SVM, which minimizes
the expected risk corresponding to the so-called H-loss.
However, there is yet no work on risk minimization for MLNP.
In this paper, we also extend the proposed algorithms to
MLNP that minimizes the risk of the weighted symmetric
loss [19]. We show that the resultant optimization problem
can be solved by essentially the same algorithms, but with
different parameter settings.

The rest of this paper is organized as follows. Section II
provides a brief review on hierarchical classification algo-
rithms. Section III describes the proposed MLNP algorithm
on label trees. The MLNP on label DAGs is discussed in
Section IV. Risk-minimizing MLNP is discussed in Section V.
Experimental results are presented in Section VI. Finally,
conclusions are drawn in Section VII.

Preliminary results have been recently reported in [20].
Besides providing a more thorough literature review, this
paper: 1) proposes a new MLNP algorithm for label trees,
which is faster than the one in [20] and has its optimality
guaranteed without requiring extra assumptions; 2) provides
intuitions and technical proofs to the proposed algorithms; and
3) provides stronger experimental evidence to demonstrate the
merits of the proposed algorithms. In particular, experiments
on two new large data sets (Caltech256 and DMOZ from the
second Pascal challenge on LSHTC) have been added.

TABLE I

REPRESENTATIONS OF SOME POPULAR HIERARCHICAL CLASSIFICATION

ALGORITHMS, TOGETHER WITH THE PROPOSED ALGORITHMS,

USING THE 4-TUPLE NOTATION IN [8]

II. RELATED WORK

Using the categorization in [8], hierarchical classification
algorithms can be differentiated and represented by the 4-tuple
〈�,�,�,�〉. Here, � indicates whether the classification of
each example can be associated with only one path (multiclass
classification) or multiple paths (multilabel classification),
� indicates the prediction depth of the algorithm, either it
must always end at the leaf node (MLNP) or can end at an
internal node in the hierarchy (NMLNP), � specifies the type
of label hierarchy, either a tree or a DAG, and � specifies how
the classifier is constructed (e.g., the algorithm can train a local
classifier at each node/level/parent, or use a global classifier for
the whole hierarchy). Using this 4-tuple notation, a summary
of the hierarchical classification algorithms discussed in this
section is shown in Table I.

As mentioned in Section I, most existing hierarchical clas-
sification algorithms can only handle NMLNP. A popular
approach is hierarchical binary relevance (HBR) [5], [6], [21],
which learns a local binary classifier (such as a SVM with
probabilistic output, for the H-SVM [5]) at each node of
the label hierarchy. Prediction is then performed recursively
in a top-down manner. If a node is predicted positive, HBR
continues with the prediction on its children nodes; otherwise,
all its descendants are labeled negative. HBR is originally
designed for tree-structured label hierarchies, but can be easily
extended for DAGs. Specifically, the training step remains
the same (with one classifier per DAG node). For prediction,
the recursion continues only if all the parents of a node are
predicted positive. On the other hand, CLUS-HMC [1] trains
a global classifier (which is a decision tree) and predicts the
labels of all the nodes together. Rousu et al. [3] proposed a
global kernel-based algorithm in which the label tree is viewed
as a Markov tree and an exponential family is defined on the
edges. Bi and Kwok [4] proposed efficient greedy algorithms
to find the best subtree/subgraph in a label tree/DAG that is
consistent with a given hierarchical property.

As far as we are aware of, HMC-LP [13] is the only HMC
algorithm designed for MLNP. It is based on the idea of LP [8],
which trains a multiclass classifier with the label set consisting
of all the label combinations. HMC-LP trains a local LP classi-
fier at each level of the hierarchy. The label set of this LP clas-
sifier contains label combinations of the nodes, of which parent
nodes appearing in any label combination in the LPs label
set from its upper level. However, such a label combination
strategy considerably increases the number of classes when
the number of nodes per level is large, making it not scalable

BI AND KWOK: MLNP IN HIERARCHICAL MULTILABEL CLASSIFICATION 2277

to large hierarchies. In addition, this method can only handle
tree-structured hierarchies. Since a node can reside at different
levels in the DAG, such a level-by-level label combination
cannot be directly used for DAG-structured hierarchies.

In principle, structured prediction methods (such as the
structured SVM [22]) can also be used for MLNP (in HMC)
by restricting the feasible set of structured outputs to be the
union of all possible MLNPs. However, the underlying cutting
plane algorithm needs to find the most violated MLNP in
each iteration. This may require an exhaustive search over the
potentially exponential number of possible MLNPs, making it
difficult to scale up to practical applications.

Alternatively, some algorithms not designed for MLNP in
HMC can be adapted for this purpose. For example, consider
the popular binary relevance (BR) algorithm [23], which trains
an independent binary classifier for each label. It is originally
designed for flat multilabel classification. A straightforward
approach to adapt this for MLNP in HMC is to train the
independent classifiers at only the leaf nodes of the label trees
or label DAGs [2], [24]. On prediction, if a leaf node is labeled
positive, all its ancestors are also labeled positive, thus turning
it into an MLNP. However, the flat BR does not make use of
any hierarchy information.

Some NMLNP algorithms can also be adapted for MLNP
by combining with the MetaLabeler [25], which predicts
the number of leaf labels (k) that the test example
should be assigned. For instance, given a test example, the
HMC-CLUS [1] provides a probability estimate for labeling
each leaf node in the label hierarchy as positive. A similar
probability estimate can also be obtained for HBR [5] with
a probabilistic base learner, by simply multiplying the proba-
bilities of the nodes along the path from the leaf to the root.
With the k value predicted by MetaLabeler, we then pick the
k leaf nodes with largest probabilities as the MLNP solution.

However, unless the NMLNP method provides a ranking
on the candidate leaf nodes on prediction, it is not easy to be
adapted for MLNP, even with the help of the MetaLabeler. For
example, the greedy algorithms in [4] select a subtree/subgraph
with k nodes by greedily selecting the node (or supernode,
which is a union of multiple nodes) and merging with its
parent. However, it is difficult to require these selected nodes
to satisfy the MLNP requirement. The kernel-based method
in [3] is another example algorithm that is difficult to extend
for MLNP. Its joint kernel mapping is based on all the output
subtrees in the label hierarchy. If one restricts the allowable
outputs to the MLNPs, the joint kernel mapping needs to be
significantly changed, so are the corresponding dual problem
and the associated tailor-made optimization algorithm.

III. MAXIMUM A POSTERIORI MLNP ON LABEL TREES

In this section, we assume that the label hierarchy is a
tree T . The nodes in T are indexed from 0 (for the root),
1, 2, . . . , |T |. With a slight abuse of notation, we will also
use T to denote the set of all these nodes. For a subset
A ⊆ T , its complement is denoted by Ac = T \A. For a
node i , we denote its parent by pa(i) and its set of children
by child(i). In addition, given a vector y, yA is the subvector

of y with indices from A. The transpose of a vector is denoted
by the superscript (′).

In HMC, we are given a set of training examples {(x, y)},
where x is the input and y = [y1, . . . , y|T |]′ ∈ {0, 1}|T | is the
multilabel denoting memberships of x to each of the nodes.
Equivalently, y can be represented by a set � ⊆ T , such that
yi = 1 if i ∈ �; 0 otherwise. For y (or �) to respect the tree
structure, we require that if any node i ∈ T \{0} is labeled
positive, its parent pa(i) must also be labeled positive, that is

yi = 1⇒ ypa(i) = 1. (1)

In addition, for any group of siblings {i1, i2, . . . , im}, we
assume that their labels are conditionally independent given
the label of their parent pa(i1) and x, that is

p(yi1 , yi2 , . . . yim |ypa(i1), x) =
m∏

j=1

p(yi j |ypa(i1), x). (2)

This simplification is standard in Bayesian networks and also
commonly used in HMC [5], [26]. By repeated application of
the probability product rule, we have

p(y0, . . . , y|T ||x) = p(y0|x)
∏

i∈T \{0}
p(yi | ypa(i), x). (3)

For MLNP, obviously the root is always labeled, and so

p(y0 = 1 | x) = 1. (4)

A. Training

With the condition in (1) and the simplification in (3),
we only need to train probability estimators p(yi =
1 | ypa(i) = 1, x) for each i ∈ T \{0}. This is the same as for the
H-SVM [6]. The algorithms to be proposed are independent of
the way these probability estimators are learned. For example,
one can train a binary SVM at each node i , using only those
training examples that the parent of i is labeled positive,
then convert the SVM output to a probability estimate (using
schemes, such as sigmoid scaling [27]). Other methods, such
as regularized logistic regression and multitask SVM may also
be used.

B. Prediction

1) Optimization Problem: For a test example x, the max-
imum a posteriori MLNP corresponds to the multilabel �∗
that: 1) maximizes the posterior probability in (3) and 2)
respects T . This prediction task can be formulated as the
following optimization problem:
�∗ = arg max� p(y� = 1, y�c = 0|x) (5)

s.t. y0 = 1,

� contains no partial path,

all yi ’s respect the label hierarchy. (6)

Note that p(y� = 1, y�c = 0|x) considers all the node
labels in the hierarchy simultaneously. In contrast, as discussed
in Section I, existing MLNP methods in hierarchical multi-
class/multilabel classification only consider the local hierarchy
information at each node.

2278 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 25, NO. 12, DECEMBER 2014

Associate an indicator function ψ : T → {0, 1}|T | with
the multilabel �, such that ψi ≡ ψ(i) = 1 if i ∈ � and 0
otherwise. Let the set of leaf nodes in T be L. It is easy to
see that the constraints in (5) translates to

⎧
⎪⎪⎨

⎪⎪⎩

ψ0 = 1
∀i ∈ Lc with ψi = 1 : ∑

j∈child(i)
ψ j ≥ 1

∀i ∈ T \{0} : ψi ≤ ψpa(i).

(7)

In addition, the following Proposition shows that the posterior
probability in (5) can be rewritten as a weighted combination
of the unknown ψi ’s.

Proposition 1: For a label tree T
log p(y� = 1, y�c = 0|x) =

∑

i∈T
wiψi

where

wi =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∑

l∈child(0)
log(1− pl), i = 0

log
pi

1− pi
, i ∈ L

log
pi

1− pi
+

∑

l∈child(i)

log(1− pl), i ∈ Lc\{0}
(8)

and pi ≡ p(yi = 1 | ypa(i) = 1, x).
Proof: From (3), we have

p(y� = 1, y�c = 0 | x)
= p(y0 = 1 | x) ·

∏

i∈�\{0}
p(yi = 1 | ypa(i) = 1, x)

×
∏

i∈�c∧pa(i)∈�
p(yi = 0 | ypa(i) = 1, x)

×
∏

i∈�c∧pa(i)∈�c

p(yi = 0 | ypa(i) = 0, x). (9)

Using (1) and (4), and the definition of pi , (9) can be
simplified as

log p(y� = 1, y�c = 0 | x)
=

∑

i∈�\{0}
log pi +

∑

i∈�c∧pa(i)∈�
log(1− pi). (10)

The combination (pa(i) = 0, ψi = 1) violates the tree
hierarchy and cannot occur. Hence, (10) can be equivalently
rewritten as

log p(y� = 1, y�c = 0 | x)
=

∑

i∈T \{0}
ψi log pi +

∑

i∈T \{0}
(ψpa(i) − ψi) log(1− pi)

=
∑

i∈T \{0}
ψi (log pi − log(1− pi))+

∑

i∈T \{0}
ψpa(i) log(1− pi)

=
∑

i∈T \{0}
ψi (log pi − log(1− pi))+

∑

i∈Lc

ψi

∑

l∈child(i)

log(1− pl)

=
∑

i∈L
ψi (log pi − log(1− pi))

+
∑

i∈Lc\{0}
ψi

(
log pi − log(1− pi)+

∑

l∈child(i)

log(1− pl)

)

+
∑

l∈child(0)

log(1− pl)

which is equal to the objective in (11).

Algorithm 1 MAT (Mandatory Leaf Node Prediction
on Trees)
Input: Tree hierarchy T ; weights {wi }i∈T .
Output: {ψi }i∈T .
1: sort the nodes of T in reverse topological order and store

them in the queue Q;
2: while Q is not empty do
3: retrieve the first element i in Q and delete it from Q;
4: if i is a leaf node then
5: H+i (x) = wi ;
6: else if H j (x) = 0 for every j ∈ child(i) then
7: r = arg max j∈child(i) H+j (x);
8: H+i (x) = wi + H+r (x);
9: Hr(x) = H+r (x).

10: else
11: H+i (x) = wi +∑

j∈child(i) H j (x);
12: end if
13: Hi(x) = max{H+i (x), 0};
14: end while
15: Traverse T using breadth-first-search and output ψi ’s as:

ψi =
⎧
⎨

⎩

1 i = 0
1 Hi(x) �= 0 and ψpa(i) = 1
0 Hi(x) = 0 or ψpa(i) = 0

.

Hence, we immediately obtain that (5) can be rewritten as
an integer linear program (ILP).

Corollary 1: For a label tree T , problem (5) can be rewrit-
ten as

max{ψi }i∈T
∑

i∈T
wiψi (11)

s.t. ψi ∈ {0, 1} ∀i ∈ T ,
the constraints in (7)

where wi is as defined in (8).
Remark 1: For a leaf node i , note that its wi value in (8)

is equal to its log-odds. Consider the special case where the
label hierarchy is flat. Every label is then a leaf node connected
directly to the root and the last two sets of constraints in (7)
become vacuous. Hence, to maximize (11), we immediately
have ψi = 1 if the log-odds wi > 0 and is 0 otherwise. In
other words, label i is predicted positive if pi > 0.5, which
agrees with the Bayes decision rule.

2) Dynamic Programming Solver: For a general label
tree T , we propose to solve (11) using dynamic programming.
The procedure, called mandatory leaf node prediction on trees
(MAT), is shown in Algorithm 1.

For any node i in T , let sub(i) be the subtree under i
(including i itself). Consider replacing T in problem (11) by
sub(i). Let H+i (x) be the maximum value of

∑
j∈sub(i) wiψi

when i is labeled positive. When i is a leaf node, H+i (x) is
simply wi (step 5). When i is an internal node, the maximum
value that

∑
j∈sub(i) w jψ j can take (denoted Hi(x)) is either

H+i (x), when i is labeled positive (ψi = 1); or 0, when i (and
all its descendants) is labeled negative (ψi = 0). We compute
H+i (x) in a bottom-up manner from the H j(x)’s (j ∈ child(i)).

BI AND KWOK: MLNP IN HIERARCHICAL MULTILABEL CLASSIFICATION 2279

a) H j (x) > 0 f or some child j : We can simply combine
the optimal MLNPs from i ’s children (step 11).

b) H j (x) = 0 f or all j ∈ child(i): In other words, all
descendants of i prefer to be labeled negative. However,
as we are considering H+i (x), which corresponds to
the case where node i is labeled positive, MLNP then
requires ψ j = 1 for at least one j ∈ child(i). To
maximize the objective

∑
j∈sub(i) wiψi , the best child

to pick is the r in step 7.

Hence, if we visit the nodes in reverse topological order (i.e.,
bottom-up), we can compute the H+i (x) and Hi(x) values
for all i ∈ T . Using the fact that the root node (i = 0) is
always labeled positive, we immediately obtain that H+0 (x) is
the optimal objective value in (11).

3) Time Complexity: Let V be the number of nodes in T .
Performing the reverse topological sort in step 1 takes O(V)
time. If i is not a leaf node, H+i (x) is calculated by either
steps 6–9 or step 11. In both cases, we have to visit all its
children. Recall that when we want to compute H+i (x), all
the H+j (x)’s for its children have already been obtained. Thus,
computing H+i (x) for node i takes O(di) time, where di is the
number of i ’s children. Hence, the while loop takes a total of
O(

∑
i∈T di) = O(V) time. Step 15 takes O(V) time. Thus,

the total time complexity of Algorithm 1 is O(V).

IV. MAXIMUM A POSTERIORI MLNP ON LABEL DAGS

In this section, we consider the case where the label
hierarchy is a DAG G. Analogous to (2), we use the following
conditional independence assumption:

p(yi1, yi2 , . . . yim |yPa(i1), x) =
m∏

j=1

p(yi j |yPa(i1), x)

where Pa(i) is the set of (possibly multiple) parents of
node i . The joint posterior probability p(y1, . . . , y|G||x) can
be simplified accordingly as

p(y1, . . . , y|G||x) = p(y0|x)
∏

i∈G\{0}
p(yi | yPa(i), x). (12)

The prediction task involves the same optimization problem
as in (5), except that the label hierarchy is now a DAG.
However, there are two interpretations on how the labels
should respect the DAG in (6) [1], [4]. The first one requires
that if a node is labeled positive, all its parents must also
be labeled positive. In bioinformatics, this is called the true
path rule which governs, for example, the GO taxonomy
on gene functions [28]. The alternative is that a node can
be labeled positive if at least one of its parents is posi-
tive. Here, we adopt the first interpretation which is more
common.

A direct maximization of p(y1, . . . , y|G||x) by (12) is
NP-hard [29]. In addition, the size of each probability table
p(yi |yPa(i), x) in (12) grows exponentially with |Pa(i)|. Hence,
it can be impractical and inaccurate when G is large and the
sample size is limited.

Instead of using (12), we assume that p(y1, . . . , y|G||x) can
be factored as follows:

p(y1, . . . , y|G||x) = 1

n(x)
p(y0|x)

∏

i∈G\{0}

∏

j∈Pa(i)

p(yi |y j , x)

(13)

where n(x) is for normalization. Essentially, this replaces
the complicated p(yi |yPa(i), x) in (12) by a product of
p(yi |y j , x)’s. This follows the approach of composite like-
lihood (or pseudolikelihood) [30] which replaces a difficult
probability density function by a set of marginal or conditional
events that are easier to evaluate. In particular, (13) corre-
sponds to the so-called pairwise conditional likelihood that
has been commonly used in longitudinal studies and bioinfor-
matics [31]. Composite likelihood has been successfully used
in different applications, such as genetics, spatial statistics, and
image analysis. The connection between composite likelihood
and various (flat) multilabel classification models is also
recently discussed in [31]. Using (13), the 2|Pa(i)| numbers
in the probability table of p(yi |yPa(i), x) are replaced by the
|Pa(i)| numbers of {p(yi |y j , x)} j∈Pa(i). Thus, the estimates
obtained are much more reliable.

A. Known Number of Labels

In this section, we first consider the case where the pre-
diction of x is known to have k leaf labels. The following
Proposition shows that maximizing (13) can be reduced to a
problem similar to (11).

Proposition 2: With assumption (13), problem (5) for a
label DAG can be rewritten as

max{ψi }i∈G
∑

i∈G
wiψi (14)

s.t.
∑

i∈L
ψi = k ψ0 = 1

∀i ∈ Gψi ∈ {0, 1}
∀i ∈ Lc with ψi = 1,

∑

j∈child(i)

ψ j ≥ 1

∀ j ∈ Pa(i) ∀i ∈ G\{0}ψi ≤ ψ j (15)
where

wi =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑

l∈child(0)
log(1− pl0), i = 0

∑

j∈Pa(i)
(log pi j − log(1− pi j)), i ∈ L

∑

j∈Pa(i)
(log pi j − log(1− pi j))

+ ∑

l∈child(i)
log(1− pli), i ∈ Lc\{0}

(16)

and pi j ≡ p(yi = 1|y j = 1, x) for j ∈ Pa(i).

2280 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 25, NO. 12, DECEMBER 2014

Proof: Using (13) and that the root is always labeled
positive, we have

p(y� = 1, y�c = 0 | x) = 1

n(x)

∏

i∈G\0

∏

j∈Pa(i)

p(yi |y j , x)

= 1

n(x)

∏

i∈�\{0}

∏

j∈Pa(i)

p(yi = 1 | y j = 1, x)

×
∏

i∈�c :Pa(i)⊆�

∏

j∈Pa(i)

p(yi = 0 | y j = 1, x)

×
∏

i∈�c : Pa(i)\��=∅

⎛

⎝
∏

j∈Pa(i)∩�
p(yi = 0 | y j = 1, x)

∏

j∈Pa(i)∩�c

p(yi = 0 | y j = 0, x)

⎞

⎠

= 1

n(x)

⎛

⎝
∏

i∈�\{0}

∏

j∈Pa(i)

p(yi = 1 | y j = 1, x)

⎞

⎠

×
⎛

⎝
∏

i∈�c

∏

j∈Pa(i)∩�
p(yi = 0 | y j = 1, x)

⎞

⎠

×
⎛

⎝
∏

i∈�c

∏

j∈Pa(i)∩�c

p(yi = 0 | y j = 0, x)

⎞

⎠. (17)

Since p(yi = 0 | y j = 0, x) = 1, maximizing (17) reduces to
maximizing
∑

i∈�\{0}

∑

j∈Pa(i)

log p(yi = 1 | y j = 1, x)

+
∑

i∈�c

∑

j∈Pa(i)∩�
log(1− p(yi = 1 | y j = 1, x)).

Similar to the proof of Proposition 1, this can be rewritten as
∑

i∈G\{0}

∑

j∈Pa(i)

ψi log pi j +
∑

i∈G\{0}

∑

j∈Pa(i)

(ψ j − ψi) log(1− pi j)

=
∑

i∈L
ψi

∑

j∈Pa(i)

(log pi j − log(1− pi j)

+
∑

i∈Lc\{0}
ψi

⎛

⎝
∑

j∈Pa(i)

(log pi j−log(1− pi j))

+
∑

l∈child(i)

log(1− pli)

⎞

⎠+
∑

l∈child(0)

log(1− pl0).

However, even when k is known, (14) is an ILP with
(|L|

k

)

candidate solutions, and can be expensive to solve when G is
large. In the following, we extend the nested approximation
property (NAP), first introduced for model-based compressed
sensing [32], to constrain the optimal solution.

Definition 1 (k-Leaf-Sparse): A multilabel y is k-leaf-sparse
if k of the leaf nodes are labeled one.

Definition 2 (NAP): For an example x, let its optimal
k-leaf-sparse multilabel be �k . The NAP is satisfied if
{i : i ∈ �k} ⊂ {i : i ∈ �k′ } for all k < k ′.

Algorithm 2 MAS (Mandatory Leaf Node Prediction on
Structures)
Input: Hierarchy G; {wi }i∈G ; number of leaf nodes to be
predicted (k).
Output: {ψi }i∈G .
1: Initialize every node (except the root) with ψi ← 0; ψ0 ←

1; � ← {0}; Create a supernode from each leaf with its
ancestors.

2: for iteration=1 to k do
3: select the unassigned supernode S∗ with the largest SNV;
4: assign all unselected nodes in S∗ with ψi ← 1;
5: �← � ∪ S∗;
6: for each unassigned supernode S do
7: update the SNV of S with � using Algorithm 3;
8: end for
9: end for

10: Output ψi = 1 if i ∈ �; 0 otherwise.

Algorithm 3 Updating the SNV of an Unassigned DAG
Supernode S, Containing the Leaf l, With the Set �
1: Initialize T as an empty BST and insert l to T ;
2: SNV(S)← SNV(�);
3: repeat
4: node← find-max(T);
5: delete node from T ;
6: SNV(S)← SNV(S)+wnode;
7: insert nodes in Pa(node)\(� ∪ T) to T ;
8: until T = ∅.

Note that NAP is often implicitly assumed in many HMC
algorithms. For example, consider the common approach that
trains a binary classifier at each node and recursively predicts
from the root to the subtrees. When the classification threshold
at each node is high, prediction stops early; whereas when
the threshold is lowered, prediction can go further down
the hierarchy. Hence, nodes that are labeled positive at a
high threshold will always be labeled at a lower threshold,
implying NAP. Another example is the CSSA algorithm
in [4]. Since it is greedy, a larger solution (with more labels
predicted positive) always includes the smaller solutions.
The validity of NAP will be further verified empirically in
Section VI-E.

Algorithm 2 shows the proposed greedy algorithm, which
will be called mandatory leaf node prediction on structures
(MAS). Each node i ∈ G is associated with the weight
wi in (16). Initially, only the root is selected (ψi = 1).
For each leaf l in L, we create a supernode, which is
a subset in G containing l and all its ancestors along all
paths to the root.1 Given |L| leaves in G, there are ini-
tially |L| supernodes. In addition, all of them are unassigned
(i.e., each contains an unselected leaf node). Each supern-
ode S has a supernode value (SNV) which is defined as
SNV(S) =∑

i∈S wi (Fig. 1).

1We borrow this terminology from [4]. Note however that our definition of
a supernode and its updating are different from those in [4].

BI AND KWOK: MLNP IN HIERARCHICAL MULTILABEL CLASSIFICATION 2281

Fig. 1. DAG example showing the initial supernodes and the associated
SNVs. The number inside each node i is its wi . The leftmost supernode,
which has the largest SNV, will be selected in the first iteration.

Fig. 2. Result after selecting the first leaf node, and candidate supernodes
at the next iteration. (a) Result after selecting the first leaf node. (b) First
candidate supernode with two leaf nodes selected. (c) Second supernode with
two leaf nodes selected.

In Algorithm 2, the set � is used to keep track of the current
multilabel solution. In each iteration, supernode S∗ with the
largest SNV is selected among all the unassigned supernodes.
S∗ is then assigned, i.e., with the ψi ’s of all its constituent
nodes set to 1 [Fig. 2(a)], and � is updated accordingly
to include nodes in S∗. Because of the NAP assumption,
candidate supernodes in future iterations should contain S∗.
For each remaining unassigned supernode S, Algorithm 3 then
updates its SNV to the value it will take if S is merged with �
[Fig. 2(a) and (b)], i.e., SNV(S)← SNV(S)+∑

i∈�\S wi . The
T in Algorithm 3 is a self-balancing binary search tree (BST)
that keeps track of the nodes in S\� in their topological order.
We number the sorted order such that nodes nearer to the root
are assigned smaller identifiers. Note that this topological sort
only needs to be performed once as part of preprocessing. To
facilitate the checking of whether a node is in � (step 7 of
Algorithm 3), � also stores its nodes in a self-balancing BST.

The following Proposition shows that MAS finds the best
k-leaf-sparse prediction.

Proposition 3: Under the NAP assumption, Algorithm 2
obtains an optimal ψ solution of (14).

Proof: We will prove this by induction. After initialization,
each supernode contains exactly one leaf node. Hence, the
solution at iteration 1, with k = 1, is clearly optimal.

Assume Algorithm 2 obtains an optimal k-leaf-sparse pre-
diction at iteration k. Recall each unassigned supernode S
contains exactly one leaf node. After step 7, its SNV is updated
as if it were merged with � (thus contains k + 1 leaf nodes).
Because of NAP, the optimal (k+1)-leaf-sparse solution must
be one of these merged supernodes. At step 3 of iteration k+1,
the supernode with the largest SNV will be selected, which is
thus an optimal (k + 1)-leaf-sparse prediction.

B. Unknown Number of Labels

In practice, the value of k may not be known. A straightfor-
ward approach is to run Algorithm 2 with k = 1, . . . , |L| and

find the �k ∈ {�1, . . . , �|L|} that maximizes the posterior
probability (13) for DAG. However, recall that �k ⊂ �k+1
under the NAP assumption. Hence, we can simply set k = |L|
and �i is immediately obtained as the � in iteration i .

C. Time Complexity

In Algorithm 2, step 3 takes O(|L|) time; steps 4 and 5
take O(h) time, where h is the longest path from any leaf
to the root. In Algorithm 3, both T and � are self-balancing
BSTs, whose insert/delete/find-max operations and also the
finding of an element all take O(log Ṽ) time, where Ṽ ≤ |G|
is the number of nodes in the BST. Hence, updating the SNV
of one supernode by Algorithm 3 takes O(|G| log |G|) time.
As O(|L|) supernodes need to be updated in each iteration
of Algorithm 2, this step (which is the most expensive step)
takes O(|L| · |G| log |G|) time. The total time for Algorithm 2
is thus O(k · |L| · |G| log |G|). When k is unknown, we
set k = |L|, and the total time of Algorithm 2 becomes
O(|L|2 · |G| log |G|).

D. Special Case When G is a Tree

In the special case where the DAG is just a tree, Algorithm 2
can still be used. Since each supernode then contains exactly
one leaf and we have a tree structure, updating of the SNV in
step 7 can be simplified. More details on this special case can
be found in [20].

However, on comparing with the MAT algorithm in
Section III, using MAS on tree-structured label hierarchies
has two disadvantages. First, the optimality of MAS relies
on the NAP assumption, while MAT does not. Second, MAS
requires as input the number of leaf nodes to be predicted.
In particular, if k leaf nodes are to be selected, the time
complexity of the tree-version of MAS is O(h2k|L|), where
h is the height of the tree [20]. When the number of labels is
unknown, we can set k = |L| as in Section IV-B and the
complexity becomes O(h2|L|2). If the tree is a full d-ary
tree (i.e., every internal node has exactly d children),
|L| = O(V), h = O(log V), and the complexities above
become O(kV log2 V) and O(V 2 log2 V), respectively. In con-
trast, MAS can automatically determine the number of labels,
and its complexity is only O(V). Hence, when the DAG is
simply a tree, it is better to use the MAT algorithm instead of
the tree-version of MAS in [20].

V. MLNP THAT MINIMIZES THE RISK

For a given example x, let �̊ be the true multilabel and �
the prediction. It is well known that maximizing the posterior
probability minimizes the zero-one loss I (� �= �̊), where
I (·) is the indicator function that returns 1 when the argument
holds and 0 otherwise. Another loss function popularly used
in hierarchical classification is the H-loss, which penalizes
only the first classification mistake closest to the root along
each prediction path [6]. However, in MLNP, we are more
interested in the leaf nodes. Thus, we adopt the symmetric
loss �(�, �̊) = |�\�̊| + |�̊\�|, which counts the number
of nodes in the symmetric difference of � and �̊. Note that

2282 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 25, NO. 12, DECEMBER 2014

this weights mistakes in any part of the hierarchy equally.
However, in HMC, a mistake that occurs at the higher level of
the hierarchy is often considered more crucial [3], [6]. We can
incorporate this hierarchy information by extending �(�, �̊)
as

∑

i

ci I (i ∈ �\�̊)+ ci I (i ∈ �̊\�). (18)

Here, ci can be set, for example, as in [5]

ci =
{

1, i = 0

cpa(i)/nsibl(i), i > 0
(19)

where nsibl(i) is the number of siblings of i (including i itself),
such that smaller i ’s (higher level nodes) are assigned larger
ci values. One can also assign different relative importance
for the false positives and negatives, and generalize �(�, �̊)
as

�(�, �̊) =
∑

i

c+i I (i ∈ �\�̊)+ c−i I (i ∈ �̊\�) (20)

where for some γ ≥ 0

c+i =
2ci

1+ γ , c−i =
2γ ci

1+ γ . (21)

This setting of c+i , c−i ensures that the total weight c+i + c−i
for each i remains the same (equals 2ci) as in (18).

From Bayesian decision theory, the optimal multilabel
�∗ is the one that minimizes the expected loss: �∗ =
arg min�

∑
�̊ �(�, �̊) p(y�̊ = 1, y�̊c = 0|x). The following

Proposition shows that it leads to a problem very similar
to (11). Note that this Proposition is independent of the manner
in which c+i , c−i are defined. Hence, other settings besides the
one in (21) can also be used.

Proposition 4: With a label tree and loss (20) is used,
the optimal �∗ can be obtained by solving problem (11),
but with

wi = (c+i + c−i)p(yi = 1|x)− c+i . (22)

Proof: Let M be the set of all possible predictions.
Using (20), the expected risk can be rewritten as

R(�) =
∑

�̊∈M
�(�, �̊)p(y�̊ = 1, y�̊c = 0|x)

=
∑

�̊∈M

∑

i∈T

(
c+i I (i ∈ �\�̊)+ c−i I (i ∈ �̊\�)

)

×p(y�̊ = 1, y�̊c = 0|x)

=
∑

i∈T

⎛

⎝
∑

�̊∈M:i /∈�̊
c+i I (i ∈ �)+

∑

�̊∈M:i∈�̊
c−i I (i /∈ �)

⎞

⎠

×p(y�̊ = 1, y�̊c = 0|x)
=

∑

i∈�
c+i

∑

�̊∈M:i /∈�̊
p(y�̊ = 1, y�̊c = 0|x)

+
∑

i /∈�
c−i

∑

�̊∈M:i∈�̊
p(y�̊ = 1, y�̊c = 0|x).

Note that
∑
�̊∈M:i∈�̊ p(y�̊ = 1, y�̊c = 0|x) is simply

the marginal probability that i is predicted positive, i.e.,
p(yi = 1|x). Using the conditional independence assumption,
p(yi = 1|x) = ∏

j∈anc(i)∪{i}\{0} p(y j = 1|ypa(j) = 1, x).
Similarly,

∑
�̊∈M:i /∈�̊ p(y�̊ = 1, y�̊c = 0|x) is the marginal

probability that i is predicted negative, i.e., p(yi = 0|x) =
1 − p(yi = 1|x). Thus, R(�) can be rewritten as R(�) =∑

i∈� c+i p(yi = 0|x) +∑
i /∈� c−i p(yi = 1|x). Introduce an

indicator variable ψi for each node. Then

R(�) =
∑

i∈T
c+i ψi (1− p(yi = 1|x))

+
∑

i∈T
c−i (1− ψi) p(yi = 1|x)

=
∑

i∈T
ψi (c

+
i − (c+i + c−i)p(yi = 1|x))

+ c−i p(yi = 1|x)
arg min

�
R(�)

= arg min{ψi }i∈T

∑

i∈T
ψi (c

+
i − (c+i + c−i)p(yi = 1|x))

+ c−i p(yi = 1|x)
= arg max{ψi }i∈T

∑

i∈T
((c+i + c−i)p(yi = 1|x)− c+i)ψi .

The other constraints on � in Proposition 1 are for enforcing
that � is an MLNP, and thus are still needed.

Extension to a label DAG is analogous. For example, ci

can be defined as 1 when i = 0 and
∑

j∈Pa(i) c j/nchild(j)

otherwise. On using (13), the proof in Proposition 4 still holds
for label DAGs. Thus, we can use (14), with wi in (22), to
obtain the MLNP that minimizes the given risk.

VI. EXPERIMENTS

In this section, we evaluate the performance of the proposed
MAT and MAS algorithms, together with their risk minimizing
versions discussed in Section V.

A. Setup

Experiments are performed on a number of benchmark
multilabel data sets with tree- and DAG-structured label hier-
archies (Tables II and III).2

1) Five Subsets of Rcv1 [33]: These contain REUTERS
documents, with the label hierarchy coming from the
LYRL2004 distribution.

2) Delicious [34]: It contains the textual data of web
pages from the del.icio.us social bookmarking site,
along with their tags. The label (tag) hierarchy is
from [35].

2rcv1 is from http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
multilabel.html, delicious from http://mulan.sourceforge.net/datasets.html,
enron from http://bailando.sims.berkeley.edu/enron_email.html, wipo
from http://www.wipo.int/classifications/ipc/en/ITsupport/Categorization/
dataset/index.html, caltech101 from http://www.vision.caltech.edu/Image_
Datasets/Caltech101/, caltech256 from http://www.vision.caltech.edu/Image_
Datasets/Caltech256/, and dmoz from http://lib.iit.demokritos.gr/LSHTC2_
datasets.

BI AND KWOK: MLNP IN HIERARCHICAL MULTILABEL CLASSIFICATION 2283

TABLE II

DATA SETS WITH TREE-STRUCTURED LABEL HIERARCHIES

TABLE III

DATA SETS WITH DAG-STRUCTURED LABEL HIERARCHIES

3) Enron [36]: This is a text data set for email analysis
and the label hierarchy was developed in UC Berkeley.

4) Wipo: this data set consists of text documents from the
D section of WIPO-alpha patent hierarchy.

5) Caltech101 and Caltech256 [37]: These are image data
sets for object annotation. The label hierarchy for cal-
tech256 is from [38], of which caltech101 is a subset.

6) Dmoz: It is the training data set used in the second
LSHTC, which contains web pages from the open
directory project. The label hierarchy is provided by the
challenge.

7) Twelve Genomics Data Sets [1]: These contain
different aspects of genes in the yeast genome, with
tree-structured annotations from the MIPSs Funcat and
DAG-structured from the GO.3

All these data sets, except those on genomics, are for MLNP
and have been commonly used for evaluating flat [39], [40]
and hierarchical multilabel learning algorithms [13], [16]. For
the genomics data sets, we follow the paper on HMC-LP [13]
(which is the only existing MLNP algorithm for HMC) and

3Available at: http://dtai.cs.kuleuven.be/clus/hmcdatasets/

turn them into MLNP data sets by removing examples that
contain partial label paths.

We will compare the following algorithms.

1) Algorithms That Are Designed for MLNP: 1) the pro-
posed MAT (Algorithm 1); 2) the proposed MAS
(Algorithm 2); and 3) HMC-LP [13]. At each parent
node, we train a multitask lasso model with logis-
tic loss using the MALSAR package [41] and obtain
the probability estimates for MAT and MAS. In addi-
tion, recall that MAT and HMC-LP can only be used
on trees, while MAS can be used for both trees
and DAGs.

2) Algorithms That Are Originally Designed for NMLNP,
but Are Extended for MNLP Using MetaLabeler [25]:4

1) HBR: this is modified from the hierarchical
classifier H-SVM [5], by replacing its base
learner from SVM to multitask lasso (as for MAT
and MAS) and 2) CLUS-HMC [1], a decision-tree based
classifier.

3) Flat BR [23]: as discussed in Section II, BR is origi-
nally for flat multilabel classification. Here, at each leaf
node, we train an independent lasso model with the
logistic loss to obtain the probability estimates, which is
then thresholded to obtain the binary labels. We avoid
the threshold selection problem by instead using the
MetaLabeler to determine the number of leaf nodes that
should be assigned.

All these are implemented in MATLAB2009 (except for
CLUS-HMC, which is from the authors of [1]5 and
in JAVA).

As in other hierarchical classification algorithms [13], [42],
we try to obtain more accurate probability estimators by
removing label nodes with fewer than ten positive examples.
Alternatively, this data-sparsity problem might be mitigated
with more powerful probability estimators or smoothing tech-
niques. In addition, this is not performed on the dmoz data,
as 72% of its leaf nodes have fewer than four positive
examples.

For performance evaluation, we use the hierarchical
F-measure (HF), which has been commonly used in hier-
archical classification [8]. Let �(x) be the predicted
multilabel for example x, �̊(x) the ground truth, leaf(A)
contains the leaf nodes in the set A, and anc+(i) the
set containing i and i ’s ancestors. HF is defined as∑

x 2HP(x) · HR(x)/HP(x)+ HR(x), where the sum is over
all the test examples, and

HP(x) = 1

|leaf(�(x))|
∑

i∈leaf(�(x))

|�̊(x) ∩ anc+(i)|
|anc+(i)|

HR(x) = 1

|leaf(�̊(x))|
∑

i∈leaf(�̊(x))

|�(x) ∩ anc+(i)|
|anc+(i)|

4As discussed in Section II, for each test example, the MetaLabeler predicts
the number (k) of leaf nodes that should be assigned. The NMLNP algorithm
(such as HBR and CLUS-HMC) is run, and the k leaf nodes with the largest
probabilities of being positive are output in the final MLNP prediction.

5Available at: http://dtai.cs.kuleuven.be/clus/

2284 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 25, NO. 12, DECEMBER 2014

TABLE IV

HF VALUES ON DATA SETS WITH TREE HIERARCHIES. HMC-LP AND CLUS-HMC CANNOT BE RUN ON THE CALTECH101,

CALTECH256, DMOZ DATA, WHICH ARE LARGE AND DENSE

are hierarchical extensions of the standard precision and recall
measures. Besides, timing comparison will also be performed.
As the training procedures of MAT, MAS, and HBR are
the same, we will focus on comparing their prediction time.
Results are based on fivefold cross-validation on all data sets
except dmoz, which is large. Instead, we perform random
splitting of the dmoz data three times, and report the average.
All experiments are run on a PC with 2.80-GHz Intel i7-860
CPU and 16-GB RAM.

B. Maximum A POSTERIORI MLNP on Tree Hierarchies

The HF results for data sets with tree-structured hierarchies
are shown in Table IV. As can be seen, MAT and MAS(tree),
which solve the same optimization problem, yield similar HF
values. On 12 of the 23 data sets, they are the best or com-
parable with the best. However, as discussed in Section IV-D
and will be seen in the next paragraph, MAT is much faster
than MAS(tree). On the other hand, HMC-LP performs poorly.
This is because HMC-LP has to train a classifier for every
label combination at each level of the hierarchy. As each label
combination contains very few positive training examples, the
resultant classifiers are not accurate.

For statistical significance testing of the various methods
(over the multiple data sets), we use the Friedman test with
post hoc Shaffer’s static procedure [43]. Results are visualized
using the graphical representation in [44] [Fig. 3(a)]. The top
horizontal line indicates the average rank. Methods are placed
so that those with lower (better) ranks are placed on the right,
and methods that are not significantly different are connected
together by a bold line. As can be observed from Fig. 3(a),
the proposed method is significantly better than HMC-LP,
CLUS-HMC, and BR at a significance level of 0.05.

Table V shows the prediction time results. As can be seen,
MAT is consistently the most efficient. However, though the
Friedman test (with post hoc Shaffer’s static procedure) has

Fig. 3. Visualization of statistical significance for results from Tables IV–IX.
(a) Results for Table IV. (b) Results for Table V (with HMC-LP and
CLUS-HMC removed). (c) Results for Table VI (with HMC-CLUS removed).
(d) Results for Table VII (with HMC-CLUS removed). (e) Results for
Table VIII (with HMC-LP and CLUS-HMC removed). (f) Results for Table IX
(with CLUS-HMC removed).

been advocated for comparing multiple methods over multiple
data sets, it can be too conservative unless the number of
algorithms to be compared is very small6. Hence, in computing
the significance tests, we remove the two worst algorithms,
HMC-LP and CLUS-HMC. As can be observed from Fig. 3,
the speed improvement of MAT is statistically significant.

C. Maximum a Posteriori MLNP on DAG Hierarchies

For data sets with DAG-structured hierarchies, Tables VI
and VII show the comparisons with respect to the HF and
prediction time, respectively. Recall that HMC-LP cannot

6For example, suppose that we have 5 algorithms with consistent perfor-
mance ranks over all data sets, the Friedman test will still require 32 data sets
to accept the hypothesis that the performance difference between the best and
second-best algorithms is statistically significant.

BI AND KWOK: MLNP IN HIERARCHICAL MULTILABEL CLASSIFICATION 2285

TABLE V

PREDICTION TIME (IN SECONDS) ON DATA SETS WITH TREE HIERARCHIES

TABLE VI

HF VALUES ON DATA SETS WITH

DAG HIERARCHIES

be used on DAG hierarchies and so is not compared here.
In addition, since there are only 12 data sets, we remove
the worst algorithm CLUS-HMC in the statistical significance
tests [Fig. 3(c) and (d)]. Similar to the results in Section VI-B,
MAS is more accurate than the other methods overall. It is
also slower, though still fast enough for practical applications.
It is also much faster than the brute-force approach of solving
problem (5), which again takes more than an hour to predict
one example, and its results are not reported.

D. MLNP That Minimizes Risk

In this section, we study the performance of the risk-
minimizing versions in Section V, which are denoted MATR
and MASR, respectively, We set γ , the relative importance of
false positives versus false negatives in (21), to be the ratio of
the numbers of negative and positive training labels. Results
on the loss values for data sets with tree-structured and DAG-
structured label hierarchies are shown in Tables VIII and IX,
respectively. As for the statistical significance tests, we again
remove the two worst algorithms HMC-LP and CLUS-HMC
[Fig. 3(e) and (f)]. In addition, note that HMC-LP,

TABLE VII

PREDICTION TIME (IN SECONDS) ON DATA

SETS WITH DAG HIERARCHIES

HBR, CLUS-HMC, and BR cannot perform risk-minimizing
predictions. Thus, predictions for these methods are the same
as those in Tables IV and VI and only that different per-
formance measures are used (symmetric loss instead of HF).
As for the prediction time results, they are very similar to those
reported in Section VI-B and C and so are not repeated here.

Fig. 4 illustrates example query images and their misclas-
sifications by MAT, MATR, and BR on the caltech101 data
set. As can be seen, even when MAT/MATR misclassifies the
image, the hierarchy often helps to keep the prediction close
to the true label.

E. Validating the NAP Assumption

In this section, we verify the validity of the NAP assumption
used in MAS. For each test example, we use brute-force search
to find its best k-leaf-sparse prediction, and check if it includes
the best (k − 1)-leaf-sparse prediction. As brute-force search
is very expensive, experiments are only performed on four
smaller data sets. Fig. 5 shows the percentage of test examples
satisfying the NAP assumption at different values of k. As can
be seen, the NAP holds almost 100% of the time.

2286 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 25, NO. 12, DECEMBER 2014

TABLE VIII

HIERARCHICALLY WEIGHTED SYMMETRIC LOSS VALUES (20) ON DATA SETS WITH TREE-STRUCTURED LABEL HIERARCHIES

Fig. 4. Example misclassifications on the Caltech101 data set for the MATR, MAT, and BR methods.

TABLE IX

HIERARCHICALLY WEIGHTED SYMMETRIC LOSS VALUES (20) ON DATA

SETS WITH DAG-STRUCTURED LABEL HIERARCHIES

Fig. 5. Percentage of examples satisfying the NAP assumption at differ-
ent values of k. (a) Pheno (funcat). (b) Pheno (GO). (c) Eisen (funcat).
(d) Eisen (GO).

VII. CONCLUSION

In this paper, we proposed a novel HMC algorithm
for MLNP. Unlike many hierarchical multilabel/multiclass

classification algorithms, it utilizes the global hierarchy infor-
mation by finding the multilabel with the largest posterior
probability over all the node labels. For label trees, we showed
that this can be efficiently optimized by a simple dynamic
programming algorithm (MAT). For label DAGs, by adopting
a weak nested approximation assumption which is already
implicitly assumed in many HMC algorithms, the optimiza-
tion problem can again be efficiently solved using a simple
greedy algorithm (MAS). In addition, it can be extended to
minimize the risk associated with the (hierarchically weighted)
symmetric loss. Experiments performed on a number of real-
world data sets demonstrate that the proposed algorithms are
computationally simple and more accurate than existing HMC
and flat multilabel classification methods.

In this paper, we assumed that the probability estima-
tors p(yi = 1 | ypa(i) = 1, x) are accurate. This may
be problematic when training data are limited. One future
direction is to analyze how this estimation error affects the
classification performance. In addition, here we have only
considered minimizing the expected risk with respect to the
weighted symmetric loss. Extension to some other losses will
be explored in the future.

REFERENCES

[1] C. Vens, J. Struyf, L. Schietgat, S. Dvzeroski, and H. Blockeel,
“Decision trees for hierarchical multi-label classification,” Mach. Learn.,
vol. 73, no. 2, pp. 185–214, 2008.

[2] J. Burred and A. Lerch, “A hierarchical approach to automatic musical
genre classification,” in Proc. 6th Int. Conf. Digit. Audio Effects, London,
U.K., Sep. 2003.

[3] J. Rousu, C. Saunders, S. Szedmak, and J. Shawe-Taylor, “Kernel-
based learning of hierarchical multilabel classification models,” J. Mach.
Learn. Res., vol. 7, pp. 1601–1626, Dec. 2006.

[4] W. Bi and J.-T. Kwok, “Multi-label classification on tree- and DAG-
structured hierarchies,” in Proc. 28th Int. Conf. Mach. Learn., Bellevue,
WA, USA, 2011, pp. 17–24.

BI AND KWOK: MLNP IN HIERARCHICAL MULTILABEL CLASSIFICATION 2287

[5] N. Cesa-Bianchi, C. Gentile, and L. Zaniboni, “Incremental algorithms
for hierarchical classification,” J. Mach. Learn. Res., vol. 7, pp. 31–54,
Dec. 2006.

[6] N. Cesa-Bianchi, C. Gentile, and L. Zaniboni, “Hierarchical classifi-
cation: Combining Bayes with SVM,” in Proc. 23rd Int. Conf. Mach.
Learn., Pittsburgh, PA, USA, 2006, pp. 177–184.

[7] Z. Barutcuoglu and O. Troyanskaya, “Hierarchical multi-label prediction
of gene function,” Bioinformatics, vol. 22, no. 7, pp. 830–836, 2006.

[8] C. Silla and A. Freitas, “A survey of hierarchical classification across
different application domains,” Data Mining Knowl. Discovery, vol. 22,
no. 1, pp. 31–72, 2011.

[9] K. Punera, S. Rajan, and J. Ghosh, “Automatically learning document
taxonomies for hierarchical classification,” in Proc. 14th Int. Conf. World
Wide Web, Chiba, Japan, 2005, pp. 1010–1011.

[10] M.-L. Zhang and K. Zhang, “Multi-label learning by exploiting label
dependency,” in Proc. 16th Int. Conf. Knowl. Discovery Data Mining,
Washington, DC, USA, 2010, pp. 999–1008.

[11] S. Bengio, J. Weston, and D. Grangier, “Label embedding trees for large
multi-class tasks,” in Proc. Adv. NIPS, vol. 23. 2010, pp. 163–171.

[12] J. Deng, S. Satheesh, A. Berg, and L. Fei-Fei, “Fast and balanced:
Efficient label tree learning for large scale object recognition,” in Proc.
Adv. NIPS, vol. 24. 2011, pp. 567–575.

[13] R. Cerri, A. C. P. L. F. de Carvalho, and A. A. Freitas, “Adapting non-
hierarchical multilabel classification methods for hierarchical multilabel
classification,” Intell. Data Anal., vol. 15, no. 6, pp. 861–887, 2011.

[14] G. Tsoumakas and I. Vlahavas, “Random k-labelsets: An ensemble
method for multilabel classification,” in Proc. 18th Eur. Conf. Mach.
Learn., Warsaw, Poland, 2007, pp. 406–417.

[15] D. Koller and M. Sahami, “Hierarchically classifying documents using
very few words,” in Proc. 14th Int. Conf. Mach. Learn., Nashville, TN,
USA, 1997, pp. 170–178.

[16] D. Zhou, L. Xiao, and M. Wu, “Hierarchical classification via orthogonal
transfer,” in Proc. 28th Int. Conf. Mach. Learn., Bellevue, WA, USA,
2011, pp. 801–808.

[17] W.-L. Zhong, W. Pan, J.-Y. Kwok, and I.-H. Tsang, “Incorporating the
loss function into discriminative clustering of structured outputs,” IEEE
Trans. Neural Netw., vol. 21, no. 10, pp. 1564–1575, Oct. 2010.

[18] K. Dembczynski, W. Cheng, and E. Hüllermeier, “Bayes optimal multi-
label classification via probabilistic classifier chains,” in Proc. 27th Int.
Conf. Mach. Learn., Haifa, Israel, 2010, pp. 279–286.

[19] L. Cai and T. Hofmann, “Exploiting known taxonomies in learning
overlapping concepts,” in Proc. 20th Int. Joint Conf. Artif. Intell.,
Pasadena, CA, USA, 2007, pp. 714–719.

[20] W. Bi and J.-T. Kwok, “Mandatory leaf node prediction in hierar-
chical multi-label classification,” in Proc. Adv. NIPS, vol. 25. 2012,
pp. 153–161.

[21] G. Tsoumakas and I. Katakis, “Multi-label classification: An overview,”
Int. J. Data Warehousing Mining, vol. 3, no. 3, pp. 1–13, 2007.

[22] I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun, “Large margin
methods for structured and interdependent output variables,” J. Mach.
Learn. Res., vol. 6, no. 2, p. 1453, 2005.

[23] G. Tsoumakas, I. Katakis, and I. Vlahavas, “Mining multi-label data,”
in Data Mining and Knowledge Discovery Handbook, O. Maimon and
L. Rokach, Eds., 2nd ed. New York, NY, USA: Springer-Verlag, 2010,
pp. 667–685.

[24] J. Barbedo and A. Lopes, “Automatic genre classification of musical sig-
nals,” EURASIP J. Appl. Signal Process., vol. 2007, no. 1, p. 157, 2007.

[25] L. Tang, S. Rajan, and V. Narayanan, “Large scale multi-label
classification via metalabeler,” in Proc. 18th Int. Conf. World Wide
Web, Madrid, Spain, 2009, pp. 211–220.

[26] J. Zaragoza, L. Sucar, and E. Morales, “Bayesian chain classifiers for
multidimensional classification,” in Proc. 22nd Int. Joint Conf. Artif.
Intell., Barcelona, Spain, 2011, pp. 2192–2197.

[27] J. C. Platt, “Probabilistic outputs for support vector machines and
comparisons to regularized likelihood methods,” in Advances in Large
Margin Classifiers, A. Smola, P. Bartlett, B. Schölkopf, and D. Schu-
urmans, Eds. Cambridge, MA, USA: MIT Press, 1999, pp. 61–74.

[28] G. Valentini, “True path rule hierarchical ensembles for genome-
wide gene function prediction,” IEEE/ACM Trans. Comput. Biol.
Bioinformat., vol. 8, no. 3, pp. 832–847, Jun. 2011.

[29] S. Shimony, “Finding MAPs for belief networks is NP-hard,” Artif.
Intell., vol. 68, no. 2, pp. 399–410, 1994.

[30] C. Varin, N. Reid, and D. Firth, “An overview of composite likelihood
methods,” Statist. Sinica, vol. 21, no. 1, pp. 5–42, 2011.

[31] Y. Zhang and J. Schneider, “A composite likelihood view for multi-
label classification,” in Proc. 15th Int. Conf. Artif. Intell. Statist., Ft.
Lauderdale, FL, USA, 2012, pp. 1407–1415.

[32] R. Baraniuk, V. Cevher, M. Duarte, and C. Hegde, “Model-based
compressive sensing,” IEEE Trans. Inf. Theory, vol. 56, no. 4,
pp. 1982–2001, Apr. 2010.

[33] D. Lewis, Y. Yang, T. Rose, and F. Li, “RCV1: A new benchmark
collection for text categorization research,” J. Mach. Learn. Res., vol. 5,
pp. 361–397, Dec. 2004.

[34] G. Tsoumakas, I. Katakis, and I. Vlahavas, “Effective and efficient
multilabel classification in domains with large number of labels,”
in Proc. ECML/PKDD Workshop MMD, Antwerp, Belgium, 2008,
pp. 30–44.

[35] P. Heymann and H. Garcia-Molina, “Collaborative creation of communal
hierarchical taxonomies in social tagging systems,” Stanford InfoLab,
Stanford, CA, USA, Tech. Rep. 2006-10, Apr. 2006.

[36] B. Klimt and Y. Yang, “The Enron corpus: A new dataset for email
classification research,” in Proc. 18th Eur. Conf. Mach. Learn., Pisa,
Italy, 2004, pp. 217–226.

[37] L. Fei-Fei, R. Fergus, and P. Perona, “One-shot learning of object
categories,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 28, no. 4, pp.
594–611, Apr. 2006.

[38] G. Griffin, A. Holub, and P. Perona, “Caltech-256 object category
dataset,” California Inst. Technol., Pasadena, CA, USA, Tech. Rep.
CNS-TR-2007-001, 2007.

[39] J. Read, B. Pfahringer, G. Holmes, and E. Frank, “Classifier chains
for multi-label classification,” in Proc. Eur. Conf. Mach. Learn., 2009,
pp. 254–269.

[40] J. Petterson and T. Caetano, “Submodular multi-label learning,” in
Proc. Adv. NIPS, 2011, pp. 1512–1520.

[41] J. Zhou, J. Chen, and J. Ye, MALSAR: Multi-tAsk Learning via Struc-
turAl Regularization. Phoenix, AZ, USA: Arizona State Univ., 2011.

[42] G. Cesa-Bianchi and N. Valentini, “Hierarchical cost-sensitive
algorithms for genome-wide gene function prediction,” J. Mach.
Learn. Res., vol. 8, pp. 14–29, Mar. 2010.

[43] S. Garcıa and F. Herrera, “An extension on ‘statistical comparisons
of classifiers over multiple data sets’ for all pairwise comparisons,”
J. Mach. Learn. Res., vol. 9, no. 12, pp. 2677–2694, 2008.

[44] J. Demvsar, “Statistical comparisons of classifiers over multiple data
sets,” J. Mach. Learn. Res., vol. 7, pp. 1–30, Jan. 2006.

Wei Bi received the bachelor’s degree in com-
puter science from the Sun Yat-sen University,
Guangzhou, China, in 2010. She is currently pur-
suing the Ph.D. degree in computer science with the
Hong Kong University of Science and Technology,
Hong Kong.

Her current research interests include machine
learning, data mining, application problems on com-
puter vision, and other problems in artificial intelli-
gence.

Dr. Bi received the Google Ph.D. Fellowship in
Machine Learning in 2013.

James T. Kwok received the Ph.D. degree in com-
puter science from the Hong Kong University of
Science and Technology, Hong Kong, in 1996.

He was with the Department of Computer Science,
Hong Kong Baptist University, Hong Kong, as an
Assistant Professor. He is currently a Professor with
the Department of Computer Science and Engineer-
ing, Hong Kong University of Science and Tech-
nology, Hong Kong. His current research interests
include kernel methods, machine learning, example
recognition, and artificial neural networks.

Dr. Kwok received the IEEE Outstanding 2004 Paper Award, and the Second
Class Award in Natural Sciences by the Ministry of Education, China, in 2008.
He has been a Program Co-Chair for a number of International conferences,
and served as an Associate Editor for the IEEE TRANSACTIONS ON NEURAL

NETWORKS AND LEARNING SYSTEMS from 2006 to 2012. He is currently
an Associate Editor for the Neurocomputing journal.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

