
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 30, NO. 11, NOVEMBER 2019 3517

Low-Rank Matrix Learning Using Biconvex
Surrogate Minimization
En-Liang Hu and James T. Kwok, Fellow, IEEE

Abstract— Many machine learning problems involve learning
a low-rank positive semidefinite matrix. However, existing solvers
for this low-rank semidefinite program (SDP) are often expensive.
In this paper, by factorizing the target matrix as a product of
two matrices and using a Courant penalty to penalize for their
difference, we reformulate the SDP as a biconvex optimization
problem. This allows the use of multiconvex optimization tech-
niques to define simple surrogates, which can be minimized easily
by block coordinate descent. Moreover, while traditionally this
biconvex problem approaches the original problem only when
the penalty parameter is infinite, we show that the two problems
are equivalent when the penalty parameter is sufficiently large.
Experiments on a number of SDP applications in machine
learning show that the proposed algorithm is as accurate as other
state-of-the-art algorithms, but is much faster, especially on large
data sets.

Index Terms— Distance learning, mathematical program-
ming, pattern clustering, recommender systems, semisupervised
learning.

I. INTRODUCTION

IN THIS paper, we consider the semidefinite program (SDP)

min
Z�0

f̃ (Z) (1)

where Z ∈ R
n×n is symmetric positive semidefinite

(PSD), and f̃ is convex differentiable over the PSD cone.
Many machine learning problems can be formulated in
this way. Examples include sparse principal component
analysis (PCA) [1], distance metric learning [2], nonlinear
dimensionality reduction [3], kernel learning [4], [5], multitask
learning [6], and matrix completion [7].

A standard SDP solver is the interior point method [8],
which produces highly accurate solutions. However, each
SDP iteration takes O(n3) time, and thus is not scalable.
Moreover, a highly accurate solution is often not needed in
practice. Besides the interior point method, methods such as
the projected subgradient method [9] have also been used.
However, an expensive matrix eigendecomposition is required
in each iteration.

Manuscript received October 24, 2017; revised September 20, 2018,
January 29, 2019 and June 17, 2019; accepted July 5, 2019. Date of
publication August 9, 2019; date of current version October 29, 2019. This
work was supported by the National Natural Science Foundation of China
under Grant 61663049, Grant 61165012, and Grant 2019010108203008.
(Corresponding author: En-Liang Hu.)

E.-L. Hu is with the Department of Mathematics, Yunnan Normal
University, Cheng Gong Campus, Kunming 6505001-2, China (e-mail:
ynel.hu@gmail.com).

J. T. Kwok is with the Department of Computer Science and Engineering,
Hong Kong University of Science and Technology, Hong Kong.

Color versions of one or more of the figures in this article are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TNNLS.2019.2927819

In many matrix learning applications, the target matrix
is low-rank [10], [11]. A popular low-rank SDP solver is
the Frank–Wolfe (FW) algorithm [11]. A hybrid acceler-
ated algorithm combining FW with limited-memory Broyden–
Fletcher–Goldfarb–Shanno (L-BFGS) has also been proposed
in [12]. On smooth problems, each FW iteration takes
O(N log(n)/

√
�) arithmetic operations (where N is the num-

ber of nonzero entries in ∇ f̃ (Zk) and Zk is the iterate at
the kth iteration), and the FW algorithm converges to an �-
accurate solution in O(1/�) iterations [11]. This leads to a
total of O(N/�1.5) arithmetic operations. When ∇ f̃ (Zk) is
dense, FW can be expensive.

Instead of storing the n × n matrix Z , one can enforce the
low-rank assumption by using a n × r matrix X such that

Z = X X� (2)

where r is the rank of Z . This is particularly appealing as
the computational effort is drastically reduced. For example,
matrix-vector multiplications can be performed in O(nr) time
[instead of O(n2)]. By using (2), the SDP in (1) is converted
to a nonconvex program (NCP) [13], [14]

min
X

f̃ (X X�). (3)

A local minimizer X̂ of (3) is also a minimizer of (1) when
rank(X̂) ≤ r [14], [15]. For the standard SDP with a linear
objective and linear constraints, the reformulated NCP can be
solved with L-BFGS [13]. However, its convergence is unclear.
Block coordinate descent (BCD) has also been used to solve
some NCP problems in [5], but each block coordinate update
needs to have a closed-form solution.

Instead of factorizing Z as X X�, Hu and Kwok [16]
recently considered another optimization approach for the
special case of nonparametric kernel learning (NPKL) [17].
Given n samples, let M be the (must-link) set containing
sample pairs that should belong to the same class, and C be
the (cannot-link) set containing pairs that should not belong
to the same class. NPKL can be formulated as the following
optimization problem:

min
Z�0

tr(Z L) + λ

2

∑
(i, j)∈M∪C∪{i= j }

(Zi j − Ti j)
2 (4)

where Z = [Zi j] ∈ R
n×n is the target kernel matrix on the

n samples to be learned, L is the graph Laplacian matrix of
the data, T = [Ti j] with Ti j = 1 if (i, j) ∈ M or i = j , and
0 if (i, j) ∈ C, and λ is a tradeoff parameter. The tr(Z L) term
encourages smoothness on the data manifold by aligning Z
with L, while the second term measures the difference between

2162-237X © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0001-7398-2285

3518 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 30, NO. 11, NOVEMBER 2019

Zi j and the must-link/cannot-link constraint encoded in Ti j .
Note that problem (4) is of the form in (1). For this special
case, Hu and Kwok [16] reformulated (1) as

min
X,Y∈Rn×r

f̃ (XY �) : X = Y. (5)

This can then be solved with the alternating direction
method of multipliers (ADMM) [18] and converges to an
optimal solution.

However, for general f̃ , the ADMM’s subproblems for (5)
can be difficult to solve, and its convergence is still open. In
addition, for the machine learning applications to be consid-
ered in Section IV, the number of constraints (e.g., pairwise
must-link/cannot-link constraints in kernel learning, values
of the observed entries in matrix completion, and distances
between similar/dissimilar examples in metric learning) can be
very large. This increases the size of the ADMM subproblem
in [16] and limits its scalability.

In this paper, we also factorize Z as XY � as in [16] to
take advantage of the low-rank property. However, to alleviate
the above-mentioned problems, we replace the strict equality
between X and Y by a penalty on their difference. A key obser-
vation is that the resultant optimization objective is biconvex
(which will be defined in Section II). This allows the use
of multiconvex optimization techniques [19] to define simple
surrogates, which can be minimized easily by BCD [20].
Empirical results on a variety of SDP applications in machine
learning show that the resultant computational gains are
substantial.

The rest of this paper is organized as follows. Section II
reviews the related work on multiconvex optimization. The
proposed algorithm is presented in Section III. Experimental
results are reported in Section IV, and the last section gives
some concluding remarks.

Notation: The transpose of a vector or matrix is denoted
by the superscript T . For a matrix A = [Aij], tr(A) is
its trace, 	A	 = (

∑
i j A2

i j)
1/2 is its Frobenius norm, and

A � 0 means that it is symmetric PSD. For two matrices A
and B ,
A, B� = tr(A�B). Moreover, [·]+ = max{·, 0}, and
∇x f (·) is the derivative of f (·) with respect to variable x .
A convex function f is L-smooth if for any x1 and x2,
there exists a Lipschitz constant 0 < L < ∞ such that
	∇x f (x1) − ∇x f (x2)	 ≤ L	x1 − x2	.

II. RELATED WORK: MULTICONVEX OPTIMIZATION

BCD has long been a popular optimization tool [20]. It alter-
nates approximate minimizations along different coordinate
directions or hyperplanes. Generally, each BCD subproblem is
much easier to solve than the original optimization problem.
Because of its simplicity and efficiency in the big data setting,
it has recently witnessed a resurgence of interest in the
machine learning community [21]–[26].

When the objective is convex with Lipschitz-continuous
gradient, the sequence of objective values obtained by BCD
converges to within � of the optimal value at a rate of
O(1/�) [27]. When acceleration (e.g., Nesterov’s extrapolation
method [28]) is used, this can be improved to O(1/

√
�) [27].

When the objective is strongly convex, the convergence rate
becomes linear (O(log(1/�)) [27].

For nonconvex objectives, the convergence properties of
BCD are open. In particular, Powell [29] provided a simple
but intriguing example on which BCD fails to converge to
a stationary point. However, for nonconvex problems with
multiconvex objective, the following recent result shows that
BCD converges.

Definition 1 [30] (Block Multiconvex Set): A set
χ ∈ R

n is block multiconvex with respect to the parti-
tion {x1, . . . , xs} if the projection of χ to each compo-
nent block is convex. In other words, for i ∈ {1, . . . , s},
the set χ i (x1, . . . , xi−1, xi+1, . . . , xs) ≡ {xi ∈ R

n :
(x1, . . . , xi−1, xi , xi+1, . . . , xs) ∈ χ} is convex.

Definition 2 [30] (Block Multiconvex Function): A func-
tion H (x), in which x is decomposed into s blocks
{x1, x2, . . . , xs}, is block multiconvex if for each i , H (x) is
convex in xi with all the other blocks fixed.
Consider the problem

min
x∈χ

H (x1, x2, . . . , xs) (6)

where H is differentiable and block multiconvex. x is
decomposed into s blocks {x1, x2, . . . , xs}, and χ is a
closed and block multiconvex subset of R

n . Using BCD
with the Gauss–Seidel update, H is cyclically minimized
over each of {x1, . . . , xs} while fixing the remaining
blocks at their last updated values. Specifically, let xi

k be
the value of xi after the kth iteration, and H i

k(xi) ≡
H (x1

k , . . . , xi−1
k , xi , xi+1

k−1, . . . , xs
k−1). Xu and Yin [20] pro-

posed three BCD update schemes that minimize different
surrogate functions dominating the original objective. It can
be shown that all these converge to a stationary point.

1) Standard:

x i
k = arg min

xi∈χ i
k

H i
k(xi) (7)

where χ i
k = χ i (x1

k , . . . , xi−1
k , xi+1

k−1, . . . , xs
k−1).

2) Proximal: This includes an additional quadratic proxi-
mal regularization term in the surrogate objective

xi
k = arg min

xi∈χ i
k

H i
k(xi) + Li

k−1

2

∥∥xi − xi
k−1

∥∥2 (8)

where Li
k−1 is uniformly lower bounded from zero and

uniformly upper bounded.

3) Prox-Linear: This scheme approximates H i
k(xi

k) by the
quadratic function H i

k(x̂ i
k−1) +
ĝi

k−1, xi
k − x̂ i

k−1� +
Li

k−1
2

∥∥xi
k − x̂ i

k−1

∥∥2 around the extrapolated iterate

x̂ i
k−1 = xi

k−1 + ωi
k−1

(
xi

k−1 − xi
k−2

)
(9)

where ĝi
k−1 = ∇H i

k(x̂ i
k−1), and ωi

k−1 ≥ 0 is an
extrapolation weight. The iterates are then obtained as

xi
k = arg min

xi∈χ i
k

ĝi
k−1, xi − x̂ i

k−1� + Li
k−1

2

∥∥xi − x̂ i
k−1

∥∥2
.

(10)

Due to multiconvexity of H , subproblems (7), (8), and (10)
are all convex. Empirically, scheme (10) produces solutions of

HU AND KWOK: LOW-RANK MATRIX LEARNING USING BIS MINIMIZATION 3519

lower objective values [19]. Moreover, subproblems (7) and
(8) may sometimes be difficult to solve, whereas the gradient
descent (GD) step in (10) is always simple and often faster
than solving (7) and (8).

III. BICONVEX SURROGATE MINIMIZATION

In this section, similar to [16], we also factorize Z in (1)
as XY �, where X, Y ∈ R

n×r . However, the strict equality
between X and Y in (5) is replaced by a penalty on their
difference, leading to the optimization problem

min
X,Y∈Rn×r

F(X, Y) ≡ f (X, Y) + γ

2
	X − Y	2 (11)

where

f (X, Y) = f̃ (XY �) (12)

and γ > 0 is a penalty parameter (whose setting will
be discussed in Section III-C). The second term in (11) is
the classic quadratic (or Courant) penalty for the constraint
X = Y [31].

In general, problem (11) (in penalty form) approaches the
original problem (5) (in constrained form) only when γ is
infinite. However, we will show in Section III-B that when γ
is finite but sufficiently large, the X and Y solutions obtained
are the same, and thus any stationary point of (11) is also a
stationary point of (3).

A. Optimizing (11)

First, we make the following assumptions on f in (12).
Assumption 1: f (X, Y) is lower bounded.
Assumption 2: For an arbitrary constant U ∈ R

n×r , f (·, U)
is L X -smooth, f (U, ·) is LY -smooth.

The following proposition shows that the objective in (11)
is biconvex if f̃ in (1) is convex.

Definition 3: A function g(x, y) is biconvex if g is multi-
convex with respect to x and y.

Proposition 1: If f̃ in (1) is convex, then f in (12) and F
in (11) are biconvex.

Let L X
k−1 and LY

k−1 be the local Lipschitz constants of
∇X f (X, Yk−1) and ∇Y f (Xk, Y), respectively. These can be
estimated by line search or backtracking [32]. Obviously,
L X

k−1 + γ and LY
k−1 + γ are then the local Lipschitz constants

of ∇X F(X, Yk−1) and ∇Y F(Xk, Y), respectively. Since F is
biconvex (and thus multiconvex), using the prox-linear scheme
in (10), we have

Xk = arg min
X

QX (X; X̂k−1, Yk−1) (13)

Yk = arg min
Y

QY (Y ; Ŷk−1, Xk) (14)

where

QX (X; X̂k−1, Yk−1) =
∇X F(X̂k−1, Yk−1), X − X̂k−1�
+ L X

k−1 + γ

2
	X − X̂k−1	2

QY (Y ; Xk, Ŷk−1) =
∇Y F(Xk, Ŷk−1), Y − Ŷk−1�
+ LY

k−1 + γ

2
	Y − Ŷk−1	2

and X̂k−1 and Ŷk−1 are defined as in (9)

X̂k−1 = Xk−1 + ωX
k−1(Xk−1 − Xk−2) (15)

Ŷk−1 = Yk−1 + ωY
k−1(Yk−1 − Yk−2) (16)

with ωX
k−1, ω

Y
k−1 ≥ 0 being the extrapolation weights. Follow-

ing [19], the extrapolation weights are set as:
ωX

k−1 = min
{
ωk−1, δω

√
L X

k−2/L X
k−1

}
(17)

ωY
k−1 = min

{
ωk−1, δω

√
LY

k−2/LY
k−1

}
(18)

where 0 < δω < 1, ωk−1 = (tk−1 − 1/tk), with
tk = (1/2)(1 + (1 + 4t2

k−1)
1/2) and t0 = 1.

On setting the derivatives of QX and QY to zero, we obtain
the following simple closed-form solutions for Xk and Yk .

Proposition 2: The closed-form solutions for (13) and (14)
are

Xk = X̂k−1 − 1

L X
k−1 + γ

∇X F(X̂k−1, Yk−1) (19)

and

Yk = Ŷk−1 − 1

LY
k−1 + γ

∇Y F(Xk, Ŷk−1) (20)

respectively.
Remark 1: In (19), Xk can be viewed as performing GD on

F (with the Y -component fixed at Yk−1) at X̂k−1. Similarly,
Yk in (20) can be viewed as performing GD on F (with the
X-component fixed at Xk) at Ŷk−1. Thus, minimizing f can be
viewed as alternating GD based on the iterates X̂k−1 and Ŷk−1.
When extrapolation is not used (i.e., ωX

k−1 = ωY
k−1 = 0), X̂k−1

reduces to Xk−1, Ŷk−1 reduces to Yk−1, and Proposition 2
reduces to

Xk = Xk−1 − 1

L X
k−1 + γ

∇X F(Xk−1Yk−1) (21)

Yk = Yk−1 − 1

LY
k−1 + γ

∇Y F(Xk, Yk−1). (22)

This is the same as performing standard alternating GD on F .
Corollary 1: Xk can be rewritten as the convex combination

Xk = α X̂ gd
k−1 + (1 − α)Yk−1 (23)

where α = L X
k−1/L X

k−1 + γ , and

X̂ gd
k−1 = X̂k−1 − 1

L X
k−1

∇X f (X̂k−1, Yk−1) (24)

is the GD update of f (·, Yk−1) at X̂k−1. Similarly, Yk can be
rewritten as the convex combination

Yk = βŶ gd
k−1 + (1 − β)Xk (25)

where β = LY
k−1/LY

k−1 + γ , and

Ŷ gd
k−1 = Ŷk−1 − 1

LY
k−1

∇Y f (Xk, Ŷk−1) (26)

is the GD update of f (Xk, ·) at Ŷk−1.
The theoretical procedure for optimizing (11) is shown in

Algorithm 1. Although existing algorithms require closed-form
coordinate descent update or solving complicated ADMM
subproblems, here only simple descent steps are needed.

3520 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 30, NO. 11, NOVEMBER 2019

Algorithm 1 Theoretical BiS Minimization for (11).
1: Initialization: X−1 = X0, Y−1 = Y0, γ > 0.
2: for k = 1, 2, . . . do
3: obtain X̂k−1 from Xk−1 and Xk−2 using (15);
4: obtain Ŷk−1 from Yk−1 and Yk−2 using (16);
5: obtain Xk from X̂k−1 and Yk−1 using (23);
6: obtain Yk from Ŷk−1 and Xk using (25);
7: if converged then
8: return Z = YkY �

k (or XkY �
k).

9: end if
10: end for

B. Convergence

In the following, we consider ωX
k−1 ∈ [0,

δω(L X
k−2/L X

k−1)
1/2] and ωY

k−1 ∈ [0, δω(LY
k−2/LY

k−1)
1/2]

for some 0 < δω < 1. Note that this includes the setting
in (17) and (18).

Proposition 3 (Lemma 2.2, [19]): The sequence {(Xk, Yk)}
generated by Algorithm 1 converges to a limit point (X̄ , Ȳ),
where X̄ = limk→∞ Xk and Ȳ = limk→∞ Yk . Moreover,
(X̄ , Ȳ) is a stationary point of (11).

Define

μX
k ≡

[
L X

k−1+
2tr[(Yk−1 − X̂k−1)

�∇X f (X̂k−1, Yk−1)]∥∥Yk−1 − X̂k−1
∥∥2

]
+
(27)

μY
k ≡

[
LY

k−1 + 2tr[(Xk − Ŷk−1)
�∇Y f (Xk, Ŷk−1)]∥∥Xk − Ŷk−1

∥∥2

]
+

. (28)

The following lemma shows that {μX
k } and {μY

k } converge.
Lemma 1: The sequences {μX

k } in (27) and {μY
k } in (28)

converge.
In the sequel, we denote the limits by

μX̄ ≡ lim
k→∞ μX

k , μȲ ≡ lim
k→∞ μY

k (29)

respectively. As convergence implies boundedness, we obtain
from the above lemma that the sequences {μX

k } and {μY
k }

are bounded, and min{μX
k , μY

k } exists. The following theorem
shows that when γ is larger than this minimum, the X̄ and Ȳ
solutions obtained in Algorithm 1 are equal. In other words,
the equality constraint in (5) is exactly satisfied.

Theorem 1: If γ > min{μX
k , μY

k }, then X̄ = Ȳ .
Instead of using the limits μX̄ and μȲ , the following

corollary uses another condition on γ , which is easier to attain
in practice.

Corollary 2: If γ > maxk{min{μX
k , μY

k }}, then X̄ = Ȳ .
Without loss of generality, we assume that f (X, Y) =

f (Y, X). The condition on γ can then be further simplified.
Theorem 2: Assume that f (X, Y) = f (Y, X). If γ > (1/4)

min{L X , LY }, then X̄ = Ȳ .
Remark 2: Although these corollaries suggest that γ cannot

be too small, note that neither can γ be too large. Otherwise,
as can be seen from Proposition 2, the stepsize will be very
small.

As F is biconvex (and thus multiconvex), stronger con-
vergence results can be obtained when F satisfies the

so-called Kurdyka–Łojasiewicz inequality [19]. Specifically,
Algorithm 1 can converge to a stationary point with a finite,
linear, or sublinear local convergence rate. Interested readers
are referred to [19] for details.

C. Setting of the Penalty Parameter

The proposed formulation requires setting the penalty para-
meter γ in (11). As shown in Theorem 1, when γ is sufficiently
large, X̄ = Ȳ and is also equal to the solution in (5). However,
the limits μX̄ and μȲ [defined in (29)] in Theorem 1 are hard
to determine in advance.

In this section, we propose two heuristics to set a good γ .
The first heuristic is inspired from Theorem 1 and varies γ in
each iteration as

(heuristic 1) γk = μX
k + ε (30)

where ε > 0 is a small constant. When k → ∞, we expect
that the {μX

k } sequence converges, and then γ ≡ limk→∞ γk =
μX̄ +ε. Thus, γ > min{μX̄ , μȲ }. The second heuristic follows
from Corollary 2 and varies γ as:

(heuristic 2) γk = max{μX
1 , μX

2 , . . . , μX
k }. (31)

Using the two heuristics to set γ , a practical version of
biconvex surrogate (BiS) is shown in Algorithm 2.

Algorithm 2 Practical BiS Minimization for (11).
1: Initialization: X−1 = X0, Y−1 = Y0.
2: for k = 1, 2, . . . do
3: obtain X̂k−1 from Xk−1 and Xk−2 using (15);
4: obtain Ŷk−1 from Yk−1 and Yk−2 using (16);
5: set γ as (30) or (31);
6: obtain Xk from X̂k−1 and Yk−1 using (23);
7: obtain Yk from Ŷk−1 and Xk using (25);
8: if converged then
9: return Z = YkY �

k (or XkY �
k).

10: end if
11: end for

The effectiveness of these two heuristics will be empirically
studied in Section IV-A1.

IV. EXPERIMENTS

In this section, we perform experiments on three low-
rank SDP applications in machine learning, namely, NPKL
(Section IV-A), matrix completion (Section IV-B), and metric
learning (Section IV-C).

The following algorithms will be compared.

1) The proposed BiS (Algorithm 2) with δω = 0.99 in (17)
and (18).

2) A variant of Algorithm 2 but without extrapolation (i.e.,
ωX

k−1 = ωY
k−1 = 0). As discussed in Remark 1, this is

the same as performing alternating GD on F(X, Y) in
(11).

3) FW : The accelerated FW algorithm [12].

HU AND KWOK: LOW-RANK MATRIX LEARNING USING BIS MINIMIZATION 3521

TABLE I

ADULT DATA SETS USED IN THE NPKL EXPERIMENT. EACH DATA SAMPLE HAS 123 FEATURES

Fig. 1. Convergence of the BiS algorithm with different settings of γk [heuristic 1: γk in (30) and heuristic 2: γk in (31)]. (a) Objective value. (b) γk .
(c) Residual value ||Xk − Yk ||2.

4) GD: This transforms the SDP in (1) to the NCP in (3),
and then optimizes using GD, with stepsize determined
based on the line search as in [33].

5) Accelerated GD (AGD): This is similar to GD, except
that Nesterov’s AGD [34], [35] is used.

6) ADMM: This transforms the SDP in (1) to the formula-
tion in (5), and then optimize using ADMM.

All these are implemented in MATLAB. The FW algorithm
is stopped when the relative change of objective values in
successive iterations is smaller than 10−4. For the other algo-
rithms, they are stopped when the objective value is smaller
than the final objective value obtained by FW (or when the
number of iterations reaches 2000). As for the rank of X or
Y , we follow [17] and [37] and set its value to be the largest
r satisfying r(r + 1) ≤ m, where m is the total number of
observed data [i.e., m is the number of must-link and cannot-
link pairs in Section IV-A, the number of observed entries in
Section IV-B, and the number of triplets (similar–dissimilar
patterns) in Section IV-C, respectively]. In BiS and its variant
without extrapolation, the Lipschitz constants L X

k and LY
k are

obtained by line search (in particular, exact line search as
the objective is quadratic for the problems considered here).
Experiments are performed on a PC with a 3.07-GHz CPU and
24-GB RAM.

A. Nonparametric Kernel Learning

We consider the NPKL formulation in (4). As in [36],
the learned kernel matrix is then used for kernelized k-means
clustering (with the number of clusters k equal to the number
of classes).

Clustering performance is measured by the Rand index
(a + b/0.5 n(n − 1)) [37], where a is the number of pairs
belonging to the same class and are placed in the same
cluster by k-means and b is the number of sample pairs

belonging to different classes and are placed in different
clusters. The denominator 0.5 n(n − 1) is the total number
of sample pairs. The higher the Rand index, the better the
performance.

Experiments are performed on the adult data sets1 (Table I)
that have been commonly used for benchmarking NPKL
algorithms. We randomly sample 0.6n must-link and 0.6n
cannot-link pairs. The experiment is repeated 20 times with
random restarts for k-means.

1) Setting of γk: In this section, we first investigate the
effectiveness of the two heuristics to set γk (Section III-C).
Experiments are performed on the a9a data set. As shown
in Fig. 1(a), the algorithm converges in both γk settings, but
heuristic 1 has faster convergence. This is due to that the
γk value obtained by heuristic 2 is nondecreasing and tends
to be much larger than that by heuristic 1 [Fig. 1(b)]. As
discussed in Remark 2, a larger γk leads to smaller stepsize
and slower convergence. Hence, we will use heuristic 1 in
the sequel. Fig. 1(c) shows the progress of

∥∥Xk − Yk
∥∥2

with iterations. Again, it converges to zero under both γk

settings.
2) Clustering Performance: Table II shows the Rand

indices obtained on all the adult data sets. As can be seen,
all algorithms (except ADMM) have comparable clustering
performance.

3) Speed: For GD, AGD, BiS, and its variant without
extrapolation, the most expensive operation is on estimating
the local Lipschitz constants L X

k−1 and LY
k−1. This involves

computing the objective and its gradient. Note that when Z in
(4) is decomposed as XY �, the objective in (4) is quadratic
with respect to both X and Y (so are the objectives (33) and
(35) for the problems considered in Sections IV-B and IV-C,

1Downloaded from http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
binary.html.

3522 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 30, NO. 11, NOVEMBER 2019

TABLE II

RAND INDICES (%) ON THE ADULT DATA SETS. THE BEST AND COMPARABLE RESULTS
(ACCORDING TO THE PAIRED t-TEST WITH 95% CONFIDENCE) ARE HIGHLIGHTED

TABLE III

CPU TIME (IN SECONDS) ON THE ADULT DATA SETS. THE BEST AND COMPARABLE RESULTS

(ACCORDING TO THE PAIRED t-TEST WITH 95% CONFIDENCE) ARE HIGHLIGHTED

respectively). Computing L X
k−1 and LY

k−1 then takes O(nr2)
time. In comparison, the per-iter complexity for the ADMM
procedure in [16] is O(rn + ∑n

i=1(|Ti |3 + r2 + r |Ti |)) =
O(nr + nr2 + ∑n

i=1(|Ti |3 + r |Ti |)). Hence, the ADMM
iteration is more expensive than those of BiS and its
variant.

Table III shows the CPU time used by various algorithms.
As can be seen, BiS is consistently the fastest. Fig. 2 shows
convergence of the training objective in (4) on the (largest)
a9a data set. Plots for the other data sets are similar and thus
not shown. Clearly, BiS converges much faster than the others.
In particular, note that the convergence of ADMM is fast in
terms of the number of iterations, but slow when measured
with respect to time, as its per-iteration time complexity is
much higher.

B. Matrix Completion

In this section, we consider the matrix completion problem
in collaborative filtering. Given a partially observed matrix
T̃ (with the observed entries indexed by the set �), we try
to find a low-rank matrix U ∈ R

n×u that well approximates
the observed entries. This can formulated as the following
optimization problem [38]:

min
U

	U	∗ + λ

2

∑
(i, j)∈�

(Uij − T̃i j)
2 (32)

where 	 · 	∗ is the nuclear norm and λ is a tradeoff parameter.
Equivalently, (32) can be rewritten as the SDP [12]

min
Z�0

tr(Z) + λ

2

∑
(i, j)∈�

(Zi j − Ti j)
2 : rank(Z) ≤ k (33)

Fig. 2. Convergence of the objective with respect to number of iterations (top)
and time (bottom) on the a9a data set. (a) Objective value versus iterations.
(b) Objective value versus CPU time.

where T =
[

0 T̃
T̃ � 0

]
, Z =

[
V U

U� W

]
, and V and W are some

symmetric matrices.

HU AND KWOK: LOW-RANK MATRIX LEARNING USING BIS MINIMIZATION 3523

Fig. 3. Objective versus CPU time on the MovieLens data sets. (a) MovieLens-100K. (b) MovieLens-1M. (c) MovieLens-10M.

TABLE IV

MOVIELENS DATA SETS

TABLE V

TESTING RMSE ON THE MOVIELENS DATA SETS. THE BEST AND COM-
PARABLE RESULTS (ACCORDING TO THE PAIRED T-TEST WITH 95%

CONFIDENCE) ARE HIGHLIGHTED. NOTE THAT ADMM CANNOT
BE RUN ON THE LARGER 1M AND 10M DATA SETS BECAUSE IT

IS TOO SLOW

Following [12], we perform experiments on the MovieLens
data sets2 (Table IV), which have been commonly used
for evaluating recommender systems. They contain ratings
{1, 2, . . . , 5} assigned by various users on movies. For each
user, 80% of the observed ratings are used for training, and
the rest for testing. This is repeated ten times and the average
performance is reported.

Table V shows the root-mean-squared error (RMSE) on the
test set. As can be seen, the proposed BiS is the most accurate
on the larger 1 M and 10 M data sets, and very competitive
on the smallest 100 K data set. Table VI shows the CPU time,
and Fig. 3 shows convergence of the training objective versus
CPU time. As can be seen, BiS converges much faster than
the other methods.

C. Metric Learning

In this section, we consider the metric learning problem. Let
the (squared) Mahalanobis distance between patterns xi and x j

be d2
M (xi , x j) = (xi − x j)

�M(xi − x j), where M is a PSD
matrix. A good M should ensure that the distance between a
pair of similar patterns (specified in the set S) be smaller than

2http://grouplens.org/data sets/movielens/

TABLE VI

CPU TIME (IN SECONDS) ON THE MOVIELENS DATA SETS. THE BEST
AND COMPARABLE RESULTS (ACCORDING TO THE PAIRED T-TEST

WITH 95% CONFIDENCE) ARE HIGHLIGHTED. NOTE THAT ADMM
CANNOT BE RUN ON THE LARGER 1M AND 10M DATA SETS

the distance between a pair of dissimilar patterns (contained
in the set D). Given a triplet τ = (i, j, k) where (xi , x j) ∈ S
and (xi , xk) ∈ D, this can be formulated as [3]

1 + d2
M (xi , x j) ≤ d2

M(xi , xk)

or, equivalently, 1 + tr(M Xτ) ≤ 0, where Xτ = (xi − x j)
(xi − x j)

� − (xi − xk)(xi − xk)
�. Let T be the set of all these

triplets. We then have the following optimization problem:

min
M�0

tr(M) + λ
∑
τ∈T

[(1 + tr(M Xτ)]+ (34)

where tr(M) (equal to the nuclear norm of the PSD matrix M)
is a low-rank regularizer and λ is a tradeoff parameter. The
objective in (34) is nonsmooth. This can be simplified to the
following smooth optimization problem by using Nesterov’s
smoothing technique [39]:

min
M�0

tr(M) + λgμ(M) (35)

where gμ(M) = max0≤vτ ≤1
∑

τ∈T vτ (1+tr(X�
τ M))−(μ/2)v2

τ
is Lipschitz-smooth and μ is a smoothing parameter. This can
then be solved by accelerated proximal gradient (APG) algo-
rithm [29]. However, each APG iteration requires a projection
onto the PSD cone, which can be expensive.

Experiment is performed on the ORL data set.3 It con-
tains face images from 40 subjects. Each subject has ten
images, each of size 112 × 92 (thus, 112 × 92 = 10304-D).
We use half of the image set to learn a metric M , and then
classify the remaining images by a three-nearest neighbor
classifier with the learned metric. We do not compare with

3http://www.face-rec.org/databases/

3524 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 30, NO. 11, NOVEMBER 2019

TABLE VII

CLASSIFICATION ACCURACIES (%) USING THE THREE-NEAREST NEIGH-
BOR CLASSIFIER ON THE ORL DATA SET. THE BEST AND COMPA-

RABLE RESULTS (ACCORDING TO THE PAIRED t-TEST WITH 95%
CONFIDENCE) ARE HIGHLIGHTED

Fig. 4. Objective versus CPU time on the ORL data set.

FW, as extracting the leading singular vectors from the dense
10304 × 10304 matrix is computationally expensive. The
experiment is repeated ten times and the average performance
is reported.

Table VII shows the testing accuracies obtained with the
learned metric M . Fig. 4 shows the convergence of the training
objective with time. Again, the proposed BiS is both accurate
and fast.

V. CONCLUSION

In this paper, we proposed an efficient algorithm for learn-
ing low-rank PSD matrices. With the addition of a Courant
penalty, we reformulated this as a biconvex optimization
problem. After linearization, the surrogate objective is simple
and can be easily optimized using BCD. Although traditionally
this penalty-based formulation approaches the original opti-
mization problem only when the penalty parameter is infinite,
we showed that the Courant penalty reduces to zero when
the penalty is sufficiently large (but finite), and the solution
obtained from the biconvex problem also solves the original
problem. This reformulation opens a door to solve many
similar low-rank matrix learning problems that also involve
an unknown X X� and allows us to borrow the multiconvex
optimization tool in [19]. Experiments on a number of low-
rank PSD matrix learning problems in machine learning,
namely, NPKL, matrix completion, and metric learning, show
that the proposed algorithm is accurate and faster than existing
algorithms.

APPENDIX A
PROOFS

A. Proof of Lemma 1

Proof: The sequence {(Xk, Yk)} converges to (X̄ , Ȳ) by
Proposition 3. Since limk→∞ X̂k = limk→∞ Xk = X̄ and

limk→∞ Ŷk = limk→∞ Yk = Ȳ , we have

lim
k→∞ μX

k

=
[

lim
k→∞ L X

k−1

+ lim
k→∞

2tr[(Yk−1 − X̂k−1)
�∇X f (X̂k−1, Yk−1)]

	Yk−1 − X̂k−1	2

]
+

=
[

L X̄ + 2tr[(Ȳ − X̄)�∇X f (X̄ , Ȳ)]
	Ȳ − X̄	2

]
+

where L X̄ is a nonnegative constant satisfying

f (X, Ȳ)≤ f (X̄ , Ȳ)+
∇X f (X̄ , Ȳ), X − X̄� + L X̄

2
	X − X̄	2.

Similarly

lim
k→∞ μY

k =
[

LȲ + 2tr[(X̄ − Ȳ)�∇Y f (X̄ , Ȳ)]
	X̄ − Ȳ	2

]
+

where LȲ is a nonnegative constant satisfying

f (X̄ , Y) ≤ f (X̄ , Ȳ)+
∇Y f (X̄ , Ȳ), Y −Ȳ �+ LȲ

2
	Y − Ȳ	2.

B. Proof of Proposition 1

Proof: Let α1, α2 ≥ 0 such that α1 + α2 = 1, X, Y1,
Y2 ∈ R

n×r . We have

f (X, α1Y1 + α2Y2) = f̃ (X (α1Y1 + α2Y2)
�)

= f̃
(
α1 XY �

1 + α2 XY �
2

)
≤ α1 f̃

(
XY �

1

) + α2 f̃
(
XY �

2

)
= α1 f (X, Y1) + α2 f (X, Y2)

where the inequality uses convexity of f̃ (Z). Hence, f is
convex with respect to Y . Similarily, f is convex with respect
to X , and so f is biconvex. As γ /2	X − Y	2 in (11) is
biconvex, F is biconvex.

C. Proof of Corollary 1

Proof: From (13) , we have

Xk = arg min
X

QX (X; X̂k−1, Yk−1)

= arg min
X

∇X F(X̂k−1, Yk−1), X − X̂k−1�

+ L X
k−1 + γ

2
	X − X̂k−1	2

= 1

L X
k−1 + γ

[
L X

k−1 X̂k−1 − ∇X f (X̂k−1, Yk−1) + γ Yk−1
]

= L X
k−1

L X
k−1 + γ

[
X̂k−1 − 1

L X
k−1

∇X f (X̂k−1, Yk−1)

]

+ γ

L X
k−1 + γ

Yk−1

= α X̂ gd
k−1 + (1 − α)Yk−1. (36)

HU AND KWOK: LOW-RANK MATRIX LEARNING USING BIS MINIMIZATION 3525

Similarily, from (14), we have

Yk = arg min
Y

QY (Y ; Xk, Ŷk−1)

= arg min
Y

∇Y F(Xk, Ŷk−1), Y − Ŷk−1�

+ LY
k−1 + γ

2
	Y − Ŷk−1	2

= 1

LY
k−1 + γ

[
LY

k−1Ŷk−1 − ∇Y f (Xk, Ŷk−1) + γ Xk
]

= LY
k−1

LY
k−1 + γ

[
Ŷk−1 − 1

LY
k−1

∇Y f (Xk, Ŷk−1)

]

+ γ

LY
k−1 + γ

Xk

= βŶ gd
k−1 + (1 − β)Xk . (37)

D. Proof of Theorem 1

Proof: First, we show that X̄ = Ȳ if γ ≥ μȲ . The
following lemma holds immediately by using (15) and (16).

Lemma 2: When Algorithm 2 converges

lim
k→∞ X̂k−1 = lim

k→∞
[
Xk−1 + ωX

k−1(Xk−1 − Xk−2)
]

= lim
k→∞ Xk−1 = lim

k→∞ Xk

= X̄

and similarly

lim
k→∞ Ŷk−1 = lim

k→∞ Yk−1 = lim
k→∞ Yk = Ȳ .

Lemma 3: If γ > μY
k , then 	Ŷk−1 − Yk	2 > 	Xk − Yk	2.

Proof: Using (37)

Ŷk−1 − Yk

= Ŷk−1 − 1

LY
k−1 + γ

[
LY

k−1Ŷk−1 − ∇Y f (Xk, Ŷk−1) + γ Xk
]

= 1

LY
k−1 + γ

[γ (Ŷk−1 − Xk) + ∇Y f (Xk, Ŷk−1)].

Similarly, from (37)

Xk − Yk

= Xk − 1

LY
k−1 + γ

[
LY

k−1Ŷk−1 − ∇Y f (Xk, Ŷk−1) + γ Xk
]

= −1

LY
k−1 + γ

[
LY

k−1(Ŷk−1 − Xk) − ∇Y f (Xk, Ŷk−1)
]
.

Let A = Ŷk−1 − Xk and B = ∇Y f (Xk, Ŷk−1). Then

	Ŷk−1 − Yk	2 − 	Xk − Yk	2

= 1(
LY

k−1 + γ
)2

[γ A + B	2 − 	LY
k−1 A − B	2]

= 1

LY
k−1 + γ

[(
γ − LY

k−1

)
tr(A� A) + 2tr(A�B)

]
.

Hence, from (28)

γ > μY
k

⇔ γ > LY
k−1 − 2

tr(A�B)

tr(A� A)

⇔ (
γ − LY

k−1

)
tr(A� A) + 2tr(A�B) > 0

⇔ 1

LY
k−1 + γ

[(
γ − LY

k−1

)
tr(A� A) + 2tr(A�B)

]
> 0

⇔ 	Ŷk−1 − Yk	2 − 	Xk − Yk	2 > 0.

Lemma 4: If γ > μY
k , then X̄ = Ȳ .

Proof: From Lemma 3, we have 	Ŷk−1 − Yk	2 −
	Xk − Yk	2 > 0, that is,(

γ − μY
k

)
(Ŷk−1 − Yk	2 − 	Xk − Yk	2) > 0.

By the sign-preserving property4

lim
k→∞(γ − μY

k)(Ŷk−1 − Yk	2 − 	Xk − Yk	2) ≥ 0.

Hence, from Lemma 2, we have

lim
k→∞

(
γ − μY

k

)
(Ŷk−1 − Yk	2 − 	Xk − Yk	2) ≥ 0

⇔ (γ − μȲ)(Ȳ − Ȳ	2 − 	X̄ − Ȳ	2) ≥ 0

⇔ −(γ − μȲ)(X̄ − Ȳ	2) ≥ 0

and so X̄ = Ȳ if γ > μȲ (by the sign-preserving property
of γ > μY

k).
Next, we show that X̄ = Ȳ if γ > μX̄ .
Lemma 5: If γ > μX

k , then 	X̂k−1 − Xk	2 > 	Xk −Yk−1	2.
Proof: From (36)

Xk = 1

L X
k−1 + γ

[
L X

k−1 X̂k−1 − ∇X f (X̂k−1, Yk−1) + γ Yk−1
]
.

We have

X̂k−1 − Xk

= X̂k−1− 1

L X
k−1+γ

(
L X

k−1 X̂k−1−∇X f (X̂k−1, Yk−1)+γ Yk−1
)

= 1

L X
k−1 + γ

[γ (X̂k−1 − Yk−1) + ∇X f (X̂k−1, Yk−1)]

and

Yk−1 − Xk

= Yk−1− 1

L X
k−1+γ

(
L X

k−1 X̂k−1−∇X f (X̂k−1, Yk−1)+γ Yk−1
)

= −1

L X
k−1 + γ

[
L X

k−1(X̂k−1 − Yk−1) − ∇X f (X̂k−1, Yk−1)
]
.

Let A = X̂k−1 − Yk−1 and B = ∇X f (X̂k−1, Yk−1). Then

	X̂k−1 − Xk	2 − 	Xk − Yk−1	2

= 1(
L X

k−1 + γ
)2

[γ A + B	2 − 	L X
k−1 A − B	2]

= 1

L X
k−1 + γ

[(
γ − L X

k−1

)
tr(A� A) + 2tr(A�B)

]
.

4In other words, if limk→∞ ak = a and ak ≥ 0 for all k, then a ≥ 0.

3526 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 30, NO. 11, NOVEMBER 2019

Hence, from (27)

γ > μX
k

⇔ γ > L X
k−1 − 2

tr(A�B)

tr(A� A)

⇔ (
γ − L X

k−1

)
tr(A� A) + 2tr(A�B) > 0

⇔ 1

L X
k−1 + γ

[(
γ − L X

k−1

)
tr(A� A) + 2tr(A�B)

]
> 0

⇔ 	X̂k−1 − Xk	2 − 	Xk − Yk−1	2 > 0.

Lemma 6: If γ > μX
k , then X̄ = Ȳ .

Proof: From Lemma 5, when γ > μX
k , 	X̂k−1 − Xk	2 −

	Xk − Yk−1	2 > 0, that is,

(γ − μX
k)(X̂k−1 − Xk	2 − 	Xk − Yk−1	2) > 0.

By the sign-preserving property, we have

lim
k→∞

(
γ − μX

k

)
(X̂k−1 − Xk	2 − 	Xk − Yk−1	2) ≥ 0.

Hence, from Lemma 2, we have

lim
k→∞

(
γ − μX

k

)
(X̂k−1 − Xk	2 − 	Xk − Yk−1	2) ≥ 0

⇔ (γ − μX̄)(X̄ − X̄	2 − 	X̄ − Ȳ	2) ≥ 0

⇔ −(γ − μX̄)(X̄ − Ȳ	2) ≥ 0

so X̄ = Ȳ if γ > μX̄ (by the sign-preserving property
of γ > μX

k).
Result follows on combining Lemmas 4 and 6.

APPENDIX B
PROOF OF COROLLARY 2

Proof: By combining Lemmas 4 and 6, result follows on
using γ > maxk{min{μX

k , μY
k }} > min{μX

k , μY
k }.

APPENDIX C
PROOF OF THEOREM 2

Proof: f (X, Y) = f (Y, X) implies

∇X f (X, Y) = ∇X f (Y, X) (38)

∇Y f (X, Y) = ∇Y f (Y, X). (39)

First, we introduce some lemmas.
Lemma 7: If (X̄ , Ȳ) is a stationary point of (11), then

∇X f (X̄ , Ȳ) = −∇Y f (X̄ , Ȳ). (40)

Proof: Since (X̄ , Ȳ) is a stationary point of (11),
∇X F(X̄ , Ȳ) = 0,∇Y F(X̄ , Ȳ) = 0, and so

∇X f (X̄ , Ȳ) = γ (Ȳ − X̄) (41)

∇Y f (X̄ , Ȳ) = γ (X̄ − Ȳ). (42)

Hence, ∇X f (X̄ , Ȳ) = −∇Y f (X̄ , Ȳ), and result follows.
Lemma 8: Assume that f (X, Y) = f (Y, X), (X̄ , Ȳ) is a

stationary point of (11). Then, X̄ = Ȳ if γ > (1/4)L X .
Proof: By contradiction, assume X̄ �= Ȳ when

γ > (1/4)L X . From (42), we have

γ 	X̄ − Ȳ	2 = tr[(X̄ − Ȳ)�∇Y f (X̄ , Ȳ)

such that

γ = 2tr[(X̄ − Ȳ)�∇Y f (X̄ , Ȳ)]
2	X̄ − Ȳ	2

= tr[(X̄ − Ȳ)�∇Y f (X̄ , Ȳ)] + tr[(X̄ − Ȳ)�∇Y f (X̄ , Ȳ)]
2	X̄ − Ȳ	2

= tr[(X̄ − Ȳ)�∇Y f (X̄ , Ȳ)] − tr[(X̄ − Ȳ)�∇X f (X̄ , Ȳ)]
2	X̄ − Ȳ	2

≤ f (X̄ , X̄) − f (X̄ , Ȳ) − tr[(X̄ − Ȳ)�∇X f (X̄ , Ȳ)]
2	X̄ − Ȳ	2

= f (X̄ , X̄) − f (Ȳ , X̄) − tr[(X̄ − Ȳ)�∇X f (Ȳ , X̄)]
2	X̄ − Ȳ	2

≤
1
2 L X	X̄ − Ȳ	2

2	X̄ − Ȳ	2

= 1

4
L X . (43)

The third equality uses Lemma 7, the first inequality is
obtained from the first-order condition of the convexity of
f (X̄ , Y) with respect to Y , the fourth equality uses (38), the
last inequality is obtained from the assumption that f (·, X̄) is
L X -smooth.

From (43), we have γ ≤ (1/4)L X , which contradicts with
the starting assumption γ > (1/4)L X .

Lemma 9: Assume that (X̄ , Ȳ) is a stationary point of (11).
Then, X̄ = Ȳ if γ > (1/4)LY .

Proof: By contradiction, assume X̄ �= Ȳ when
γ > (1/4)LY . From (41), we have

γ 	Ȳ − X̄	2 = tr[(Ȳ − X̄)�∇X f (X̄ , Ȳ)

such that

γ = 2tr[(Ȳ − X̄)�∇X f (X̄ , Ȳ)]
2	Ȳ − X̄	2

= tr[(Ȳ − X̄)�∇X f (X̄ , Ȳ)] + tr[(Ȳ − X̄)�∇X f (X̄ , Ȳ)]
2	Ȳ − X̄	2

= tr[(Ȳ − X̄)�∇X f (X̄ , Ȳ)] − tr[(Ȳ − X̄)�∇Y f (X̄ , Ȳ)]
2	Ȳ − X̄	2

≤ f (Ȳ , Ȳ) − f (X̄ , Ȳ) − tr[(Ȳ − X̄)�∇Y f (X̄ , Ȳ)]
2	Ȳ − X̄	2

= f (Ȳ , Ȳ) − f (Ȳ , X̄) − tr[(Ȳ − X̄)�∇Y f (Ȳ , X̄)]
2	Ȳ − X̄	2

≤
1
2 LY 	Ȳ − X̄	2

2	Ȳ − X̄	2

= 1

4
LY . (44)

The third equality uses Lemma 7, the first inequality is
obtained from the first-order condition of the convexity of
f (X, Ȳ) with respect to X , the fourth equality uses (39), the
last inequality is obtained from the assumption that f (X̄ , ·) is
LY -smooth.

From (44), we have γ ≤ (1/4)LY , which contradicts with
the starting assumption γ > (1/4)LY .
Theorem 2 follows on combining Lemmas 8 and 9.

HU AND KWOK: LOW-RANK MATRIX LEARNING USING BIS MINIMIZATION 3527

REFERENCES

[1] A. D’Aspremont, E. L. Ghaoui, M. I. Jordan, and G. R. G. Lanckriet,
“A direct formulation for sparse PCA using semidefinite programming,”
SIAM Rev., vol. 49, no. 3, pp. 41–48, Sep. 2007.

[2] E. Xing, A. Ng, M. Jordan, and S. Russell, “Distance metric learning
with application to clustering with side-information,” in Proc. Adv.
Neural Inf. Process. Syst., 2002, pp. 505–512.

[3] K. Weinberger, J. Blitzer, and L. Saul, “Distance metric learning for
large margin nearest neighbor classification,” in Proc. Adv. Neural Inf.
Process. Syst., 2006, pp. 1473–1480.

[4] G. R. C. Lanckriet, N. Cristianini, P. Bartlett, L. E. Ghaoui, and
M. Jordan, “Learning the kernel matrix with semidefinite programming,”
J. Mach. Learn. Res., vol. 5, pp. 27–72, Jan. 2004.

[5] E.-L. Hu, B. Wang, and S.-C. Chen, “BCDNPKL: Scalable non-
parametric kernel learning using block coordinate descent,” in Proc. 28th
Int. Conf. Mach. Learn., Bellevue, WA, USA, Jun. 2011, pp. 209–216.

[6] G. Obozinski, B. Taskar, and M. I. Jordan, “Joint covariate selection
and joint subspace selection for multiple classification problems,” Statist.
Comput., vol. 20, no. 2, pp. 231–252, Apr. 2010.

[7] N. Srebro, J. Rennie, and T. Jaakola, “Maximum-margin matrix factor-
ization,” in Proc. Adv. Neural Inf. Process. Syst., 2005, pp. 1329–1336.

[8] Y. Nesterov and A. Nemirovski, Interior-point Polynomial Algorithms
in Convex Programming. Philadelphia, PA, USA: SIAM, 1994.

[9] Y. Nesterov, “Smoothing technique and its applications in semidefinite
optimization,” Math. Program., vol. 110, no. 2, pp. 245–259, Jul. 2007.

[10] Q. Yao and J. T. Kwok, “Efficient learning with a family of nonconvex
regularizers by redistributing nonconvexity,” in Proc. Int. Conf. Mach.
Learn., New York, NY, USA, Jan. 2017, p. 179.

[11] M. Jaggi, “Convex optimization without projection steps,” 2011,
arXiv:1108.1170. [Online]. Available: https://arxiv.org/abs/1108.1170

[12] S. Laue, “A hybrid algorithm for convex semidefinite optimization,” in
Proc. 29th Int. Conf. Mach. Learn., Jun. 2012, pp. 1–8.

[13] S. Burer and R. Monteiro, “A nonlinear programming algorithm for solv-
ing semidefinite programs via low-rank factorization,” Math. Program.,
vol. 95, no. 2, pp. 329–357, Feb. 2003.

[14] M. Journée, F. Bach, P.-A. Absil, and R. Sepulchre, “Low-rank opti-
mization on the cone of positive semidefinite matrices,” SIAM J. Optim.,
vol. 20, no. 5, pp. 2327–2351, May 2010.

[15] L. Grippo, L. Palagi, and V. Piccialli, “Necessary and sufficient global
optimality conditions for NLP reformulations of linear SDP problems,”
J. Global Optim., vol. 44, pp. 339–348, Jul. 2009.

[16] E.-L. Hu and J. T. Kwok, “Efficient kernel learning from side informa-
tion using ADMM,” in Proc. Int. Joint Conf. Artif. Intell., Jun. 2013,
pp. 306–316.

[17] Z. Li and J. Liu, “Constrained clustering by spectral regularization,” in
Proc. Int. Conf. Comput. Vis. Pattern Recognit., Jun. 2009, pp. 421–428.

[18] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
optimization and statistical learning via the alternating direction method
of multipliers,” Found. Trends Mach. Learn., vol. 3, pp. 1–122, Jul. 2011.

[19] Y. Xu and W. Yin, “A block coordinate descent method for regular-
ized multiconvex optimization with applications to nonnegative tensor
factorization and completion,” SIAM J. Imag. Sci., vol. 6, no. 3,
pp. 1758–1789, 2013.

[20] S. J. Wright, “Coordinate descent algorithms,” Math. Program., vol. 151,
no. 1, pp. 3–34, Jun. 2015.

[21] C. Scherrer, A. Tewari, M. Halappanavar, and D. Haglin, “Feature
clustering for accelerating parallel coordinate descent,” in Proc. Adv.
Neural Inf. Process. Syst., 2012, pp. 28–36.

[22] R. Mazumder, J. H. Friedman, and T. Hastie, “SparseNet: Coordinate
descent with nonconvex penalties,” J. Amer. Stat. Assoc., vol. 106,
no. 495, pp. 1125–1138, 2011.

[23] P. Richtarik and M. Takac, “Iteration complexity of randomized block-
coordinate descent methods for minimizing a composite function,” Math.
Program., vol. 144, nos. 1–2, pp. 1–38, Apr. 2014.

[24] C.-J. Hsieh, K.-W. Chang, C.-J. Lin, and S. Sundararajan, “A dual
coordinate descent method for large-scale linear SVM,” in Proc. 25th
Int. Conf. Mach. Learn., Helsinki, Finland, Jul. 2008, pp. 408–415.

[25] C.-J. Hsieh and I. S. Dhillon, “Fast coordinate descent methods with
variable selection for non-negative matrix factorization,” in Proc. 17th
Int. Conf. Knowl. Discovery Data Mining, San Diego, CA, USA,
Aug. 2011, pp. 1064–1072.

[26] O. Fercoq and P. Richtárik, “Optimization in high dimensions via accel-
erated, parallel and proximal coordinate descent,” SIAM Rev., vol. 58,
no. 4, pp. 739–771, 2016.

[27] A. Beck and L. Tetruashvili, “On the convergence of block coordinate
descent type methods,” SIAM J. Optim., vol. 23, no. 4, pp. 2037–2060,
2013.

[28] Y. Nesterov, Introductory Lectures Convex Optimization: A Basic
Course. Norwell, MA, USA: Kluwer, 2004.

[29] M. J. D. Powell, “On search directions for minimization algorithms,”
Math. Program., vol. 4, no. 1, pp. 193–201, Dec. 1973.

[30] Y. Xu, “Block coordinate descent for regularized multi-convex optimiza-
tion,” Ph.D. dissertation, Rice Univ., Houston, TX , USA, 2012.

[31] J. Nocedal and S. J. Wright, Numerical Optimization. New York, NY,
USA: Springer-Verlag, 2006.

[32] A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding
algorithm for linear inverse problems,” SIAM J. Imag. Sci., vol. 2, no. 1,
pp. 183–202, 2009.

[33] S. Burer and C. Choi, “Computational enhancements in low-rank
semidefinite programming,” Optim. Methods Softw., vol. 21, no. 3,
pp. 493–512, 2006.

[34] S. Ghadimi and G. Lan, “Accelerated gradient methods for nonconvex
nonlinear and stochastic programming,” Math. Program., vol. 156,
nos. 1–2, pp. 59–99, Mar. 2016.

[35] H. Li and Z. Lin, “Accelerated proximal gradient methods for nonconvex
programming,” in Proc. Adv. Neural Inf. Process. Syst. (NIPS), 2015,
pp. 379–387.

[36] J. Zhuang, I. Tsang, and S. Hoi, “A family of simple non-
parametric kernel learning algorithms,” J. Mach. Learn. Res., vol. 12,
pp. 1313–1347, Apr. 2011.

[37] W. M. Rand, “Objective criteria for the evaluation of clustering meth-
ods,” J. Amer. Stat. Assoc., vol. 66, no. 336, pp. 846–850, 1971.

[38] S. Shalev-Shwartz, A. Gonen, and O. Shamir, “Large-scale convex
minimization with a low-rank constraint,” in Proc. 28th Int. Conf. Mach.
Learn., 2011, pp. 329–336.

[39] Y. Nesterov, “Smooth minimization of nonsmooth functions,” Math.
Program., vol. 103, no. 1, pp. 127–152, May 2005.

En-Liang Hu received the Ph.D. degree in computer
science from the Nanjing University of Aeronautics
and Astronautics, Nanjing, China, in 2010.

He was a Research Assistant and then became
a Post-Doctoral Researcher with the Department
of Computer Science and Engineering, Hong Kong
University of Science and Technology, Hong Kong.
He is currently an Associate Professor with the
Department of Mathematics, Yunnan Normal Uni-
versity, Cheng Gong Campus, Kunming, China. His
current research interests include machine learning,

data mining, and optimization.

James T. Kwok (M’98-SM’07-F’17) received
the Ph.D. degree in computer science from the
Hong Kong University of Science and Technology,
Hong Kong.

He is currently a Professor with the Department
of Computer Science and Engineering, Hong Kong
University of Science and Technology.

Dr. Kwok served/is serving as a Governing Board
Member. He served/is serving as the Vice President
for Publications of the Asia Pacific Neural Net-
work Society. He also served/is serving as the Area

Chair of major machine learning/AI conferences. He served/is serving as an
Associate Editor for the IEEE TRANSACTIONS ON NEURAL NETWORKS

AND LEARNING SYSTEMS, Neurocomputing, and International Journal of
Data Science and Analytics. He was a recipient of the IEEE Outstanding
2004 Paper Award, the Second Class Award in Natural Sciences by the
Ministry of Education, and the People’s Republic of China, in 2008.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

