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ABSTRACT
Datacenter networks provide high path diversity for traffic
between machines. Load balancing traffic across these paths
is important for both, latency- and throughput-sensitive ap-
plications. The standard load balancing techniques used to-
day obliviously hash a flow to a random path. When long
flows collide on the same path, this might lead to long lasting
congestion while other paths could be underutilized, degrad-
ing performance of other flows as well. Recent proposals to
address this shortcoming incur significant implementation
complexity at the host that would actually slow down short
flows (MPTCP), depend on relatively slow centralized con-
trollers for rerouting large congesting flows (Hedera), or re-
quire custom switch hardware, hindering near-term deploy-
ment (DeTail).

We propose FlowBender, a novel technique that: (1) Load
balances distributively at the granularity of flows instead
of packets, avoiding excessive packet reordering. (2) Uses
end-host-driven rehashing to trigger dynamic flow-to-path
assignment. (3) Recovers from link failures within a Re-
transmit Timeout (RTO). (4) Amounts to less than 50 lines
of critical kernel code and is readily deployable in commod-
ity data centers today. (5) Is very robust and simple to tune.
We evaluate FlowBender using both simulations and a real
testbed implementation, and show that it improves average
and tail latencies significantly compared to state of the art
techniques without incurring the significant overhead and
complexity of other load balancing schemes.

Categories and Subject Descriptors
C.2.2 [Computer Communication Networks]: Network
Protocols
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1. INTRODUCTION
Datacenter networks are typically based on multistage

fat-tree topologies which provide high bisection bandwidth
via a large number of paths between any pair of hosts [5,
15]. Efficient utilization of these paths is critical to the per-
formance of datacenter applications. If traffic distribution
across paths is uneven, some paths may congest unneces-
sarily while others go underutilized, adversely affecting the
throughput and tail latency of network flows. The impact
of long tail latencies on datacenter applications is well un-
derstood and has been the subject of recent work [7, 21,
23]. In particular, large-scale online services such as Web
search, retail, and advertising run under soft real-time re-
quirements for improved user experience and revenue. Be-
cause a user-facing response is constructed by aggregating
the results from thousands of servers, the tail latency of the
individual flows directly affects response time and quality.

Equal Cost Multiple Path (ECMP) forwarding is the stan-
dard mechanism used today for spreading traffic across mul-
tiple paths in datacenter networks. ECMP randomly maps
a given flow to one of the paths by hashing some fields in the
packet headers. The fields for hashing are chosen such that
all packets of a given flow follow the same path (i.e., flow
to path mapping is static). ECMP works well in balancing
the aggregate load across all paths when there are a large
number of flows with sufficient entropy across the headers.
However, in reality, datacenter traffic is often heavy tailed
with a small number of long flows contributing a significant
fraction of all traffic [8]. These few long flows may not have
enough entropy to uniformly distribute the load. Therefore,
a handful of long flows could collide on some path to create
a long-lasting congestion while other paths go underutilized.
Despite its shortcomings, ECMP has widespread adoption
because it is supported by commodity off-the-shelf switches
and works out of the box with standard unmodified TCP/IP
stacks.
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The solution space for load balancing traffic in datacen-
ter networks can be classified along two independent dimen-
sions: (1) whether the solution is static, or whether it dy-
namically reacts to current network conditions; and (2) the
extent of out-of-order delivery of packets in a given flow. For
example, ECMP is a static scheme with strict packet order-
ing. We argue that the most desirable design point in this
space would be a solution that is dynamic and has very little
to no re-ordering within a flow. Being dynamic makes the
scheme robust by freeing it from assumptions about traffic
properties (e.g., ECMP requires entropy), and a small de-
gree of packet re-ordering keeps the end host implementation
simple and close to stock TCP/IP stacks. Though a number
of recent proposals have attempted to address the shortcom-
ings of ECMP, none of them fall under the desirable design
point we have described. Switch-driven schemes like De-
Tail [23] are dynamic but incur significant packet re-ordering
and additionally require hardware changes to switch silicon
which incur high cost and hinder incremental deployment.
End-host-driven schemes like MPTCP [17] are dynamic but
have significant end host complexity to manage their packet
re-ordering. Random Packet Scatter (RPS) [13] is static and
also incurs high degree of packet re-ordering.

We propose FlowBender, an end-host-driven load balanc-
ing scheme that is dynamic but incurs little to no packet
re-ordering. FlowBender offers both simplicity and high-
performance. Our central idea addresses the fundamental
problem with ECMP: the flow-to-path assignment is static;
there is no consideration for re-routing if it turns out that
the current path is oversubscribed or even broken. Our so-
lution is to transmit each flow as a single stream, through
the same commodity ECMP-based network, until the flow
is congested or disconnected, at which point the flow is se-
lectively re-routed. We base FlowBender’s design on the key
observation that a handful of long flows account for a large
fraction of network load (bytes) [8], and that addressing
the load imbalance caused by ECMP’s non-uniform hash-
ing amounts mainly to re-balancing the long flows. Because
long flows tend to span several Round-Trip Times (RTTs),
the problem naturally lends itself to an end-to-end design,
obviating the need to make hardware changes to switches.
Also, because we change a flow’s path (route) selectively and
only in response to congestion, we drastically reduce out-
of-order packet delivery, thereby nearly eliminating packet
re-ordering effort.

FlowBender requires two components: (1) a mechanism
to detect congestion or link failures at the host, and (2) a
means for the end host to reroute a specific flow. For con-
gestion and link failure detection, we improvise on Explicit
Congestion Notification (ECN) which is commonly used in
today’s datacenters, in addition to standard TCP Timeouts.
With ECN, senders monitor the fraction of marked packets
to decide whether a flow needs to be re-routed. We chose
end-to-end signals such as ECN and Timeouts as opposed to
link-level, hop-by-hop signals such as Priority Flow Control
(PFC) or queue lengths so that we can react to congestion
and route failures at any hop within the route while prevent-
ing congestion spreading episodes such as Tree Saturation
[11, 20, 12].

For re-routing a flow, we configure the hash function in the
switches to compute its output based on an additional flex-
ible field in the packet header such as Time-To-Live (TTL),
in addition to the other fields the switch is already hash-

ing upon. This flexible field would have its value updated
independently for a flow only when re-routing is desired.
The updated value would then be used for all the future
packets in that flow (hence arriving in order) until the flow
gets rerouted again. Therefore, the flexible field acts con-
ceptually as a path ID for the flow, and changing it causes
the flow to explore a new path through the network. Thus,
while other competing schemes [23, 17, 13] might end up
routing each packet differently, we choose to reroute a flow
to a different path selectively and only during congestion or
route failures, thereby avoiding the cost of excessive packet
re-ordering.

To summarize, the key strengths of FlowBender’s design
are that it:
• Requires no changes to switch hardware (silicon).
• Amounts to only 50 lines of kernel code change.
• Requires simple re-configuration to ECMP hash func-

tions (a handful of commands).
• Substantially outperforms ECMP and matches the per-

formance of other more complex schemes.
• Incorporates robust end-to-end congestion notifications

(ECN) and failure signals (Timeouts).
• Reroutes at the Round-trip Time (RTT) granularity

and recovers from link failures essentially within an
RTO.

We evaluate FlowBender using simulations and a real im-
plementation. With our real implementation we show that
FlowBender reduces the tail latency over ECMP by more
than 40% on average for large flows. With our at-scale ns-3
[4] simulations with workloads representative of datacenter
applications, we show that FlowBender reduces the mean
and tail latency of all-to-all workloads by 73% and 93% re-
spectively as compared to ECMP, while staying within 2% of
other expensive schemes like DeTail and RPS. With storage-
type workloads which generate incast, FlowBender still helps
jobs complete in half to quarter the time relative to ECMP
(i.e. in terms of the Avg. time for the last flow of an incast
job to finish), while also closely matching the performance of
other expensive schemes like DeTail and RPS (within 2% of
their completion times on average and in terms of the tail).
Thus, FlowBender makes a strong case for a non-intrusive,
end-host- and flow-level load balancing using the classic end-
to-end principle [19].

The remainder of the paper is organized as follows. In
Section 2 we discuss related work on improving datacenter
load balancing. Section 3 describes our FlowBender pro-
posal in detail. We present our experimental methodology
and results in Section 4 followed by several suggestions for
further design and performance optimizations in Section 5,
and we conclude in Section 6.

2. RELATED WORK
There is a plethora of work that focus on load balancing.

While it is beyond the scope of this paper to cover all of
them in detail, we present a brief summary of recent work
in this area.

Equal Cost Multiple Path (ECMP) forwarding is the stan-
dard mechanism used in today’s datacenters for load bal-
ancing traffic across multiple paths. The switch computes a
hash function on the various fields of the packet header that
identify a flow, and uses the resulting hash value to pick
a port from the set of eligible ports to forward the packet
along. Such static flow-to-path assignment can work well
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Figure 1: Fat-tree Datacenter Network Topology

when the flows are plentiful and short-lived. However, when
there are relatively few long flows present and their hash
values happen to collide, these flows suffer long-lasting con-
gestion even though other eligible paths go under-utilized.
The key problem with ECMP is that the flow-to-path as-
signment is static; there is no opportunity for rerouting if it
turns out that the current path is oversubscribed.

MPTCP [17] addresses the problem by splitting a TCP
flow into multiple subflows with different port numbers. The
different port numbers, being part of the input to the ECMP
hashing function, cause the subflows to hash to different
paths through the network. The sender splits the origi-
nal data stream across the subflows and monitors the RTT,
throughput, and packet loss along the various subflows[22]
to prioritize those with good performance. The receiver re-
quires additional logic to stitch the arriving data back into
the original data stream. While MPTCP shows improve-
ments over ECMP for flows larger than 70KB, it incurs
significant implementation complexity because of the more
complex sender-side congestion control algorithm and the
receiver-side data reassembly logic (more than 10,000 lines of
kernel code), rendering its performance worse than ECMP’s
for smaller flows [18]. Moreover, MPTCP suffers from high
CPU overhead, shooting up to around 40% on every client
and 10% on every server [17], which is considered to be too
costly for datacenters.

SPAIN [16], another host-based load balancing scheme,
suggests pre-computing a set of paths spanning the entire
network and mapping them to different VLANs. In order
to achieve higher throughput and better fault-tolerance, a
sender dynamically changes its VLAN if a route associated
with the current VLAN fails or at constant intervals in or-
der to shift a long-lived flow to another path to avoid load
imbalance. In constrast, FlowBender incurs less overhead
as it changes routes selectively and only if a flow is con-
gested. Moreover, if a route has a lower capacity than an-
other between two hosts, FlowBender has the natural ten-
dency to send less traffic on the lower-capacity route (Section
4), whereas SPAIN obliviously uses both paths equally. Un-
like SPAIN, FlowBender does not require any routing pre-
computations and its potential usage of VLANs is merely
for adding hashing entropy. We elaborate on FlowBender’s
usage of VLANs in Section 3.

In contrast to MPTCP and SPAIN, Random Packet Spray-
ing (RPS) [13] and DeTail [23] place the burden of load bal-
ancing the traffic upon the switches themselves at the packet
level, requiring hardware changes at the switches. With

RPS, a switch randomly selects an output port from a set of
eligible outports independently for every packet. While RPS
works well for symmetric topologies such as fat-trees (aside
from the out-of-order packet delivery issues mentioned be-
low), when asymmetries arise in a network due to incremen-
tal deployments or link failures, RPS causes severe through-
put inefficiencies [23].

DeTail overcomes RPS’s limitations by combining two dis-
tinct techniques that work synergistically to improve the
tail latency and utilization of the network. First, DeTail
employs Priority Flow Control (PFC) [1] which guarantees
lossless packet-forwarding in the network, but is fraught with
the risks of network deadlock and intra-priority head-of-line
(HOL) blocking issues [11, 20, 12]. Second, DeTail load bal-
ances via a flavor of packet-level adaptive routing [14]. When
a packet arrives at the switch, it chooses the less congested
eligible port to send on. However, such adaptive routing de-
sign has a number of shortcomings. First, it requires custom
switching silicon for monitoring queue length changes at line
rates and for switching packets based on this information.
Custom hardware incurs high cost and long turn-around
time that hinders rapid deployment. Second, because De-
Tail performs load balancing on a per-packet granularity,
it causes frequent out-of-order delivery of TCP segments.
Accordingly, DeTail entirely disables fast retransmit in the
TCP stack. However, a TCP stack with such modification
will not operate well when the remote end of the connection
is a legacy TCP stack (as could be the case with external
or VM-based traffic) or when the intervening network lacks
end-to-end PFC or has a large RTT. Furthermore, link-level
schemes like DeTail cannot handle link failures that occur on
the deterministic part of a path (i.e. when there is a single
downlink towards the destination). In contrast, FlowBen-
der, being end-to-end and host-based, can re-route around
broken paths within an RTO (section 3).

Centralized approaches [6, 9, 10] have also been proposed
to address ECMP’s shortcomings and are motivated by the
observation that efficiently load balancing datacenter traf-
fic flows entails load balancing the relatively fewer larger
ones (given the heavy-tailed nature of datacenter flow size
distributions [8]). While software-based switch controllers
could be leveraged to globally allocate long flows to non-
congested paths, they are not as prompt at handling sudden
traffic changes compared to our RTT-based load balancing
schemes as we discuss in the next section.

Next we describe FlowBender in details and highlight the
major features that distinguish it from the schemes we have
just summarized.

3. FLOWBENDER
We now explain the details of FlowBender, beginning with

the insight that informs its design.

3.1 Flow versus Packet-level Load Balancing
FlowBender operates in between the extreme of statically

sending a flow on one path (ECMP) and that of spread-
ing its packets across multiple paths simultaneously (e.g.
RPS, DeTail, and MPTCP). Efficient load balancing does
not necessarily mean that we have to simultaneously spread
a flow across several paths and then stitch it back together at
the receiver, especially when there is no congestion to start
with. Instead, we target the simpler mechanism of shifting
(rerouting) the entire flow to a different path only once it
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is congested or disconnected, thus avoiding sustained out of
order packet delivery and any hardware updates to existing
datacenter infrastructures.

3.2 Flow Control: Link versus Transport Layer
Link and transport-level congestion signals are important

for realizing better rate control mechanisms, but they could
be also leveraged for guiding our load balancing decisions as
will be explained next. The question we are trying to answer
now is: which congestion signals should we leverage?

Link-level notification mechanisms such as PFC have faster
reaction times compared to RTT-based ones such as Explicit
Congestion Notification (ECN), especially when the conges-
tion point is close to the traffic source itself. When the con-
gestion point is far away from the traffic source, however,
such link-level schemes can notoriously result in congestion
spreading trees [11, 20, 12]. Rather than worrying about this
phenomenon and adding complexity into our switches for
load balancing based on PFC signals, our argument is that
something simple like ECN has been already demonstrated
to be prompt enough in propagating congestion information
back to the sources. Of course, relying on ECN end-to-end
signals means that we are targeting those longer flows that
take several roundtrips to finish, which happen to be those
flows carrying most of the network traffic anyway [8]. Other-
wise, in the hypothetical scenario where most of the traffic
is generated by very small flows only, ECMP should per-
form quite well handling such traffic given the much higher
hashing entropy involved.

Another important reason supporting our transport-layer
choice is that, unlike link-level ones, algorithms such as TCP
can quickly detect link failures end-to-end, which can influ-
ence FlowBender to promptly avoid broken paths as will be
discussed in the next section.

With the clear motivation to pursue flow-level and RTT-
based load balancing only once congestion occurs, we now
proceed to discuss the details of FlowBender.

3.3 The Design of FlowBender
In designing FlowBender we resist any temptations to pur-

sue complex optimization and aim for an ultra-simple ap-
proach that can work with today’s commodity datacenter
switches. We are strictly interested in an approach that
avoids all of the following: added switch hardware complex-
ity, sustained out of order packet delivery, high overhead due
to complicated multi-pathing techniques, and very coarse
load balancing timescales as is typically the case with cen-
tralized schemes. All of these issues can be avoided by an
approach that transmits a flow on a single path, through
an ECMP-based network, and reroutes that individual flow
only once it is congested. The two questions that naturally
follow this last sentence are (1) how is a flow perceived as
congested, and (2) how is rerouting initiated in a simple
ECMP-based network? We address these questions next.

3.3.1 Sensing Congestion
ECN is a standard congestion notification scheme sup-

ported in today’s switches. Our FlowBender approach is not
strictly tied to one way of triggering and handling this feed-
back vs another, but we chose to demonstrate it using state
of the art DCTCP-style marking, where a congested switch
marks every packet exceeding a desired queue size threshold,

and the TCP1 sender keeps track of the fraction of ECN-
marked ACKs every RTT. If this fraction is larger than a
certain threshold for any flow, this means that this flow is
congested and should be rerouted as discussed next.

3.3.2 Rerouting Flows
The ECMP engines in switches are typically set to com-

pute a hash function based on the packet header fields that
uniquely identify a connection. However, the hash engines
can be also normally configured to hash upon other fields in
the packet as well (e.g. the VLAN ID field from the Ether-
net header [2, 3]), and there are actually some already ex-
isting commercial platforms today that allow hashing based
on programmable header offsets such as hashing based on
the TTL value of a packet [2]. Per FlowBender, each TCP
socket independently keeps track of the value V it should
consistently insert into such a ”flexible” hashing field (for ev-
ery outgoing packet), and the socket updates V only once a
flow is congested, thus effectively triggering sender-initiated
rerouting then.

Note that from our FlowBender perspective, we are inter-
ested in ”hacking” only one such flexible field that (i) does
not require any pre-negotiations between the sender and the
receiver for setting the value of (i.e. in contrast to MPTCP’s
port numbers) and (ii) does not cause packet delivery fail-
ures at the receiver or within the fabric if changed. An
example of such a value is the TTL field (as long as its value
V is large enough for a data center environment): whether
it is set to say 90 or 163, a packet will have no issues getting
routed and received properly but would probably traverse a
different path in each case. The VLAN ID is another hash-
ing input that is also easy to leverage as a flexible field, even
when conventional VLANs are setup.2

To recap, each TCP socket sender (i.e. flow) indepen-
dently keeps track of its value V and the per-RTT fraction
of marked ACKs F . Once F exceeds a set threshold T ,
the current path is considered to be potentially congested
and the packets of the corresponding flow are rerouted by
changing the value V of the flexible field.

Before we move to discussing low-level details and opti-
mizations, there is one more extremely important aspect of
FlowBender that is yet to be emphasized: A packet could
be at an advanced stage in its route where the only way for
reaching the destination happens to be broken. In such a
case, link-level schemes like DeTail or PacketScatter would
be stuck unable to reroute around the broken path until the
routing tables are updated (which is normally O(seconds) in
a large-scale datacenter). In the case of our end-to-end Flow-
Bender approach, however, rerouting can be also triggered
once an RTO takes place, bringing the failure recovery time
several orders of magnitude smaller! Of course, it is not
guaranteed that the new value V would necessarily avoid
broken routes from the first attempt. Actually the same
could be said in the case of congestion-triggered rerouting,
where the new route could be even more congested than the

1Datacenter operators have the option of running the trans-
port layer they desire, and the vast majority of flows in a
Datacenter are TCP flows anyway [7].
2Having a wide range for selecting the value V from usually
means that there are more options for rerouting. We experi-
mented with a wide range of values and have unsurprisingly
found that even when we restricted each flow to 2 options
only, FlowBender was extremely effective. We have empiri-
cally chosen a range of 8 options for V in our experiments.
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previous one. The catch, however, is that as long as there is
a statistical drift to avoid broken or congested routes, they
will be avoided, even if this takes a couple of attempts before
things are straightened out.

3.4 Recommended Parameter Settings and Sim-
ple Optimizations

FlowBender is very simple to tune. In its simplest form,
the main parameter to configure is the T congestion thresh-
old, which should be chosen to be small enough in order
to alleviate congestion at its early onset. The smaller it is,
the sooner we could be avoiding severe congestion episodes,
but the more rerouting false alarms we might be getting.
We have empirically varied T , the threshold for the percent-
age of marked ACKs, between 1% and 10% for our experi-
ments and found FlowBender to be very effective across this
range.3 The reason FlowBender continued to be very effec-
tive at very low T thresholds is that it would not switch to
a new route until at least one RTT has elapsed, thus caus-
ing packet reordering only among those packets transmitted
around the rerouting instance (i.e. relatively few compared
to the extent of reordering in the case of DeTail or RPS). In
other words, false alarms, potentially due to bursty marking,
would not be that expensive after all.

3.4.1 Even Less Reordering?
If an argument is made for a specific scenario or applica-

tion where very little packet reordering instances could be
tolerated, FlowBender could be readjusted to reroute only
after a flow is consistently congested (T is exceeded) for N
consecutive RTTs.4 The pseudocode for the basic FlowBen-
der algorithm together with this addition is shown below.
We ran another instance of the experiments described in
the next section with such an optimization, where N was
set equal to 2, and saw very similar performance compared
to the basic version described earlier.

for every RTT do
F ← num marked pkts/total pkts
if F > T then
num congested rtts+ +
if num congested rtts >= N then
num congested rtts← 0
Change V

end if
else
num congested rtts← 0

end if
end for

As is clear from its pseudo code and description, Flow-
Bender’s design is simple enough that its complete imple-
mentation requires only about 50 lines of kernel code on
the hosts, and 5 lines of configuration code on the switches.
Such simplicity is in stark contrast to the software complex-
ity of schemes like MPTCP and the hardware complexity of
DeTail.

3All of this while maintaining the default tcp reordering
threshold of 3 and confirming that the CPU overhead does
not increase due to FlowBender.
4One might even want to exponentially average F across
those N RTTs for a smoother reaction, but we don’t think
such optimizations are necessary at this stage.

3.4.2 Desynchronizing Flows
When a link is congested, it could be that two or more long

flows would be triggered to reroute at the same time, and
it’s important to ensure that we are avoiding the situation
where multiple simultaneous rerouting events would cascade
into a rerouting wave in the fabric. Reacting at a very early
congestion onset and having the RTT epochs for calculating
F naturally jittered seems to be already quite helpful desyn-
chronizing these events per the results discussed in the next
section. Another design option for fortifying these jitters
further is by avoiding that all flows reroute after exactly N
consecutively congested RTTs, and randomly choosing the
number to be something like N , N + 1, or N − 1 instead.

3.4.3 FlowBender beyond TCP
Even though our discussion in this paper has been fo-

cused on illustrating FlowBender’s potential on top of TCP,
the same load balancing principles could be easily applied
to other transport protocols that sense congestion (whether
CE-based, drop-based, RTT-based, etc). Moreover, for un-
reliable transport protocol flows such as UDP, one can ar-
gue that packet or burst-level “spraying,” by changing the
V value at the desired pace, would be extremely helpful
for load-balancing the network traffic more effectively, espe-
cially given that applications that use UDP are usually ro-
bust or oblivious to packet reordering (of course, Weighted
instead of Equal Cost Multi-pathing is required anyway to
handle non-uniform link capacities and topological asymme-
tries).

3.4.4 Other Optimizations?
We clearly don’t claim that FlowBender provides the abso-

lutely best performance or would always lead to an optimal
performance in theory. There are several optimizations that
can be applied for improving FlowBender, as discussed in
Section 5. However, at this stage, we are more interested
in illustrating how this simplest version can still drastically
improve datacenters performance!

4. EVALUATION
We evaluate FlowBender against existing schemes (i.e.,

ECMP, RPS, and DeTail) using both simulations and a real
implementation. DeTail requires custom silicon modifica-
tion so we rely on simulations to perform at-scale evalua-
tions. We simulate production-like workloads in a typical
datacenter-like topology. We also evaluate FlowBender on
real testbed implementation as a proof-of-concept and to
capture the effect of real system limitations and side-effects
(e.g., Large Segment Offload (LSO)).

4.1 A Note on MPTCP
In our evaluations, we were not able to compare to MPTCP

for the following reasons: (1) There is a lack of a reliable
NS simulation package that we could leverage. (2) The
latest publicly available MPTCP Linux release suffers from
performance issues due to several implementation artifacts.
These issues impact small flows drastically (similar to those
reported in [13]), to the extent that the performance of
MPTCP can be lower than a well-tuned ECMP network.
Because the performance numbers capture the effect of im-
plementation artifacts instead of the technical idea itself,
such a comparison would be unfair to MPTCP and we opt
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Figure 2: Fat-tree Datacenter Network Topology

to omit such a comparison. That said, even if those artifacts
were to be adjusted appropriately, MPTCP’s improvement
relative to FlowBender’s, if any, would be marginal because
both DeTail and FlowBender closely match the performance
of RPS (Section 4.2.3 and Section 4.2.5), which is optimal
for the symmetric fat-tree datacenter topologies we evaluate.

In addition to quantitative performance, MPTCP pos-
sesses certain qualitatively undesirable design issues. For ex-
ample, MPTCP has complex implementation, and because
it pre-negotiates multiple routes for every connection it un-
necessarily incurs higher overhead for very short flows.

4.2 Simulation

4.2.1 Methodology
Topology: We use ns-3 [4] simulations to evaluate Flow-

Bender on production-like workloads. We model the net-
work topology and the traffic after typical production de-
ployments. We simulate a fat-tree network [15] analogous to
that depicted in Figure 2. The network has 128 servers, orga-
nized into four pods, each having four Top of the Rack (ToR)
and four aggregation switches, with eight core switches inter-
connecting the pods (overall oversubscription factor of four
from servers to core switches). Because 10 Gbps ethernet is
typical in today’s datacenters, we use 10 Gbps point-to-point
ethernet links across our entire network. All our switches use
combined input-output queuing in order to better suit De-
Tail’s requirements (the switch architecture does not impact
ECMP, FlowBender or RPS). We configure the host delay
to be 20 µs and the switch delay to be 1 µs, and we ob-
tain a baremetal RTT of 2× 5× 1 + 4× 20 = 90µs between
two servers on different pods, which is realistic per today’s
datacenters RTTs.

ECMP: Because DCTCP provides faster congestion re-
sponse and helps eliminate costly timeouts, we chose DCTCP
as the base TCP stack upon which we build all the other
schemes. We start with ns-3’s TCP New Reno protocol,
and implement DCTCP [7] on top of it, faithfully capturing
all its optimizations. We set the parameters of DCTCP to
match those in [7]: (1) g, the factor for exponential weighted
averaging, is set to 1

16
; and (2) K, the buffer occupancy

threshold for setting the CE-bit, is set to 90 KB (typical
for 10 Gbps links). So, our base case (ECMP) is DCTCP
running over a commodity datacenter network with ECMP-
enabled switches.

FlowBender: We implement FlowBender on top of DCTCP.
We set T , the congestion threshold, to 5%, and N , the num-

ber of RTTs a sender must be congested before switching
paths, to 1. Both DCTCP and FlowBender use an RTOmin

of 10ms.
DeTail: We use the same implementation from [23] in

conjunction with DCTCP instead of the standard DropTail
TCP. We set the pause and unpause thresholds to 20 KB and
10KB on the ingress queues respectively, per the guidelines
in [1]. As suggested by the DeTail paper, we also disable
TCP’s fast retransmit to handle out-of-order packet deliv-
ery. The DeTail paper uses two thresholds of 16 KB and
64 KB to reduce the implementation complexity of deter-
mining the least congested output port at the switches, at
the cost of a small performance loss (due to inaccuracy in
the determination of the least congested output port). To
abstract away the effect of this trade-off, we generously do
a full comparison across all output port counters in DeTail
to always find the minimally congested path without intro-
ducing any additional latency/throughput overhead due to
this optimization. Thus, we compare FlowBender to the
best-possible implementation of DeTail.

RPS: Our implementation of RPS consists of DCTCP
running over switches that support RPS i.e., switches uni-
formly randomly choose a random output port from a set of
eligible ports.

4.2.2 Functionality Verification
We start by evaluating FlowBender’s efficiency in load

balancing large flows to validate its functionality. In this ex-
periment, we simultaneously initiate a small number of 250
MB flows from hosts on one ToR in a specific pod transmit-
ting to hosts on another specific ToR in a different pod. We
compare the average and worst completion times of the flows
with FlowBender to that under ECMP. Because all flows are
of equal size, as load balancing improves, both the mean and
the maximum flow completion times improve. Furthermore,
with better load balancing, we expect a tighter distribution
of flow completion times i.e., the mean and the tail are close.
Therefore, we can think of the ratio between the mean and
the tail as a quantitative measure for quality of load balanc-
ing.

Table 1: FlowBender’s flow completion times rela-
tive to ECMP’s

Flows
ECMP (ms) FlowBender (ms)
Mean Max Mean Max

8 588 1950 294 367
16 1468 5220 580 740
24 2515 9238 897 1144

In this experiment, we vary the number of flows as 8, 16
and 24 flows, which translates to an average number of 1, 2
and 3 flows per route respectively. Consequently, we expect
the best flow completion times to be roughly 200, 400, and
600 milliseconds respectively (modulo the round-trip time
delay and assuming instantaneous rate convergence to the
fair share with no slow-start delays). Table 1 shows the
mean and maximum flow completion times. As expected,
we see that FlowBender improves ECMP’s mean by 2x and
maximum flow completion times by 5-8x respectively. Also,
the ratio of the maximum flow completion time to the mean
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flow completion time is more than 3.3 with ECMP, while
with FlowBender the ratio reduces to less than 1.3 implying
a tighter latency distribution with lower variance.

4.2.3 All-to-All Workloads
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Figure 3: All-to-All workloads: Mean Latency
Norm. to ECMP
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Figure 4: All-to-All workloads: Tail Latency Norm.
to ECMP

We compare ECMP, RPS, DeTail, and FlowBender with
traffic patterns typical of large-scale online services such as
Web search. Our flow size distribution is heavy-tailed and
is modeled based on the data from [8]. Every server ran-
domly picks another server in the network to send data to,
and flows arrive at the sender as a poisson process with the
mean adjusted to produce the desired load. We vary the
load (reported relative to the bisectional bandwidth), and
compare the different schemes in terms of the mean and the
99thpercentile latency.

We show the means in Figure 3 and the 99th percentile la-
tencies in Figure 4, with each being binned across flow sizes:
(a) less than or equal to 10KB, (b) greater than 10KB but
less than or equal to 128KB, (c) greater than 128KB but
less than or equal to 1MB, and (d) greater than 1MB. The
load is plotted along the X-axis, and we plot the latency of
RPS, DeTail, and FlowBender normalized to that of ECMP
along the Y-axis. Across all of these loads, we see that all
the three schemes i.e., DeTail, FlowBender and RPS sub-
stantially outperform ECMP. The high level takeaway from

our experiments here is that though DeTail, RPS, and Flow-
Bender achieve similar performance in general, FlowBender
does not require any hardware change at the switches and is
not strictly predesigned to operate in symmetric topologies,
unlike DeTail and RPS.

4.2.4 Out-of-order Packet Delivery
FlowBender incurs negligble out-of-order packets relative

to what DeTail and RPS incur. In fact, we monitored the
number of out-of-order packets in all simulations and found
that with FlowBender, the probability of a packet arriving
out of order was about 0.006% higher than ECMP’s. Com-
pared to FlowBender’s performance, DeTail had more than
97.9% the number of out-of-order packet delivery that RPS
experienced.

Furthermore, DeTail suffers from the Tree Saturation prob-
lem due to its reliance on link-level PFC signals [11, 20, 12],
and RPS cannot cope with asymmetric topologies and link
failures [23].

4.2.5 Partition Aggregate Workloads
In this experiment, we evaluate FlowBender’s ability in re-

ducing tail latency under synchronized Partition-Aggregate
traffic patterns typical of datacenter applications like Web
search. We use the same heavy-tailed flow size distribution
here that is used in the previous all-to-all experiment. We
initiate Partition-Aggregate jobs as a Poisson arrival process
with mean such that the total utilization of the bisectional
bandwidth is equal to 40%. Each Partition-Aggregate job
corresponds to a 1MB transaction broken evenly across n
workers that are spread randomly in the fabric with all work-
ers responding simultaneously together with their data but
essentially finishing at different times. In Figure 5, we vary
n between 4 and 32 along the X-axis and plot the average
job completion time normalized to ECMP’s i.e., the aver-
age of flow completion times of flows that finish last in each
job, along the Y-axis. As expected, FlowBender performs
better with smaller fan-in degrees (larger flow sizes) than
with larger fan-in degrees (smaller flow sizes). FlowBen-
der’s performance, like that of RPS and DeTail, suffers with
a larger fan-in degree due to synchronized packet arrivals
to the destination ToR with the receiver’s last hop being
the bottleneck i.e., multipathing does not help in principle.
Overall, across different fan-in degrees, FlowBender achieves
a reduction in the average job completion time by a factor
of four in the best case (fan-in degree of 4), and by a factor
of two in the worst case (fan-in degree of 32), and closely
matches the performance of other expensive schemes such
as DeTail and RPS.

4.2.6 Sensitivity Analysis
In this section, we perform sensitivity analysis of Flow-

Bender, by varying two of its primary knobs: N , the num-
ber of RTTs a sender must be congested for before switching
paths, and T , the congestion threshold.

In Figure 6, we vary N along the X-axis and show the
mean latency across different flow sizes normalized to the
default setting i.e., N = 1. As expected, as N increases,
FlowBender’s performance suffers as its response slows down
with higher values of N . Nevertheless, the performance vari-
ation to N is marginal, and FlowBender exhibits robust per-
formance across a broad range of values.
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Figure 5: Partition Aggregate Workloads: Avg. Job
Completion Time
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Figure 6: Sensitivity to N

In Figure 7, we vary T , the congestion threshold, along X-
axis, and show the mean latency across different flow sizes
normalized to the its default setting i.e., T = 5%. For small
values of T i.e., T = 1%, FlowBender suffers marginal per-
formance degradation as it responds to bursty spikes in the
fraction of marked packets. We attain the best performance
for T = 5%. Increasing T beyond 5% slows down FlowBen-
der’s response, causing marginal performance degradation.
Overall, similar to N , we see that FlowBender’s performance
is relatively robust across a wide range of T values.

4.3 Testbed Implementation
Our real implementation (testbed) has 15 ToR switches

with 12 to 16 servers each. The servers are connected to the
ToRs via 10Gbps links, and the ToRs are interconnected via
4 aggregation switches with one 10Gbps link to each of the 4
switches. In other words, each server has 4 distinct paths to
reach any other server on the other ToR. Servers are running
with Linux 3.0, including the aforementioned FlowBender
changes (less than 50 lines of code added to the kernel) and
the DCTCP implementation, and have their RTO set to
10msec. We use standard ECMP-capable switches with a
shared buffer space of 2MB. The switches are configured
with the CE marking threshold set to 90KB.

1

1.05

1.1

1.15

M
e
a
n
 l
a
te
n
c
y
 n
o
rm
. 
to
 d
e
fa
u
lt
 T

0.95

1% 5% 10% 20%

M
e
a
n
 l
a
te
n
c
y
 n
o
rm
. 
to
 d
e
fa
u
lt
 T

T

Figure 7: Sensitivity to T

4.3.1 All-to-All Traffic
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Figure 8: FlowBender’s Latency Reduction at 20,
40, and 60% load (Bisectional)

In this experiment servers on one ToR initiate 1 MB flows
randomly to any other server in the network with exponen-
tial inter-arrival times at a rate that cumulatively amounts
to 20%, 40%, or 60% average utilization across the bisec-
tional links. We initiate a total of 1.2 million flows, and wait
for all flows to finish. We use the default TCP re-ordering
threshold of 3, and monitor the out-of-order delivery num-
bers to ensure that FlowBender does not introduce undesired
CPU (processing) overhead. To reconfirm that FlowBender
does not lead to any abnormal packet re-ordering activity,
we re-ran our experiments with a TCP re-ordering threshold
of 30, and we didn’t see any noticeable difference in perfor-
mance.

In Figure 8, we show the mean, the 99th percentile, and
the 99.9th percentile latencies along the X-axis, and Flow-
Bender’s completion time normalized to that of ECMP along
the Y-axis. We use default parameter settings for FlowBen-
der i.e., N = 1 and T = 5%. FlowBender improves the 99th

and 99.9th percentiles by 15 − 26% and 34 − 45% respec-
tively, in comparison to ECMP. At 60% load, FlowBender’s
flows finish more than twice as fast as ECMP on average,
and 87− 96% faster at the tail end.

A real implementation has a number of performance-affecting
system-level details (e.g., application-level delays, kernel la-
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tencies, offload inefficiencies, CPU power-saving modes, etc.)
which are typically absent in simulations. Accordingly we
see that the testbed results are not quantitatively equal to
that of simulations. However the qualitative results are sim-
ilar and support the claim that FlowBender offers drastic
improvement over static schemes like ECMP.

4.3.2 Decongesting HotSpots
We now evaluate FlowBender’s ability to decongest flows

by re-routing them around hotspots. We simplify our traffic
matrix in this case and initiate an all-to-all random shuf-
fle of 1MB TCP flows from one ToR to another (all in
the same direction). The aggregate TCP traffic generates
14Gbps from the sending ToR (arbitrarily spread across the
4 10Gbps links). We also initiate 1 UDP flow between the
same pair of ToRs, in the same direction as the TCP traffic,
and rate limit it to 6Gbps. The purpose of the UDP flow
is to create a static (asymmetric) hot spot along one of the
four paths given that this flow will not be re-routed or load
balanced by FlowBender. We denote the path which this
UDP flow hashes on by U .

Note that the aggregate TCP and UDP traffic on the four
routes between the sending and the receiving ToRs amounts
to 20Gbps. Hence, in an ideal setting, one would wish that
the 14Gbps would have been equally split across the three
paths other than U given that 14/3Gbps is still less than
UDP’s 6Gbps that was already routed on U . With ECMP,
on one hand, U was unsurprisingly getting around quarter
of the TCP traffic (14/4 = 3.5Gbps) obliviously mapped to
it, thus ending up with around 9.5Gbps on average in total,
driving that link practically unstable. FlowBender, on the
other hand, succeeded in load balancing the traffic to a great
extent with only around 1.5Gbps of the 14Gbps going on U .
This experiment confirms FlowBender’s ability to adaptively
re-route around congestive hotspots in the network, and to
respond to congestion created by non-TCP traffic.

The above experiment is also interesting from a Weighted
Cost Multipathing (WCMP) perspective (as opposed to ECMP)
in the context of asymmetric topologies, where in order to
reach a certain destination group, the viable ports at a
switch are configured with different forwarding weights so
as not to prematurely oversubscribe those paths with lower
capacities. One of the challenges with WCMP is to be able
to reflect the different weights of the forwarding ports accu-
rately, which is highly dependent on how many entries the
forwarding table can accommodate as per current ECMP
implementations (i.e. larger tables can represent the differ-
ent weights with higher granularity). The significance of this
experiment is in how even if the forwarding weights suffer
some inaccuracy because of the forwarding table being con-
strained to have few entries only (as is the case with our
testbed and most of the commodity switches), FlowBender
is able to dynamically re-adjust the traffic on the different
available paths such that those with lower capacities are
not severely congested (i.e. more robustness to forwarding
weight misconfigurations or chip limitations).

4.3.3 Topological Dependencies
Our simulation and testbed results above are based on

a topology with 8 and 4 different paths between any pair
of pods or ToRs respectively. A question that commonly
arises here is: how helpful would FlowBender be when the
path diversity between any pair of pods increases? In other

words, what role does FlowBender play if the port density
of each switch is, say, doubled, together with the number of
servers per ToR, while keeping the over-subscriptions ratios
the same (i.e. the path diversity quadruples)? The extent
to which FlowBender helps clearly depends on the number
of the available paths P , but it also depends on the num-
ber of those larger flows L that we’re trying to spread out
on those paths. More precisely, and particularly true in the
limits, the performance improvement depends on the ratio
R = L/P of the two numbers as we show next, which is
typically expected to remain constant given that as the bi-
sectional capacity (i.e. P ) is scaled up, the load, and hence,
L would be also scaled up proportionally to maintain the
same utilization.

Considering the micro benchmark basic validation results
discussed earlier, where FlowBender is shown to do a good
job in evenly spreading the flows across the different paths,
FlowBender’s performance improvement amounts to how
bad ECMP’s flow distribution performance was in the first
place. Given the oblivious nature of ECMP, the distribu-
tion of the number of large flows per each route is, in steady
state, a very straightforward binomial distribution with a
mean R and a variance R(1 − 1/P ), which is therefore not
that different for a reasonably large P . For example, varying
P from 8 to 32 would increase the variance by less than 11%
only and hence would have a negligible effect in practice.
In fact, we reran our All-to-All experiments with a different
fan-out degree, and the performance improvement due to
FlowBender was almost the same.

5. FURTHER OPTIMIZATIONS AND FUTURE
WORK

Our paper presents one of the most basic versions of Flow-
Bender. As discussed earlier, we have intentionally resisted
any temptations to optimize FlowBender in the interest of
demonstrating how effective this simple idea is, and our eval-
uation results confirm our position for all the practical cases
that we have discussed. Looking forward, however, Flow-
Bender might be desired to operate in more challenging envi-
ronments, potentially outside datacenters, and could benefit
from some of the suggestions summarized below.

5.1 Stability
FlowBender does not monitor the load on all available

paths before taking a rerouting decision. Instead, it ran-
domly chooses a new path when it detects that the current
path is congested. Therefore, the new path it reroutes to
may be also congested. If that happens to be the case be-
cause say of an incast episode or because the network is
highly congested in general, FlowBender will trigger yet an-
other path change, and the rerouting process may repeat.
In some pathological cases, such a design could continuously
thrash from one path to the other if no further measures for
preventing this are taken. Because every rerouting instance
carries the potential of out-of-order delivery of packets to
the receiver, such thrashing is undesirable.5 Accordingly,
FlowBender can be extended to limit the number of path
5Even though such artifacts are more likely to occur in an
incast situation, the extent to which they occurred in our
simulations was negligible as is evident from the improve-
ment ratios discussed earlier. We do bring up the feature
suggested herein, however, so as to add more confidence
around FlowBender’s ability to handle some of those quite
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changes that could occur when the network is severely con-
gested. More specifically, FlowBender can be constrained to
switch paths for a maximum of S consecutive times before
it goes into a locked state. In the locked state, it will pick
one path out of the last S paths that had the lowest value
of F , the fraction of ECN-marked ACKs, and will lock in to
that path for the next U RTTs. At the end of the locked
phase, FlowBender resumes business as usual, tracking F
and switching paths if it exceeds T for N consecutive RTTs.
Note that if we were to choose S and U as 5 and 10, respec-
tively, with an N of 2 (which gives almost the same perfor-
mance as the default N = 1 configuration), then we would
be limiting the rerouting events to a maximum of 5 times in
every 5 × 2 + 10 = 20 RTTs, thus significantly limiting the
number of out-of-order packets that could be triggered by
FlowBender.

5.2 Gradual Rerouting
Instead of shifting the traffic of a congested flow all at once

from one route to another, the rerouting process can be at-
tempted gradually. Of course, this is assuming the transport
layer is adjusted to tolerate out-of-order packe delivery. For
example, we can start by initially transmitting 10% of the
traffic of a congested flow on a new path6 while monitor-
ing whether this has any effect on alleviating congestion. If
congestion has been already mitigated by partially migrat-
ing to the new path, then this could be an indication that
more traffic should be routed on the new path (e.g. go up to
transmitting 20% of the traffic on the new path and so on).
Otherwise, it could be that the desire to send on a different,
uncongested path was not really met (potentially because of
partially or fully overlapping with the existing path at one or
more congested links), so the flow would attempt to send on
a different new path instead (i.e. abandon the intermediate
one).

The above discussion has focused on the case of load bal-
ancing across 2 subflows, which might be sufficient for most
practical purposes, but the same approach can be extended
to load balancing across more than two paths simultane-
ously.

5.3 Selective Rehashing
In our current implementation, we change the value of V

for the flexible hashing input field obliviously once conges-
tion occurs. Changing the value of V , however, does not
always mean that the route will change as this really de-
pends on the hashing function. That said, given sufficient
knowledge about the hashing functions in the fabric, one can
avoid this artifact by having each flow precompute a num-
ber of potential values for V that would result in hashing to
different paths. The process for precomputing such values
might be very challenging and time consuming to perform
for general hashing functions, but if the network operators
choose their hashing functions in a way such that flipping
one of the hashing inputs bits would result in a different
hashing output (e.g. XOR hash functions), then this pro-
cess would become much easier to perform. Alternatively,
flows can correlate the different RTT estimates or values for

unlikely pathological scenarios that our evaluations did not
cover.
6This can be done in a periodic manner to avoid CPU-
intensive computations for generating random numbers (e.g.
every 10th pkt is sent on a new path).

F corresponding to different V ’s in order to infer, with a
high probability, how these V ’s map to different paths and
avoid choosing a redundant value for rerouting.

5.4 Proactive Probing and Route Caching
We have demonstrated the reactive version of FlowBen-

der, where a flow is rerouted only once congestion has been
detected. Of course, one might argue that FlowBender is
already quite prompt in rerouting when congestion arises,
given its low congestion detection threshold T , but the load
balancing performance could be still further improved by al-
lowing a flow to proactively probe across the different paths.
By probing we mean that a flow can periodically send a few
of its packets with different V values, keeping track of their
sequence numbers ranges, and check once they have been
acked which of them have experienced congestion. One of
those V ’s corresponding to probe packets which did not seem
to be congested at all could be proactively selected as the
basic V once F has exceeded a threshold T ′ smaller than
T . Alternatively, a flow may attempt to keep track of some
of those better V ’s to hash upon once congestion occurs, in-
stead of choosing V obliviously, or might simply blacklist
those highly congested V ’s and avoid revisiting them until
sufficient time has elapsed.

5.5 Rerouting and Flow Control
Rerouting, in the load balancing sense, and flow control,

in the congestion control sense, are two ways for handling
congestion in multipath environments. When both mecha-
nisms rely on the same congestion signal (e.g. ECN driving
both, FlowBender and DCTCP), it becomes useful to de-
cide on which of the two mechanisms should be triggered
based on the nature of the congestion event. For exam-
ple, if congestion is occuring at the receiving ToR (e.g. an
incast event), then it is unlikely that rerouting the indi-
vidual congested responses will help (though rerouting still
did not have a noticeable negative impact on the overall
performance per our simulation results). Alternatively, if a
flow is mainly bottlenecked at a core switch while other core
switches are lightly loaded, then slowing down the rate of
this flow would be rather harmful when it could have been
rerouted instead. In our evaluation for FlowBender, we did
not attempt any optimizations along these lines given that
DCTCP would not have kicked in aggressively yet once the
very low threshold T would have been just exceeded. In the
future, however, FlowBender and other congestion control
and load balancing mechanisms could significantly benefit
from more informative congestion control signals that can
somehow distinguish whether congestion is occuring at the
edge of the fabric and/or somewhere else.

6. CONCLUSION
In this paper, we proposed a new load balancing mecha-

nism called FlowBender. The main motivation for introduc-
ing FlowBender is to overcome the limitations of oblivious
hashing schemes such as ECMP, prominent in today’s dat-
acenters, without suffering from high packet re-ordering or
requiring custom hardware changes and complicated host
mechanisms that could offset any potential benefits. Flow-
Bender is a host-based, congestion-driven scheme that dis-
tributively re-routes individual flows around congested hotspots
only once congestion is experienced, end-to-end, or when
link failures occur. FlowBender relies on ECN and ECMP

158



switch support, which is typical in today’s datacenters, and
implements the load-balancing logic at the end-hosts via a
very straightforward kernel patch. In contrast to central-
ized flow scheduling schemes, FlowBender recovers from link
failures after an RTO occurs and reroutes congested flows at
the RTT granularity, several orders of magnitude faster than
state of the art routing management schemes.

Our ns-3 [4] simulations, with workloads representative
of datacenter applications, show that FlowBender substan-
tially reduces the mean and tail latency compared to ECMP,
while achieving performance very similar to that of other
expensive or undesirable schemes like DeTail and RPS. In
particular, our tail latencies are reduced by more than 5x
to 20x relative to ECMP’s, and our partition-aggregate jobs
are about 2x to 4x faster on average. We have also evaluated
FlowBender using a real implentation and found that it cuts
the flow completion tail latencies by around 40% relative to
ECMP’s for large flows.
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