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Abstract

Today’s data centers offer tremendous aggregate band-

width to clusters of tens of thousands of machines.

However, because of limited port densities in even the

highest-end switches, data center topologies typically

consist of multi-rooted trees with many equal-cost paths

between any given pair of hosts. Existing IP multi-

pathing protocols usually rely on per-flow static hashing

and can cause substantial bandwidth losses due to long-

term collisions.

In this paper, we present Hedera, a scalable, dy-

namic flow scheduling system that adaptively schedules

a multi-stage switching fabric to efficiently utilize aggre-

gate network resources. We describe our implementation

using commodity switches and unmodified hosts, and

show that for a simulated 8,192 host data center, Hedera

delivers bisection bandwidth that is 96% of optimal and

up to 113% better than static load-balancing methods.

1 Introduction

At a rate and scale unforeseen just a few years ago, large

organizations are building enormous data centers that

support tens of thousands of machines; others are mov-

ing their computation, storage, and operations to cloud-

computing hosting providers. Many applications—from

commodity application hosting to scientific computing to

web search and MapReduce—require substantial intra-

cluster bandwidth. As data centers and their applications

continue to scale, scaling the capacity of the network fab-

ric for potential all-to-all communication presents a par-

ticular challenge.

There are several properties of cloud-based applica-

tions that make the problem of data center network de-

sign difficult. First, data center workloads are a priori

unknown to the network designer and will likely be vari-

able over both time and space. As a result, static resource

allocation is insufficient. Second, customers wish to run

their software on commodity operating systems; there-

fore, the network must deliver high bandwidth without

requiring software or protocol changes. Third, virtualiza-

tion technology—commonly used by cloud-based host-

ing providers to efficiently multiplex customers across

physical machines—makes it difficult for customers to

have guarantees that virtualized instances of applications

run on the same physical rack. Without this physical lo-

cality, applications face inter-rack network bottlenecks in

traditional data center topologies [2].

Applications alone are not to blame. The routing and

forwarding protocols used in data centers were designed

for very specific deployment settings. Traditionally, in

ordinary enterprise/intranet environments, communica-

tion patterns are relatively predictable with a modest

number of popular communication targets. There are

typically only a handful of paths between hosts and sec-

ondary paths are used primarily for fault tolerance. In

contrast, recent data center designs rely on the path mul-

tiplicity to achieve horizontal scaling of hosts [3, 16, 17,

19, 18]. For these reasons, data center topologies are

very different from typical enterprise networks.

Some data center applications often initiate connec-

tions between a diverse range of hosts and require signif-

icant aggregate bandwidth. Because of limited port den-

sities in the highest-end commercial switches, data cen-

ter topologies often take the form of a multi-rooted tree

with higher-speed links but decreasing aggregate band-

width moving up the hierarchy [2]. These multi-rooted

trees have many paths between all pairs of hosts. A key

challenge is to simultaneously and dynamically forward

flows along these paths to minimize/reduce link oversub-

scription and to deliver acceptable aggregate bandwidth.

Unfortunately, existing network forwarding proto-

cols are optimized to select a single path for each

source/destination pair in the absence of failures. Such

static single-path forwarding can significantly underuti-

lize multi-rooted trees with any fanout. State of the art

forwarding in enterprise and data center environments



uses ECMP [21] (Equal Cost Multipath) to statically

stripe flows across available paths using flow hashing.

This static mapping of flows to paths does not account

for either current network utilization or flow size, with

resulting collisions overwhelming switch buffers and de-

grading overall switch utilization.

This paper presents Hedera, a dynamic flow schedul-

ing system for multi-stage switch topologies found in

data centers. Hedera collects flow information from

constituent switches, computes non-conflicting paths for

flows, and instructs switches to re-route traffic accord-

ingly. Our goal is to maximize aggregate network

utilization—bisection bandwidth—and to do so with

minimal scheduler overhead or impact on active flows.

By taking a global view of routing and traffic demands,

we enable the scheduling system to see bottlenecks that

switch-local schedulers cannot.

We have completed a full implementation of Hedera

on the PortLand testbed [29]. For both our implementa-

tion and large-scale simulations, our algorithms deliver

performance that is within a few percent of optimal—a

hypothetical non-blocking switch—for numerous inter-

esting and realistic communication patterns, and deliver

in our testbed up to 4X more bandwidth than state of

the art ECMP techniques. Hedera delivers these band-

width improvements with modest control and computa-

tion overhead.

One requirement for our placement algorithms is an

accurate view of the demand of individual flows under

ideal conditions. Unfortunately, due to constraints at the

end host or elsewhere in the network, measuring current

TCP flow bandwidth may have no relation to the band-

width the flow could achieve with appropriate schedul-

ing. Thus, we present an efficient algorithm to estimate

idealized bandwidth share that each flow would achieve

under max-min fair resource allocation, and describe

how this algorithm assists in the design of our scheduling

techniques.

2 Background

The recent development of powerful distributed comput-

ing frameworks such as MapReduce [8], Hadoop [1] and

Dryad [22] as well as web services such as search, e-

commerce, and social networking have led to the con-

struction of massive computing clusters composed of

commodity-class PCs. Simultaneously, we have wit-

nessed unprecedented growth in the size and complex-

ity of datasets, up to several petabytes, stored on tens of

thousands of machines [14].

These cluster applications can often be bottlenecked

on the network, not by local resources [4, 7, 9, 14, 16].

Hence, improving application performance may hinge

on improving network performance. Most traditional
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Figure 1: A common multi-rooted hierarchical tree.

data center network topologies are hierarchical trees

with small, cheap edge switches connected to the end-

hosts [2]. Such networks are interconnected by two or

three layers of switches to overcome limitations in port

densities available from commercial switches. With the

push to build larger data centers encompassing tens of

thousands of machines, recent research advocates the

horizontal—rather than vertical—expansion of data cen-

ter networks [3, 16, 17]; instead of using expensive

core routers with higher speeds and port-densities, net-

works will leverage a larger number of parallel paths be-

tween any given source and destination edge switches,

so-called multi-rooted tree topologies (e.g. Figure 1).

Thus we find ourselves at an impasse—with network

designs using multi-rooted topologies that have the po-

tential to deliver full bisection bandwidth among all com-

municating hosts, but without an efficient protocol to for-

ward data within the network or a scheduler to appro-

priately allocate flows to paths to take advantage of this

high degree of parallelism. To resolve these problems we

present the architecture of Hedera, a system that exploits

path diversity in data center topologies to enable near-

ideal bisection bandwidth for a range of traffic patterns.

2.1 Data Center Traffic Patterns

Currently, since no data center traffic traces are publicly

available due to privacy and security concerns, we gen-

erate patterns along the lines of traffic distributions in

published work to emulate typical data center workloads

for evaluating our techniques. We also create synthetic

communication patterns likely to stress data center net-

works. Recent data center traffic studies [4, 16, 24] show

tremendous variation in the communication matrix over

space and time; a typical server exhibits many small,

transactional-type RPC flows (e.g. search results), as

well as few large transfers (e.g. backups, backend op-

erations such as MapReduce jobs). We believe that the

network fabric should be robust to a range of commu-

nication patterns and that application developers should

not be forced to match their communication patterns to
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Figure 2: Examples of ECMP collisions resulting in reduced bisection bandwidth. Unused links omitted for clarity.

what may achieve good performance in a particular net-

work setting, both to minimize development and debug-

ging time and to enable easy porting from one network

environment to another.

Therefore we focus in this paper on generating traffic

patterns that stress and saturate the network, and com-

paring the performance of Hedera to current hash-based

multipath forwarding schemes.

2.2 Current Data Center Multipathing

To take advantage of multiple paths in data center topolo-

gies, the current state of the art is to use Equal-Cost

Multi-Path forwarding (ECMP) [2]. ECMP-enabled

switches are configured with several possible forwarding

paths for a given subnet. When a packet with multiple

candidate paths arrives, it is forwarded on the one that

corresponds to a hash of selected fields of that packet’s

headers modulo the number of paths [21], splitting load

to each subnet across multiple paths. This way, a flow’s

packets all take the same path, and their arrival order is

maintained (TCP’s performance is significantly reduced

when packet reordering occurs because it interprets that

as a sign of packet loss due to network congestion).

A closely-related method is Valiant Load Balancing

(VLB) [16, 17, 34], which essentially guarantees equal-

spread load-balancing in a mesh network by bouncing

individual packets from a source switch in the mesh off

of randomly chosen intermediate “core” switches, which

finally forward those packets to their destination switch.

Recent realizations of VLB [16] perform randomized

forwarding on a per-flow rather than on a per-packet ba-

sis to preserve packet ordering. Note that per-flow VLB

becomes effectively equivalent to ECMP.

A key limitation of ECMP is that two or more large,

long-lived flows can collide on their hash and end up on

the same output port, creating an avoidable bottleneck as

illustrated in Figure 2. Here, we consider a sample com-

munication pattern among a subset of hosts in a multi-

rooted, 1 Gbps network topology. We identify two types

of collisions caused by hashing. First, TCP flows A and

B interfere locally at switch Agg0 due to a hash collision

and are capped by the outgoing link’s 1Gbps capacity to

Core0. Second, with downstream interference, Agg1 and

Agg2 forward packets independently and cannot foresee

the collision at Core2 for flows C and D.

In this example, all four TCP flows could have reached

capacities of 1Gbps with improved forwarding; flow

A could have been forwarded to Core1, and flow D
could have been forwarded to Core3. But due to these

collisions, all four flows are bottlenecked at a rate of

500Mbps each, a 50% bisection bandwidth loss.
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Figure 3: Example of ECMP bisection bandwidth losses vs.

number of TCP flows per host for a k=48 fat-tree.

Note that the performance of ECMP and flow-based

VLB intrinsically depends on flow size and the num-

ber of flows per host. Hash-based forwarding performs

well in cases where hosts in the network perform all-to-

all communication with one another simultaneously, or

with individual flows that last only a few RTTs. Non-

uniform communication patterns, especially those in-

volving transfers of large blocks of data, require more

careful scheduling of flows to avoid network bottlenecks.



We defer a full evaluation of these trade-offs to Sec-

tion 6, however we can capture the intuition behind

performance reduction of hashing with a simple Monte

Carlo simulation. Consider a 3-stage fat-tree composed

of 1GigE 48-port switches, with 27k hosts performing

a data shuffle. Flows are hashed onto paths and each

link is capped at 1GigE. If each host transfers an equal

amount of data to all remote hosts one at a time, hash

collisions will reduce the network’s bisection bandwidth

by an average of 60.8% (Figure 3). However, if each host

communicates to remote hosts in parallel across 1,000 si-

multaneous flows, hash collisions will only reduce total

bisection bandwidth by 2.5%. The intuition here is that if

there are many simultaneous flows from each host, their

individual rates will be small and collisions will not be

significantly costly: each link has 1,000 slots to fill and

performance will only degrade if substantially more than

1,000 flows hash to the same link. Overall, Hedera com-

plements ECMP, supplementing default ECMP behavior

for communication patterns that cause ECMP problems.

2.3 Dynamic Flow Demand Estimation

Figure 2 illustrates another important requirement for

any dynamic network scheduling mechanism. The

straightforward approach to find a good network-wide

schedule is to measure the utilization of all links in the

network and move flows from highly-utilized links to

less utilized links. The key question becomes which

flows to move. Again, the straightforward approach is to

measure the bandwidth consumed by each flow on con-

strained links and move a flow to an alternate path with

sufficient capacity for that flow. Unfortunately, a flow’s

current bandwidth may not reflect actual demand. We

define a TCP flow’s natural demand to mean the rate it

would grow to in a fully non-blocking network, such that

eventually it becomes limited by either the sender or re-

ceiver NIC speed. For example, in Figure 2, all flows

communicate at 500Mbps, though all could communi-

cate at 1Gbps with better forwarding. In Section 4.2, we

show how to efficiently estimate the natural demands of

flows to better inform Hedera’s placement algorithms.

3 Architecture

Described at a high-level, Hedera has a control loop of

three basic steps. First, it detects large flows at the edge

switches. Next, it estimates the natural demand of large

flows and uses placement algorithms to compute good

paths for them. And finally, these paths are installed on

the switches. We designed Hedera to support any general

multi-rooted tree topology, such as the one in Figure 1,

and in Section 5 we show our physical implementation

using a fat-tree topology.

3.1 Switch Initialization

To take advantage of the path diversity in multi-rooted

trees, we must spread outgoing traffic to or from any host

as evenly as possible among all the core switches. There-

fore, in our system, a packet’s path is non-deterministic

and chosen on its way up to the core, and is deterministic

returning from the core switches to its destination edge

switch. Specifically, for multi-rooted topologies, there

is exactly one active minimum-cost path from any given

core switch to any destination host.

To enforce this determinism on the downward path,

we initialize core switches with the prefixes for the IP

address ranges of destination pods. A pod is any sub-

grouping down from the core switches (in our fat-tree

testbed, it is a complete bipartite graph of aggregation

and edge switches, see Figure 8). Similarly, we initialize

aggregation switches with prefixes for downward ports

of the edge switches in that pod. Finally, edge switches

forward packets directly to their connected hosts.

When a new flow starts, the default switch behavior

is to forward it based on a hash on the flow’s 10-tuple

along one of its equal-cost paths (similar to ECMP). This

path is used until the flow grows past a threshold rate, at

which point Hedera dynamically calculates an appropri-

ate placement for it. Therefore, all flows are assumed to

be small until they grow beyond a threshold, 100 Mbps

in our implementation (10% of each host’s 1GigE link).

Flows are packet streams with the same 10-tuple of <src

MAC, dst MAC, src IP, dst IP, EtherType, IP protocol,

TCP src port, dst port, VLAN tag, input port>.

3.2 Scheduler Design

A central scheduler, possibly replicated for fail-over and

scalability, manipulates the forwarding tables of the edge

and aggregation switches dynamically, based on regu-

lar updates of current network-wide communication de-

mands. The scheduler aims to assign flows to non-

conflicting paths; more specifically, it tries to not place

multiple flows on a link that cannot accommodate their

combined natural bandwidth demands.

In this model, whenever a flow persists for some time

and its bandwidth demand grows beyond a defined limit,

we assign it a path using one of the scheduling algorithms

described in Section 4. Depending on this chosen path,

the scheduler inserts flow entries into the edge and ag-

gregation switches of the source pod for that flow; these

entries redirect the flow on its newly chosen path. The

flow entries expire after a timeout once the flow termi-

nates. Note that the state maintained by the scheduler is

only soft-state and does not have to be synchronized with

any replicas to handle failures. Scheduler state is not re-
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Figure 4: An example of estimating demands in a network of 4 hosts. Each matrix element denotes demand per flow as a fraction of the NIC

bandwidth. Subscripts denote the number of flows from that source (rows) to destination (columns). Entries in parentheses are yet to converge.

Grayed out entries in square brackets have converged.

quired for correctness (connectivity); rather it aids as a

performance optimization.

Of course, the choice of the specific scheduling algo-

rithm is open. In this paper, we compare two algorithms,

Global First Fit and Simulated Annealing, to ECMP.

Both algorithms search for flow-to-core mappings with

the objective of increasing the aggregate bisection band-

width for current communication patterns, supplement-

ing default ECMP forwarding for large flows.

4 Estimation and Scheduling

Finding flow routes in a general network while not ex-

ceeding the capacity of any link is called the MULTI-

COMMODITY FLOW problem, which is NP-complete for

integer flows [11]. And while simultaneous flow routing

is solvable in polynomial time for 3-stage Clos networks,

no polynomial time algorithm is known for 5-stage Clos

networks (i.e. 3-tier fat-trees) [20]. Since we do not

aim to optimize Hedera for a specific topology, this pa-

per presents practical heuristics that can be applied to a

range of realistic data center topologies.

4.1 Host- vs. Network-Limited Flows

A flow can be classified into two categories: network-

limited (e.g. data transfer from RAM) and host-limited

(e.g. limited by host disk access, processing, etc.). A

network-limited flow will use all bandwidth available

to it along its assigned path. Such a flow is limited

by congestion in the network, not at the host NIC. A

host-limited flow can theoretically achieve a maximum

throughput limited by the “slower” of the source and des-

tination hosts. In the case of non-optimal scheduling,

a network-limited flow might achieve a bandwidth less

than the maximum possible bandwidth available from the

underlying topology. In this paper, we focus on network-

limited flows, since host-limited flows are a symptom of

intra-machine bottlenecks, which are beyond the scope

of this paper.

4.2 Demand Estimation

A TCP flow’s current sending rate says little about its

natural bandwidth demand in an ideal non-blocking net-

work (Section 2.3). Therefore, to make intelligent flow

placement decisions, we need to know the flows’ max-

min fair bandwidth allocation as if they are limited only

by the sender or receiver NIC. When network limited,

a sender will try to distribute its available bandwidth

fairly among all its outgoing flows. TCP’s AIMD be-

havior combined with fair queueing in the network tries

to achieve max-min fairness. Note that when there are

multiple flows from a host A to another host B, each of

the flows will have the same steady state demand. We

now describe how to find TCP demands in a hypotheti-

cal equilibrium state.

The input to the demand estimator is the set F of

source and destination pairs for all active large flows.

The estimator maintains an N × N matrix M ; N is the

number of hosts. The element in the ith row, jth column

contains 3 values: (1) the number of flows from host i
to host j, (2) the estimated demand of each of the flows

from host i to host j, and (3) a “converged” flag that

marks flows whose demands have converged.

The demand estimator performs repeated iterations of

increasing the flow capacities from the sources and de-

creasing exceeded capacity at the receivers until the flow

capacities converge; Figure 7 presents the pseudocode.

Note that in each iteration of decreasing flow capacities

at the receivers, one or more flows converge until even-

tually all flows converge to the natural demands. The

estimation time complexity is O(|F |).

Figure 4 illustrates the process of estimating flow de-

mands with a simple example. Consider 4 hosts (H0, H1,

H2 and H3) connected by a non-blocking topology. Sup-

pose H0 sends 1 flow each to H1, H2 and H3; H1 sends

2 flows to H0 and 1 flow to H2; H2 sends 1 flow each

to H0 and H3; and H3 sends 2 flows to H1. The figure

shows the iterations of the demand estimator. The matri-

ces indicate the flow demands during successive stages

of the algorithm starting with an increase in flow capac-

ity from the sender followed by a decrease in flow capac-

ity at the receiver and so on. The last matrix indicates the

final estimated natural demands of the flows.

For real communication patterns, the demand matrix

for currently active flows is a sparse matrix since most

hosts will be communicating with a small subset of re-

mote hosts at a time. The demand estimator is also



GLOBAL-FIRST-FIT(f : flow)

1 if f .assigned then

2 return old path assignment for f

3 foreach p ∈ Psrc→dst do

4 if p.used + f.rate < p.capacity then

5 p.used← p.used + f.rate

6 return p

7 else

8 h =HASH(f )

9 return p = Psrc→dst(h)

Figure 5: Pseudocode for Global First Fit. GLOBAL-FIRST-

FIT is called for each flow in the system.

largely parallelizable, facilitating scalability. In fact, our

implementation uses both parallelism and sparse matrix

data structures to improve the performance and memory

footprint of the algorithm.

4.3 Global First Fit

In a multi-rooted tree topology, there are several possible

equal-cost paths between any pair of source and desti-

nation hosts. When a new large flow is detected, (e.g.

10% of the host’s link capacity), the scheduler linearly

searches all possible paths to find one whose link com-

ponents can all accommodate that flow. If such a path

is found, then that flow is “placed” on that path: First,

a capacity reservation is made for that flow on the links

corresponding to the path. Second, the scheduler creates

forwarding entries in the corresponding edge and aggre-

gation switches. To do so, the scheduler maintains the

reserved capacity on every link in the network and uses

that to determine which paths are available to carry new

flows. Reservations are cleared when flows expire.

Note that this corresponds to a first fit algorithm; a

flow is greedily assigned the first path that can accom-

modate it. When the network is lightly loaded, find-

ing such a path among the many possible paths is likely

to be easy; however, as the network load increases and

links become saturated, this choice becomes more diffi-

cult. Global First Fit does not guarantee that all flows

will be accommodated, but this algorithm performs rel-

atively well in practice as shown in Section 6. We show

the pseudocode for Global First Fit in Figure 5.

4.4 Simulated Annealing

Next we describe the Simulated Annealing scheduler,

which performs a probabilistic search to efficiently com-

pute paths for flows. The key insight of our approach is

to assign a single core switch for each destination host

rather than a core switch for each flow. This reduces

SIMULATED-ANNEALING(n : iteration count)

1 s← INIT-STATE()

2 e← E(s)

3 sB ← s, eB ← e

4 T0 ← n

5 for T ← T0 . . . 0 do

6 sN ← NEIGHBOR(s)

7 eN ← E(sN)

8 if eN < eB then

9 sB ← sN , eB ← eN

10 if P (e, eN , T ) > RAND() then

11 s← sN , e← eN

12 return sB

Figure 6: Pseudocode for Simulated Annealing. s denotes

the current state with energy E(s) = e. eB denotes the best

energy seen so far in state sB . T denotes the temperature. eN

is the energy of a neighboring state sN .

the search space significantly. Simulated Annealing for-

wards all flows destined to a particular host A through

the designated core switch for host A.

The input to the algorithm is the set of all large flows

to be placed, and their flow demands as estimated by

the demand estimator. Simulated Annealing searches

through a solution state space to find a near-optimal so-

lution (Figure 6). A function E defines the energy in the

current state. In each iteration, we move to a neighboring

state with a certain acceptance probability P , depend-

ing on the energies in the current and neighboring states

and the current temperature T . The temperature is de-

creased with each iteration of the Simulated Annealing

algorithm and we stop iterating when the temperature is

zero. Allowing the solution to move to a higher energy

state allows us to avoid local minima.

1. State s: A set of mappings from destination hosts

to core switches. Each host in a pod is assigned a

particular core switch that it receives traffic from.

2. Energy function E: The total exceeded capacity

over all the links in the current state. Every state

assigns a unique path to every flow. We use that

information to find the links for which the total ca-

pacity is exceeded and sum up exceeded demands

over these links.

3. Temperature T : The remaining number of iterations

before termination.

4. Acceptance probability P for transition from state s
to neighbor state sn, with energies E and En.

P (En, E, T ) =

{

1 if En < E

ec(E−En)/T if En ≥ E



where c is a parameter that can be varied. We em-

pirically determined that c = 0.5 × T0 gives best

results for a 16 host cluster and c = 1000 × T0 is

best for larger data centers.

5. Neighbor generator function NEIGHBOR(): Swaps

the assigned core switches for a pair of hosts in any

of the pods in the current state s.

While simulated annealing is a known technique, our

contribution lies in an optimization to significantly re-

duce the search space and the choice of appropriate en-

ergy and neighbor selection functions to ensure rapid

convergence to a near optimal schedule. A straightfor-

ward approach is to assign a core for each flow individ-

ually and perform simulated annealing. However this re-

sults in a huge search space limiting the effectiveness of

simulated annealing. The diameter of the search space

(maximum number of neighbor hops between any two

states) with this approach is equal to the number of flows

in the system. Our technique of assigning core switches

to destination hosts reduces the diameter of the search

space to the minimum of the number of flows and the

number of hosts in the data center. This heuristic reduces

the search space significantly: in a 27k host data cen-

ter with 27k large flows, the search space size is reduced

by a factor of 1012000. Simulated Annealing performs

better when the size of the search space and its diameter

are reduced [12]. With the straightforward approach, the

runtime of the algorithm is proportional to the number of

flows and the number of iterations while our technique’s

runtime depends only on the number of iterations.

We implemented both the baseline and optimized ver-

sion of Simulated Annealing. Our simulations show

that for randomized communication patterns in a 8,192

host data center with 16k flows, our techniques deliver

a 20% improvement in bisection bandwidth and a 10X

reduction in computation time compared to the baseline.

These gains increase both with the size of the data center

as well as the number of flows.

Initial state: Each pod has some fixed downlink capac-

ity from the core switches which is useful only for traffic

destined to that pod. So an important insight here is that

we should distribute the core switches among the hosts

in a single pod. For a fat-tree, the number of hosts in a

pod is equal to the number of core switches, suggesting

a one-to-one mapping. We restrict our solution search

space to such assignments, i.e. we assign cores not to

individual flows, but to destination hosts. Note that this

choice of initial state is only used when the Simulated

Annealing scheduler is run for the first time. We use an

optimization to handle the dynamics of the system which

reduces the importance of this initial state over time.

ESTIMATE-DEMANDS()
1 for all i, j
2 Mi,j ← 0
3 do
4 foreach h ∈ H do EST-SRC(h)
5 foreach h ∈ H do EST-DST(h)
6 while some Mi,j .demand changed
7 return M

EST-SRC(src: host)
1 dF ← 0
2 nU ← 0
3 foreach f ∈ 〈src→ dst〉 do
4 if f .converged then
5 dF ← dF + f .demand
6 else
7 nU ← nU + 1
8 eS ←

1.0−dF

nU

9 foreach f ∈ 〈src→ dst〉 and not f .converged do
10 M

f.src,f.dst.demand← eS

EST-DST(dst: host)
1 dT , dS , nR ← 0
2 foreach f ∈ 〈src→ dst〉
3 f.rl← true
4 dT ← dT + f .demand
5 nR ← nR + 1
6 if dT ≤ 1.0 then
7 return

8 eS ←
1.0
nR

9 do
10 nR ← 0
11 foreach f ∈ 〈src→ dst〉 and f .rl do
12 if f.demand < eS then
13 dS ← dS + f.demand
14 f.rl← false
15 else
16 nR ← nR + 1
17 eS ←

1.0−dS

nR

18 while some f.rl was set to false
19 foreach f ∈ 〈src→ dst〉 and f .rl do
20 M

f.src,f.dst.demand← eS

21 M
f.src,f.dst.converged← true

Figure 7: Demand estimator for TCP flows. M is the demand

matrix and H is the set of hosts. dF denotes “converged” de-

mand, nU is the number of unconverged flows, eS is the com-

puted equal share rate, and 〈src→ dst〉 is the set of flows from

src to some dst. In EST-DST dT is the total demand, dS is

sender limited demand, f.rl is a flag for a receiver limited flow

and nR is the number of receiver limited flows.

Neighbor generator: A well-crafted neighbor generator

function intrinsically avoids deep local minima. Com-

plying with the idea of restricting the solution search

space to mappings with near-uniform mapping of hosts

in a pod to core switches, our implementation employs

three different neighbor generator functions: (1) swap

the assigned core switches for any two randomly chosen

hosts in a randomly chosen pod, (2) swap the assigned

core switches for any two randomly chosen hosts in a



randomly chosen edge switch, (3) randomly choose an

edge or aggregation switch with equal probability and

swap the assigned core switches for a random pair of

hosts that use the chosen edge or aggregation switch to

reach their currently assigned core switches. Our neigh-

bor generator function randomly chooses between the 3

described techniques with equal probability at runtime

for each iteration. Using multiple neighbor generator

functions helps us avoid deep local minima in the search

spaces of individual neighbor generator functions.

Calculation of energy function: The energy function

for a neighbor can be calculated incrementally based on

the energy in the current state and the cores that were

swapped in the neighbor. We need not recalculate ex-

ceeded capacities for all links. Swapping assigned cores

for a pair of hosts only affects those flows destined to

those two hosts. So we need to recalculate the difference

in the energy function only for those specific links in-

volved and update the value of the energy based on the

energy in the current state. Thus, the time to calculate

the energy only depends on the number of large flows

destined to the two affected hosts.

Dynamically changing flows: With dynamically chang-

ing flow patterns, in every scheduling phase, a few flows

would be newly classified as large flows and a few older

ones would have completed their transfers. We have im-

plemented an optimization where we set the initial state

to the best state from the previous scheduling phase. This

allows the route-placement of existing, continuing flows

to be disrupted as little as possible if their current paths

can still support their bandwidth requirements. Further,

the initial state that is used when the Simulated Anneal-

ing scheduler first starts up becomes less relevant over

time due to this optimization.

Search space: The key characteristic of Simulated An-

nealing is assigning unique core switches based on des-

tination hosts in a pod, crucial to reducing the size

of the search space. However, there are communica-

tion patterns where an optimal solution necessarily re-

quires a single destination host to receive incoming traf-

fic through multiple core switches. While we omit the

details for brevity, we find that, at least for the fat tree

topology, all communication patterns can be handled if:

i) the maximum number of large flows to or from a host

is at most k/2, where k is the number of ports in the

network switches, or ii) the minimum threshold of each

large flow is set to 2/k of the link capacity. Given that in

practice data centers are likely to be built from relatively

high-radix switches, e.g., k ≥ 32, our search space opti-

mization is unlikely to eliminate the potential for locating

optimal flow assignments in practice.

Algorithm Complexity Time Space

Global First-Fit O((k/2)2) O(k3 + |F |)
Simulated Annealing O(favg) O(k3 + |F |)

Table 1: Time and Space Complexity of Global First Fit and

Simulated Annealing. k is the number of switch ports, |F | is
the total number of large flows, and favg is the average number

of large flows to a host. The k3 factor is due to in-memory link-

state structures, and the |F | factor is due to the flows’ state.

4.5 Comparison of Placement Algorithms

With Global First Fit, a large flow can be re-routed im-

mediately upon detection and is essentially pinned to its

reserved links. Whereas Simulated Annealing waits for

the next scheduling tick, uses previously computed flow

placements to optimize the current placement, and deliv-

ers even better network utilization on average due to its

probabilistic search.

We chose the Global First Fit and Simulated Anneal-

ing algorithms for their simplicity; we take the view that

more complex algorithms can hinder the scalability and

efficiency of the scheduler while gaining only incremen-

tal bandwidth returns. We believe that they strike the

right balance of computational complexity and delivered

performance gains. Table 1 gives the time and space

complexities of both algorithms. Note that the time com-

plexity of Global First Fit is independent of |F |, the num-

ber of large flows in the network, and that the time com-

plexity of Simulated Annealing is independent of k.

More to the point, the simplicity of our algorithms

makes them both well-suited for implementation in hard-

ware, such as in an FPGA, as they consist mainly of sim-

ple arithmetic. Such an implementation would substan-

tially reduce the communication overhead of crossing the

network stack of a standalone scheduler machine.

Overall, while Simulated Annealing is more concep-

tually involved, we show in Sec. 6 that it almost always

outperforms Global First Fit, and delivers close to the

optimal bisection bandwidth both for our testbed and in

larger simulations. We believe the additional conceptual

complexity of Simulated Annealing is justified by the

bandwidth gains and tremendous investment in the net-

work infrastructure of modern data centers.

4.6 Fault Tolerance

Any scheduler must account for switch and link failures

in performing flow assignments. While we omit the de-

tails for brevity, our Hedera implementation augments

the PortLand routing and fault tolerance protocols [29].

Hence, the Hedera scheduler is aware of failures us-

ing the standard PortLand mechanisms and can re-route

flows mapped to failed components.



5 Implementation

To test our scheduling techniques on a real physical

multi-rooted network, we built as an example the fat-

tree network described abstractly in prior work [3]. In

addition, to understand how our algorithms scale with

network size, we implemented a simulator to model the

behavior of large networks with many flows under the

control of a scheduling algorithm.

5.1 Topology

For the rest of the paper, we adopt the following termi-

nology: for a fat-tree network built from k-port switches,

there are k pods, each consisting of two layers: lower pod

switches (edge switches), and the upper pod switches

(aggregation switches). Each edge switch manages

(k/2) hosts. The k pods are interconnected by (k/2)2

core switches.

One of the main advantages of this topology is the high

degree of available path diversity; between any given

source and destination host pair, there are (k/2)2 equal-

cost paths, each corresponding to a core switch. Note,

however, that these paths are not link-disjoint. To take

advantage of this path diversity (to maximize the achiev-

able bisection bandwidth), we must assign flows non-

conflicting paths. A key requirement of our work is to

perform such scheduling with no modifications to end-

host network stacks or operating systems. Our testbed

consists of 16 hosts interconnected using a fat-tree of

twenty 4-port switches, as shown in Figure 8.

We deploy a parallel control plane connecting all

switches to a 48-port non-blocking GigE switch. We em-

phasize that this control network is not required for the

Hedera architecture, but is used in our testbed as a de-

bugging and comparison tool. This network transports

only traffic monitoring and management messages to and

from the switches; however, these messages could also

be transmitted using the data plane. Naturally, for larger

networks of thousands of hosts, a control network could

be organized as a traditional tree, since control traffic

should be only a small fraction of the data traffic. In

our deployment, the flow scheduler runs on a separate

machine connected to the 48-port switch.

5.2 Hardware Description

The switches in the testbed are 1U dual-core 3.2 GHz

Intel Xeon machines, with 3GB RAM, and NetFPGA 4-

port GigE PCI card switches [26]. The 16 hosts are 1U

quad-core 2.13 GHz Intel Xeon machines with 3GB of

RAM. These hosts have two GigE ports, the first con-

nected to the control network for testing and debugging,

and the other to its NetFPGA edge switch. The control
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Figure 8: System Architecture. The interconnect shows the

data-plane network, with GigE links throughout.

network is organized as a simple star topology. The cen-

tral switch is a Quanta LB4G 48-port GigE switch. The

scheduler machine has a dual-core 2.4 GHz Intel Pen-

tium CPU and 2GB of RAM.

5.3 OpenFlow Control

The switches in the tree all run OpenFlow [27], which

allows access to the forwarding tables for all switches.

OpenFlow implementations have been ported to a va-

riety of commercial switches, including those from Ju-

niper, HP, and Cisco. OpenFlow switches match incom-

ing packets to flow entries that specify a particular action

such as duplication, forwarding on a specific port, drop-

ping, and broadcast. The NetFPGA OpenFlow switches

have 2 hardware tables: a 32-entry TCAM (that accepts

variable-length prefixes) and a 32K entry SRAM that

only accepts flow entries with fully qualified 10-tuples.

When OpenFlow switches start, they attempt to open a

secure channel to a central controller. The controller can

query, insert, modify flow entries, or perform a host of

other actions. The switches maintain statistics per flow

and per port, such as total byte counts, and flow dura-

tions. The default behavior of the switch is as follows: if

an incoming packet does not match any of the flow en-

tries in the TCAM or SRAM table, the switch inserts a

new flow entry with the appropriate output port (based

on ECMP) which allows any subsequent packets to be

directly forwarded at line rate in hardware. Once a flow

grows beyond the specified threshold, the Hedera sched-

uler may modify the flow entry for that flow to redirect it

along a newly chosen path.

5.4 Scheduling Frequency

Our scheduler implementation polls the edge switches

for flow statistics (to detect large flows), and performs

demand estimation and scheduling once every five sec-

onds. This period is due entirely to a register read-

rate limitation of the OpenFlow NetFPGA implementa-

tion. However, our scalability measurements in Section 6

show that a modestly-provisioned machine can schedule



tens of thousands of flows in a few milliseconds, and that

even at the 5 second polling rate, Hedera significantly

outperforms the bisection bandwidth of current ECMP

methods. In general, we believe that sub-second and po-

tentially sub-100ms scheduling intervals should be pos-

sible using straightforward techniques.

5.5 Simulator

Since our physical testbed is restricted to 16 hosts, we

also developed a simulator that coarsely models the

behavior of a network of TCP flows. The simulator

accounts for flow arrivals and departures to show the

scalability of our system for larger networks with dy-

namic communication patterns. We examine our differ-

ent scheduling algorithms using the flow simulator for

networks with as many as 8,192 hosts. Existing packet-

level simulators, such as ns-2, are not suitable for this

purpose: e.g. a simulation with 8,192 hosts each sending

at 1Gbps would have to process 2.5 × 1011 packets for

a 60 second run. If a per-packet simulator were used to

model the transmission of 1 million packets per second

using TCP, it would take 71 hours to simulate just that

one test case.

Our simulator models the data center topology as a

network graph with directed edges. Each edge has a fixed

capacity. The simulator accepts as input a communica-

tion pattern among hosts and uses it, along with a speci-

fication of average flow sizes and arrival rates, to gener-

ate simulated traffic. The simulator generates new flows

with an exponentially distributed length, with start times

based on a Poisson arrival process with a given mean.

Destinations are based upon the suite in Section 6.

The simulation proceeds in discrete time ticks. At

each tick, the simulation updates the rates of all flows in

the network, generates new flows if needed. Periodically

it also calls the scheduler to assign (new) routes to flows.

When calling the Simulated Annealing and Global First

Fit schedulers, the simulator first calls the demand esti-

mator and passes along its results.

When updating flow rates, the simulator models TCP

slow start and AIMD, but without performing per-packet

computations. Each tick, the simulator shuffles the order

of flows and computes the expected rate increase for each

flow, constrained by available bandwidth on the flow’s

path. If a flow is in slow start, its rate is doubled. If it is

in congestion avoidance, its rate is additively increased

(using an additive increase factor of 15 MB/s to simulate

a network with an RTT of 100 µs). If the flow’s path

is saturated, the flow’s rate is halved and bandwidth is

freed along the path. Each tick, we also compute the

number of bytes sent by the flow and purge flows that

have completed sending all their bytes.

Since our simulator does not model individual pack-

ets, it does not capture the variations in performance of

different packet sizes. Another consequence of this deci-

sion is that our simulation cannot capture inter-flow dy-

namics or buffer behavior. As a result, it is likely that

TCP Reno/New Reno would perform somewhat worse

than predicted by our simulator. In addition, we model

TCP flows as unidirectional although real TCP flows in-

volve ACKs in the reverse direction; however, for 1500

byte Ethernet frames and delayed ACKs, the bandwidth

consumed by ACKs is about 2%. We feel these trade-offs

are necessary to study networks of the scale described in

this paper.

We ran each simulation for the equivalent of 60 sec-

onds and measured the average bisection bandwidth dur-

ing the middle 40 seconds. Since the simulator does not

capture inter-flow dynamics and traffic burstiness our re-

sults are optimistic (simulator bandwidth exceeds testbed

measurements) for ECMP based flow placement because

resulting hash collisions would sometimes cause an en-

tire window of data to be lost, resulting in a coarse-

grained timeout on the testbed (see Section 6). For the

control network we observed that the performance in

the simulator more closely matched the performance on

the testbed. Similarly, for Global First Fit and Simu-

lated Annealing, which try to optimize for minimum

contention, we observed that the performance from the

simulator and testbed matched very well. Across all the

results, the simulator indicated better performance than

the testbed when there is contention between flows.

6 Evaluation

This section describes our evaluation of Hedera using our

testbed and simulator. The goal of these tests is to deter-

mine the aggregate achieved bisection bandwidth with

various traffic patterns.

6.1 Benchmark Communication Suite

In the absence of commercial data center network traces,

for both the testbed and the simulator evaluation, we first

create a group of communication patterns similar to [3]

according to the following styles:

(1) Stride(i): A host with index x sends to the host

with index (x + i)mod(num hosts).

(2) Staggered Prob (EdgeP, PodP): A host sends to

another host in the same edge switch with probability

EdgeP, and to its same pod with probability PodP, and to

the rest of the network with probability 1-EdgeP - PodP.

(3) Random: A host sends to any other host in the

network with uniform probability. We include bijective

mappings and ones where hotspots are present.
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Figure 9: Physical testbed benchmark suite results for the three routing methods vs. a non-blocking switch. Figures indicate

network bisection bandwidth achieved for staggered, stride, and randomized communication patterns.

We consider these mappings for networks of different

sizes: 16 hosts, 1,024 hosts, and 8,192 hosts, correspond-

ing to k = {4, 16, 32}.

6.2 Testbed Benchmark Results

We ran benchmark tests as follows: 16 hosts open socket

sinks for incoming traffic and measure the incoming

bandwidth constantly. The hosts in succession then start

their flows according to the sizes and destinations as de-

scribed above. Each experiment lasts for 60 seconds and

uses TCP flows; we observed the average bisection band-

width for the middle 40 seconds.

We compare the performance of the scheduler on the

fat-tree network to that of the same experiments on

the control network. The control network connects all

16 hosts using a non-blocking 48-port gigabit Ethernet

switch and represents an ideal network. In addition, we

include a static hash-based ECMP scheme, where the

forwarding path is determined by a hash of the destina-

tion host IP address.

Figure 9 shows the bisection bandwidth for a variety

of randomized, staggered, stride and hotspot communi-

cation patterns; our experiments saturate the links us-

ing TCP. In virtually all the communication patterns ex-

plored, Global First Fit and Simulated Annealing signif-

icantly outperform static hashing (ECMP), and achieve

near the optimal bisection bandwidth of the network

(15.4Gb/s goodput). Naturally, the performance of these

schemes improves as the level of communication local-

ity increases, as demonstrated by the staggered prob-

ability figures. Note that for stride patterns (common

to HPC computation applications), the heuristics con-

sistently compute the correct flow-to-core mappings to

efficiently utilize the fat-tree network, whereas the per-

formance of static hash quickly deteriorates as the stride

length increases. Furthermore, for certain patterns, these

heuristics also marginally outperform the commercial

48-port switch used for our control network. We sus-

pect this is due to different buffers/algorithms of the Net-

FPGAs vs. the Quanta switch.

Upon closer examination of the performance using

packet captures from the testbed, we found that when

there was contention between flows, an entire TCP win-

dow of packets was often lost. So the TCP connection

was idle until the retransmission timer fired (RTOmin =

200ms). ECMP hash based flow placement experienced

over 5 times the number of retransmission timeouts as

the other schemes. This explains the overoptimistic per-

formance of ECMP in the simulator as explained in Sec-

tion 5 since our simulator does not model retransmission

timeouts and individual packet losses.

6.3 Data Shuffle

We also performed an all-to-all in-memory data shuffle

in our testbed. A data shuffle is an expensive but neces-

sary operation for many MapReduce/Hadoop operations

in which every host transfers a large amount of data to

every other host participating in the shuffle. In this exper-

iment, each host sequentially transfers 500MB to every

other host using TCP (a 120GB shuffle).



ECMP GFF SA Control

Shuffle time (s) 438.44 335.50 335.96 306.37

Host completion (s) 358.14 258.70 261.96 226.56

Bisec. BW (Gbps) 2.811 3.891 3.843 4.443

Goodput (MB/s) 20.94 28.99 28.63 33.10

Table 2: A 120GB shuffle for the placement heuristics in our

testbed. Shown is total shuffle time, average host-completion

time, average bisection bandwidth and average host goodput.
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Figure 11: Network bisection bandwidth vs. time for a 1,024

host fat-tree and a random bijective traffic pattern.

The shuffle results in Table 2 show that centralized

flow scheduling performs considerably better (39% bet-

ter bisection bandwidth) than static ECMP hash-based

routing. Comparing this to the data shuffle performed in

VL2 [16], which involved all hosts making simultaneous

transfers to all other hosts (versus the sequential transfers

in our work), we see that static hashing performs better

when the number of flows is significantly larger than the

number of paths; intuitively a hash collision is less likely

to introduce significant degradation when any imbalance

is averaged over a large number of flows. For this reason,

in addition to the delay of the Hedera observation/route-

computation control loop, we believe that traffic work-

loads characterized by many small, short RPC-like flows

would have limited benefit from dynamic scheduling,

and Hedera’s default ECMP forwarding performs load-

balancing efficiently in this case. Hence, by threshold-

ing our scheduler to only operate on larger flows, Hedera

performs well for both types of communication patterns.

6.4 Simulation Results

6.4.1 Communication Patterns

In Figure 10 we show the aggregate bisection bandwidth

achieved when running the benchmark suite for a sim-

ulated fat-tree network with 8,192 hosts (when k=32).

Number of Hosts

SA Iterations 16 1,024 8,192

1000 78.73 74.69 72.83

50000 78.93 75.79 74.27

100000 78.62 75.77 75.00

500000 79.35 75.87 74.94

1000000 79.04 75.78 75.03

1500000 78.71 75.82 75.13

2000000 78.17 75.87 75.05

Non-blocking 81.24 78.34 77.63

Table 3: Percentage of final bisection bandwidth by varying

the Simulated Annealing iterations, for a case of random

destinations, normalized to the full network bisection. Also

shown is the same load running on a non-blocking topology.

We compare our algorithms against a hypothetical non-

blocking switch for the entire data center and against

static ECMP hashing. The performance of ECMP wors-

ens as the probability of local communication decreases.

This is because even for a completely fair and perfectly

uniform hash function, collisions in path assignments

do happen, either within the same switch or with flows

at a downstream switch, wasting a portion of the avail-

able bandwidth. A global scheduler makes discrete flow

placements that are chosen by design to reduce overlap.

In most of these different communication patterns, our

dynamic placement algorithms significantly outperform

static ECMP hashing. Figure 11 shows the variation over

time of the bisection bandwidth for the 1,024 host fat-tree

network. Global First Fit and Simulated Annealing per-

form fairly close to optimal for most of the experiment.

6.4.2 Quality of Simulated Annealing

To explore the parameter space of Simulated Annealing,

we show in Table 3 the effect of varying the number of it-

erations at each scheduling period for a randomized, non-

bijective communication pattern. This table confirms our

initial intuition regarding the assignment quality vs. the

number of iterations, as most of the improvement takes

place in the first few iterations. We observed that the

performance of Simulated Annealing asymptotically ap-

proaches the best result found by Simulated Annealing

after the first few iterations.

The table also shows the percentage of final bisection

bandwidth for a random communication pattern as num-

ber of hosts and flows increases. This supports our be-

lief that Simulated Annealing can be run with relatively

few iterations in each scheduling period and still achieve

comparable performance over time. This is aided by re-

membering core assignments across periods, and by the

arrival of only a few new large flows each interval.
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Figure 10: Comparison of scheduling algorithms for different traffic patterns on a fat-tree topology of 8,192-hosts.

k Hosts Large flows Runtime (ms)

16 1024 1024 1.45

16 1024 5000 4.14

32 8192 8192 2.71

32 8192 25000 9.23

32 8192 50000 26.31

48 27648 27648 6.91

48 27648 100000 51.30

48 27648 250000 199.43

Table 4: Demand estimation runtime.

6.4.3 Complexity of Demand Estimation

Since the demand estimation is performed once per

scheduling period, its runtime must be reasonably small

so that the length of the control loop is as small as pos-

sible. We studied the runtime of demand estimation for

different traffic matrices in data centers of varying sizes.

Table 4 shows the runtimes of the demand estimator

for different input sizes. The reported runtimes are for

runs of the demand estimator using 4 parallel threads

of execution on a modest quad-core 2.13 GHz machine.

Even for a large data center with 27,648 hosts and

250,000 large flows (average of nearly 10 large flows per

host), the runtime of the demand estimation algorithm is

only 200 ms. For more common scenarios, the runtime

is approximately 50-100ms in our setup. We expect the

scheduler machine to be a fairly high performance ma-

chine with more cores, thereby still keeping the runtime

well under 100ms even for extreme scenarios.

The memory requirement for the demand estimator

in our implementation using a sparse matrix representa-

tion is less than 20 MB even for the extreme scenario

with nearly 250,000 large flows in a data center with

27k hosts. In more common scenarios, with a reasonable

number of large flows in the data center, the entire data

structure would fit in the L2 cache of a modern CPU.

Considering the simplicity and number of operations

involved, an FPGA implementation can store the sparse

matrix in an off-chip SRAM. An FPGA such as the Xil-

1,024 hosts 8,192 hosts

Iterations f =3,215 f =6,250 f =25k f =50k

1000 2.997 5.042 6.898 11.573

5000 12.209 20.848 19.091 32.079

10000 23.447 40.255 32.912 55.741

Table 5: Runtime (ms) vs. number of Simulated Annealing
iterations for different number of flows f .

inx Virtex-5 can implement up to 200 parallel process-

ing cores to process this matrix. We estimate that such a

configuration would have a computational latency of ap-

proximately 5 ms to perform demand estimation even for

the case of 250,000 large flows.

6.4.4 Complexity of Simulated Annealing

In Table 5 we show the runtime of Simulated Anneal-

ing for different experimental scenarios. The runtime of

Simulated Annealing is asymptotically independent of

the number of hosts and only dependent on the number

of flows. The main takeaway here is the scalability of

our Simulated Annealing implementation and its poten-

tial for practical application; for networks of thousands

of hosts and a reasonable number of flows per host, the

Simulated Annealing runtime is on the order of tens of

milliseconds, even for 10,000 iterations.

6.4.5 Control Overhead

To evaluate the total control overhead of the centralized

scheduling design, we analyzed the overall communica-

tion and computation requirements for scheduling. The

control loop includes 3 components—all switches in the

network send the details of large flows to the scheduler,

the scheduler estimates demands of the flows and com-

putes their routes, and the scheduler transmits the new

placement of flows to the switches.

We made some assumptions to analyze the length of

the control loop. (1) The control plane is made up of

48-port GigE switches with an average 10 µs latency per



Flows per host

Hosts 1 5 10

1,024 100.2 100.9 101.7

8,192 101.4 106.8 113.5

27,648 104.6 122.8 145.5

Table 6: Length of control loop (ms).

switch. (2) The format of messages between the switches

and the controller are based on the OpenFlow protocol

(72B per flow entry) [27]. (3) The total computation

time for demand estimation and scheduling of the flows

is conservatively assumed to be 100 ms. (4) The last hop

link to the scheduler is assumed to be a 10 GigE link.

This higher speed last hop link allows a large number of

switches to communicate with the scheduler simultane-

ously. We assumed that the 10 GigE link to the controller

can be fully utilized for transfer of scheduling updates.

Table 6 shows the length of the control loop for vary-

ing number of large flows per host. The values indi-

cate that the length of the control loop is dominated by

the computation time, estimated at 100 ms. These re-

sults show the scalability of the centralized scheduling

approach for large data centers.

7 Related Work

There has been a recent flood of new research pro-

posals for data center networks; however, none satis-

fyingly addresses the issue of the network’s bisection

bandwidth. VL2 [16] and Monsoon [17] propose us-

ing per-flow Valiant Load Balancing, which can cause

bandwidth losses due to long-term collisions as demon-

strated in this work. SEATTLE [25] proposes a single

Layer 2 domain with a one-hop switch DHT for MAC

address resolution, but does not address multipathing.

DCell [19] and BCube [18] suggest using recursively-

defined topologies for data center networks, which in-

volves multi-NIC servers and can lead to oversubscribed

links with deeper levels. Once again, multipathing is not

explicitly addressed.

Researchers have also explored scheduling flows in

a multi-path environment from a wide-area context.

TeXCP [23] and MATE [10] perform dynamic traffic en-

gineering across multiple paths in the wide-area by using

explicit congestion notification packets, which require as

yet unavailable switch support. They employ distributed

traffic engineering, whereas we leverage the data center

environment using a tightly-coupled central scheduler.

FLARE [31] proposes multipath forwarding in the wide-

area on the granularity of flowlets (TCP packet bursts);

however, it is unclear whether the low intra-data center

latencies meet the timing requirements of flowlet bursts

to prevent packet reordering and still achieve good per-

formance. Miura et al. exploit fat-tree networks by mul-

tipathing using tagged-VLANs and commodity PCs [28].

Centralized router control to enforce routing or access

control policy has been proposed before by the 4D archi-

tecture [15], and projects like Tesseract [35], Ethane [6],

and RCP [5], similar in spirit to Hedera’s approach to

centralized flow scheduling.

Much work has focused on virtual switching fab-

rics and on individual Clos networks in the abstract,

but do not address building an operational multi-level

switch architecture using existing commodity compo-

nents. Turner proposed an optimal non-blocking virtual

circuit switch [33], and Smiljanic improved Turner’s load

balancer and focused on the guarantees the algorithm

could provide in a generalized Clos packet-switched net-

work [32]. Oki et al. design improved algorithms for

scheduling in individual 3-stage Clos switches [30], and

Holmburg provides models for simultaneous and incre-

mental scheduling of multi-stage Clos networks [20].

Geoffray and Hoefler describe a number of strategies

to increase bisection bandwidth in multistage intercon-

nection networks, specifically focusing on source-routed,

per-packet dispersive approaches that break the ordering

requirement of TCP/IP over Ethernet [13].

8 Conclusions

The most important finding of our work is that in the pur-

suit of efficient use of available network resources, a cen-

tral scheduler with global knowledge of active flows can

significantly outperform the state-of-the-art hash-based

ECMP load-balancing. We limit the overhead of our ap-

proach by focusing our scheduling decisions on the large

flows likely responsible for much of the bytes sent across

the network. We find that Hedera’s performance gains

are dependent on the rates and durations of the flows

in the network; the benefits are more evident when the

network is stressed with many large data transfers both

within pods and across the diameter of the network.

In this paper, we have demonstrated the feasibility of

building a working prototype of our scheduling system

for multi-rooted trees, and have shown that Simulated

Annealing almost always outperforms Global First Fit

and is capable of delivering near-optimal bisection band-

width for a wide range of communication patterns both

in our physical testbed and in simulated data center net-

works consisting of thousands of nodes. Given the low

computational and latency overheads of our flow place-

ment algorithms, the large investment in network infras-

tructure associated with data centers (many millions of

dollars), and the incremental cost of Hedera’s deploy-

ment (e.g., one or two servers), we show that dynamic

flow scheduling has the potential to deliver substantial

bandwidth gains with moderate additional cost.
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