Bringing the Performance to the “Cloud”

Dongsu Han

KAIST

Department of Electrical Engineering
Graduate School of Information Security

The Era of Cloud Computing

Datacenters at Amazon, Google, Facebook

";‘

Customers of the Cloud

e Customers “rent” either physical or virtual
machines from the cloud.

e Public and private cloud: External or internal

3 Googe

:
D q & reddit

[
-

Scale of the “Cloud”

e Facebook: “hundreds of thousands of machines.”
e Microsoft: 1 million servers
e Google envisions 10 million servers.

e Google spends about S3 Billion every year on data
centers.*

*http://www.datacenterdynamics.com/focus/archive/2013/01/google’s-
data-center-spend-slows-2012

Efficiency is important

What if we can increase a single machine’s
performance by e.g., 10, 20, 40%?

Equipment cost savings

Energy savings: By 2012, the cost of power for the
data center is expected to exceed the cost of the
original capital investment. [U.S DoE]

Reduced complexity in system design as # of
machine involved decreases

How do we improve the Cloud
efficiency (and performance)?

We start with a single machine.

What does a machine look like?
What kind of workload does it handle?

What does a machine look like today?

e General purpose hardware (x86 architecture)
e Multicore: 4 ~60 cores (tens of CPU cores)
e Multiple 10-Gigabit Ethernet (becoming the norm)

7

A Typical Cluster Configuration

Web tier

ront-end

Storage tier

A Typical Cluster Configuration

Web tier
ront-end

Back-end

e |

Cache tier

Front-end interaction happens over HTTP (TCP).
Back-end interaction can use any protocol.

A Typical Cluster Configuration

q Web tier
<

Up to 3x improvement in

performance
F| w—SrSNTITTEE | =N
e e
= = Up to 7x improvement in
Cache tier performance

1. Improving the performance of a cache server [NSDI'14]
Joint work with H. Lim, M. Kaminsky, and D. Andersen

2. Improving the performance of a Web server [NSDI’14]
w/ E. Jeong, S. Woo, M. Jamshed, H. Jeong, S. Ihm, and K. Park

10

In-Memory Key-Value Cache

[<HIH [l v <HIIE ’\ / \

3 IS e S| \4__‘j \4_"/

= E L\\\Bj \WJ}
Key-value Cache Database

e Key-values are stored in DRAM (“Memcache”)

In-Memory Key-Value Cache

What is the workload of a K-V
cache like?

Key-value Cache Database

[SOSP] 2007, 2009, 2011 [NSDI] 20133, 2013b [EuroSys] 2012
[SIGCOMM] 2012 [SOCC] 2010, 2012 [SIGMETRICS] 2012 [ATC] 2013

Workload of a Key-value cache

CDF

Value Size CDF by appearance

08

06

04

0.2

||||||||

|5 different
. |Memcached
VAR o 'DOONS

Reeey o

1 10

100 1000 10000 100000~ 1e+06
Value size (bytes)

Facebook K-V size distribution [SIGMETRICS2012]

13

Diverse Workload [SIGMETRICS2012]

Read intensive

70000 ...
DELETE
50000 UPDATE s
.. n.g..... _
Write °¢T
’(7)\ 50000
C
S
T 40000 |
2
8 30000
3
O
(]
@ 20000 |
10000

USR APP ETC VAR SYS

Pool

Fast In-Memory Key-Value Cache

Must handle small, variable-length items efficiently
Support both read- and write-intensive workloads

Current K-V Cache Performance

Workload: YCSB-B (95% GET, 5% PUT)

Throughput (M operations/sec)

80
70
60
50
40
30
20

- 8.9
10 1.4 <1 4.4]

O m | |

Memcached RAMCloud MemC3 Masstree

End-to-end performance using UDP
Server equipped with dual 8-core @2.7 GHz, 80 GbE

16

Read-Intensive Workload

Workload: YCSB-B (95% GET, 5% PUT)

Throughput (M operations/sec)

80

70

60

50

40

30

20

10

O —

Memcached RAMCloud MemC3 Masstree

End-to-end performance using our optimized network stack
Server equipped with dual 8-core @2.7 GHz, 80 GbE

17

Read-Intensive Workload

Workload: YCSB-B (95% GET, 5% PUT)

Throughput (M operations/sec)

Maximum
77.8 packets/sec

80

attainable using

70

UDP protocol

60

Problem 1:

50

Large gap

40

30

23.5

20

10

O —

Memcached RAMCloud MemC3 Masstree

(Ideal)

End-to-end performance using our optimized network stack
Server equipped with dual 8-core @2.7 GHz, 80 GbE

18

Write-Intensive

Workload: YCSB-A (50% GET, 50% PUT)

Throughput (M operations/sec) Maximum
20 77.8 packets/sec
20 4 attainable using
UDP protocol
60
50
40 Problem 2:

30 | Performance collapses

20 under heavy write
10 <1 <1 <1
O I T T

Memcached RAMCloud MemC3 Masstree (Ideal)

End-to-end performance using our optimized network stack
Server equipped with dual 8-core @2.7 GHz, 80 GbE

19

MICA Performance Preview

Workload: YCSB-A (50% GET, 50% PUT)

Throughput (M operations/sec) About 14 ns per request Maximum
20 77.8 packets/sec
attainable using
UDP protocol

70
60
50
40
30

MICA: 70.1 Mops

20 11.7

10 <1 <1 <1
O I T T

Memcached RAMCloud MemC3 Masstree (Ideal)

End-to-end performance using our optimized network stack
Server equipped with dual 8-core @2.7 GHz, 80 GbE

20

MICA Approach

MICA redesigns a K-V cache in a holistic way.

Server

ay, *
LS *
.
*
.
. L
. .
n L]

Client —> NIC

‘e

*
by
/-----"‘

2. Request 1. Parallel 3. Key-value
direction data access data structures

“CPU

21

Parallel Data Access

Server node

.:.“ ".“‘ CPU :."
Client :—| NIC < “Memory
‘0’.’. ““.0 CPU "“ Kﬁ-““
2. Request 1. Parallel 3. Key-value
direction data access data structures

e Modern CPUs have many cores (8, 12, ...)
e We must exploit CPU parallelism efficiently.

22

Concurrent Read/Write (CRCW)

e Any core can read/write any part of memory
CPU core
% Memory
CPU core
+) Can distribute load to multiple cores

e Memcached, RAMCloud [SOSP], MemC3 [NSDI],
Masstree [EuroSys]

-) Limits scalability with multiple cores

e Lock contention

e Expensive cacheline transfer caused by
concurrent writes on the same memory location

23

MICA Scales Well with Many Cores

YCSB-A
Skewed, 50% GET

Throughput (Mops)

1

*MemC3
“*Memcached

“®RAMCloud

NN

0.1 I T T
2 4 8 16
Number of CPU cores

24

MICA Scales Well with Many Cores

Throughput (Mops)

100

10

0.1

YCSB-A
Skewed, 50% GET

e

&MICA _
““rMasstree

“*%MemC3
§: “*Memcached
o NE “-RAMCloud

[["
2 4 8 16

Number of CPU cores

25

MICA’s Parallel Data Access

e Partition data using the hash of keys

e Exclusive Read/Write (EREW)
e Only one core accesses a particular partition

CPU core — Partition

CPU core — Partition

+) Avoids synchronization/inter-core
communication [H-Store,VoltDB]

-) Can be slow under skewed key popularity
e A popularitem cannot be served by multiple cores

26

EREW Outperforms CRCW

“Skewed” — Same as YCSB’s
Zipf key popularity with skewness=0.99

Throughput
80 -

70.9 70.3

70.1 70.2

70 -

60 -

50 -

40 -
“ Uniform, 50% GET

30

50 - ® Uniform, 95% GET

.l # Skewed, 50% GET
% Skewed, 95% GET

0 -
CRCW

27

Skew Does Not Hurt (Much)

Throughpu’g_gMops) Some cores can process more
o “.. — requests under skewed workloads
0‘0
—+=Uniform
-#-Skewed

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Core #
Per-core performance breakdown

e Hot partitions contain a few popular keys,
making CPU cache very effective

28

Request Direction

Server node

O..
*

:“0‘ ““CPU:': ‘- ““_------....‘
Client | I NIC < _E'Jylemoryj-
‘0’... ""0’ CPU ““ K ".-..&--“‘
2. Request 1. Parallel 3. Key-value
direction data access data structures

e EREW requires correct request direction.

e Arequest must be sent to the core/partition that
handles the requested key.

29

Common Request Direction Scheme

Flow-based affinity Server node
Client M CPU
| NIC |
Client CPU

I

Using 5-tuple to assign packets to cores

e Useful for flow-based protocols (e.g., TCP)

e Does not work well with MICA’s EREW
e A client can request keys from different partitions

MICA’s Request Direction

Object-based affinity

e MICA overcomes commodity NICs’ limited
programmability by using client assistance

Server node

. Key 1
Client — — CPU
ey
. Kee _NIC |
Client T Key 2 N\ CPU
Key’s partition ID is put into Programmed to use the embedded partition
packet header (UDP dest port) ID to direct packets to cores

 Uses Intel Data Plane Development Kit (DPDK) for
low-overhead burst packet I/0 bypassing OS kernel

31

NIC HW for Request Direction

Throughput (Mops)

80
~ Uniform

Skewed

70

60

50

40

30 -

20 -

10 -

0 B T
Software-only

Using EREW for parallel data access

32

Key-Value Data Structures

Server node

O..
*

.:"‘ "‘CPU .:: e .
Client | I NIC < _E'Jylemoryj
‘o’... "“0’ CPU “" K ".-..&--“‘
2. Request 1. Parallel 3. Key-value
direction data access data structures

e Significant impact on key-value processing speed
e New design required to support both read and
write operations at high speeds

33

MICA’s Key-Value Data Structures

e Each partition has two data structures:
e Circular log store
e Lossy concurrent hash index

e Omitted in this talk: numerous optimizations
e Garbage collection
e |RU approximation
e NUMA-aware memory allocation, memory mapping
e memory prefetching, cache-friendly data structures
e Concurrency support (for “CREW”)

34

Circular Log Store

e Allocates space for key-value items of any length

e Simple garbage collection and free space
defragmentation

New item is
\l appended at tail
o Ta||(ﬁxed|og e

Insufficient space

‘ .) ‘ Evict oldest item
or new item: ' at head (FIFO)
-@ --------------- Y

Lossy Concurrent Hash Index

e [ndexes items in the circular log with a set-

associative hash index

bucket O
hash(Key) ~_—> bucket 1

bucket N-1

Circular
log

Hash
index

Key,Val

e Full bucket? Evict oldest entry from it (FIFO)

e Allows fast indexing of new key-value items

36

Key-Value Data Structure Comparison

Throughput (Mops) EREW, Skewed, Small Items

80

. % 50% GET 70.1 70.2

/

 B95%GET %

50

40

29.6

30 /
: %
10 6.9 7

Partitioned Masstree MICA

Throughput Comparison

Throughput (Mops)
80
o | “ Uniform, 50% GET
w0 | ® Uniform, 95% GET
; # Skewed, 50% GET
co |
Skewed, 95% GET
40
30
20
10
0 1

Memcached RAMCloud MemC3 Masstree MICA (Ideal)

End-to-end performance using our optimized network stack

38

Throughput-Latency (on Ethernet)

Average latency (us)

140 140
120 120
“*~Memcached UDP
100 100
T : -+ MICA
80 80

o0 orders of magnitude
40 u
20
0 | | | 0O | | | |
0 0.1 0.2 0.3 0 20 40 60 80

Throughput (Mops)
Memcached UDP using standard socket I/O

39

Summary

e MICA takes a holistic approach to designing
fast in-memory key-value caches.
e Efficient parallel data access
e Hardware-based request direction
e Optimized data structures for key-value caching

e MICA consistently achieves high performance
under diverse workloads.

40

Typical Server Cluster Configuration

ﬂ Web tier
<

Up to 3x improvement in
performance

[
=

=N
| =TI

LI
(| I | PN
e+ [+

e |

- e
| . e

Up to 7x improvement in
Cache tier performance

1. Improving the performance of a cache server [NSDI'14]
Joint work with H. Lim, M. Kaminsky, and D. Andersen

2. Improving the performance of a Web server [NSDI'14]
E. Jeong, S. Woo, M. Jamshed, H. Jeong, S. Ihm, and K. Park

41

Workload for User-facing Servers

Measurement of TCP flows in commercial cellular
backbone [Woo,mobisys’13]

100%

80%

60%

CDF

40%

20%

0% ,

0 1K 4K 8K 16K 32K 64K 128K256K512K 1M Total
Flow Size (Bytes)

Over 90% (50%) of TCP flows are smaller than 64 KB (4 KB).

42

Web Server Performance

e Large transfers: easy to fill up 10 Gbps
e Small transactions: 1.2 Gbps under SpecWeb
e Kernel is not designed well for multicore systems.

TCP Connection Setup Performance

a2 2.5 Linux: 3.10.16

= 20 Intel Xeon E5-2690

9 Intel 10Gbps NIC

<15

S 10 Performance Meltdown
@

£ 05

o

2 00

2 4 6 8
Number of CPU Cores

43

Performance Analysis of a Web Server

83% of CPU usage spent
inside kernel!

‘ -
4%
B Kernel ™ Packet!l/O ™ TCP/IP M Application

Inefficiencies in Kernel TCP/IP Stack

1. Lack of connection locality

CM TCP send/recv buffer

/' 4
Application Packet/
thread TCP processing
(ksoftirgd)

]
Core 0 ‘ Core 1

packet

45

Inefficiencies in Kernel TCP/IP Stack

1. Lack of connection locality

while (1) { while (1) {

epoll_wait(...) epoll_wait(...)

fd = accept(listen_fd, NULL); fd = accept(listen fd, NULL);

read(fd, buf, 1024); read(fd, buf, 1024);

write(fd, buf, 1024); write(fd, buf, 1024);
} }

Application thread Application thread
.] 1
Core 0 Core 1

Accept-Affinity[EUROSYS’12]: connection affinity (only)
Linux SO_REUSEPORT option (v3.9.4): per-core listen socket

46

Inefficiencies in Kernel TCP/IP Stack

2. Shared file descriptor space
fd = accept(listen fd, NULL)

Socket API
Kernel Socket layer < Virtual file system layer
e.g., vfs_open() l
VFS overhead: Flle System

Creates inode for each socket file descriptor.
Finds the lowest available integer [POSIX]

47

Inefficiencies in Kernel TCP/IP Stack

3. System call overhead (frequent and expensive)
while (1) {
epoll_wait(...)
fd = accept(listen_fd, NULL);
read(fd, buf, 1024)

write(fd, buf, 1024);
}

4. Inefficient per-packet processing
e Per-packet memory allocation/deallocation overhead

MegaPipe[OSDI’12]: partially address problems 1,2,3
= All prior work reuses kernel’s TCP/IP.

48

MmTCP Approach

e mTCP: a high-performance user-level TCP
design for multicore systems

e Clean-slate approach to divorce kernel’s
complexity
1. Leverage user-level packet |/O
2. Support multicore-aware flow processing
3. Provide a user-level socket API

49

MTCP Overview

User process

User-space
memo
B

Application thread Application thread

|
5 i
| |
| 1
I |
| |
| 1
: TCP epoll-fik |

i -l1IKe

| mTCP socket interface MLz epo :
: event system :
i l
| |
| |
| |
’ s
I I

MmTCP thread MmTCP thread

User-level Packet I/O library

Kernel Device Driver
] I

Core 0 Core 1

50

MTCP Overview

Core-affinity (1) Per-core file Kernel bypass, Batched packet
descriptor, listen No system call (3) processing (4)
socket (2)
Application thread Application thread
mtcp=acce
mTCP epoll-like ‘

mMTCP socket interface

event system

Per-cor mTCP thread mTCP thread Event Q
Event

Socket buffer

User-level Packet I/O library

Device Driver
]

Core 0

Core 1

Packet queue Receiver-side scaling (H/W)

51

MTCP Overview

Core-affinity (1) Per-core file Kernel bypass, No Batched packet
descriptor, listen system call (3) processing (4)
socket (2)
Application thread Application thread

TCP socket interface m E epoll-like
a/emt system
mTCP thread i P thread

User-level Packet 1/0O | ! ary

Device Driver I

Core 0

ENCLVIAN\VIEAVIViIW]1U L

52

MTCP Design

e Highly scalability on multicore systems
e 25x faster than latest Linux version
e 3x faster than MegaPipe

e Easy to use; little porting effort
e Modified 29 lines of the Apache library (out of 66,493)

e Evaluation
e HTTP server/client: lighttpd, Apache

e Web Replayer: replays cellular backbone traffic (Korea)
e SSL Proxy

53

Multicore Scalability

e 64B message per each connection
e Heavy connection, small packet processing overhead
e 25x Linux, 5x REUSEPORT, 3x MegaPipe [OSDI 2012]

15
S 12
X
o 9
7
> 6 —
{ -
'.l(:: 3 ——
3 0 R —0
: I I I I
S o 1 2 4 8
Number of CPU Cores

#-Linux “"REUSEPORT “<MegaPipe “mTCP

Throughput (Gbps)
o N S (@) (0]

Message Benchmark

10

e Scaling by message size

e Persistent connection with 64 byte messages

==Linux ===REUSEPORT MegaPipe “®mTCP

N
o

W
o

[EEY
o

—

=

64B 256B 1KiB 4KiB 8KiB 1 2 8

o

Transactions/sec (x 10°)
N
o

Link saturation

32 64 128

Message Size # Messages/connection

Web Server (Lighttpd) Performance

e SpecWeb2009 static file workload (738B average)
e 3.2x faster than Linux, 1.5x faster than MegaPipe

5 CIThroughput (Gbps) 4
’54 —-Transactions/sec _» 3.5 LT’c‘_:T
5 Pz
2 5 25 »
= (V)]
%o 1.5 §
£ -
0.5 F

0 0

Linux REUSEPORT MegaPipe mTCP

Summary

e mTCP: a high-performance user-level TCP stack for
multicore systems

e Efficiently utilize multicore resources by
e Eliminating system call overhead
e Reducing context switch cost by event batching
e Using per-core resource management
e Using cache-aware threading

e Achieve high performance scalability

e Small message transactions: 3x to 25x
e Existing applications: 33% (SSLShader) to 320% (lighttpd)

Conclusion

e Despite many efforts from academia and industry,
there still exists lots of room for innovations for

Cloud-based systems and services.

e Essential building blocks for Cloud services can
benefit from a holistic, multicore-aware design
that leverages the underlying H/W and that
carefully considers the workload.

e More research is ahead in bringing new
applications to the Cloud.

58

Reference

[DPDK]
http://www.intel.com/content/www/us/en/intelligent-systems/intel-
technology/packet-processing-is-enhanced-with-software-from-intel-
dpdk.html

[FacebookMeasurement] Berk Atikoglu, Yuehai Xu, Eitan
Frachtenberg, Song Jiang, and Mike Paleczny. Workload analysis of a
large-scale key-value store. In Proc. SIGMETRICS 2012.

[Masstree] Yandong Mao, Eddie Kohler, and Robert Tappan Morris.
Cache Craftiness for Fast Multicore Key-Value Storage. In Proc.
EuroSys 2012.

[MemC3] Bin Fan, David G. Andersen, and Michael Kaminsky. MemC3:
Compact and Concurrent MemCache with Dumber Caching and
Smarter Hashing. In Proc. NSDI 2013.

[Memcached] http://memcached.org/

[RAMCloud] Diego Ongaro, Stephen M. Rumble, Ryan Stutsman, John
Ousterhout, and Mendel Rosenblum. Fast Crash Recovery in
RAMCloud. In Proc. SOSP 2011.

59

