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Low latency for a huge number of short query/response 
flows, especially the tail latency (e.g. 99-th)



Background
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Fat-tree Spine-Leaf

… 

Data centers use multi-stage Clos topologies

‣ Multiple equal-cost paths for a pair of hosts – How to load 
balance? 

‣ Today’s practice: ECMP, local, random – lots of problems



Background
‣ Current data center transport is ill-fitted for the task
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RTT measurement in EC2 us-west-2c, 100K samples

‣ Corroborated by measurements from many existing 
papers

Mean RTT: 0.5ms 99-th RTT: 17ms



Background
‣ Culprit: ECMP is static and agnostic to congestion

5

H1 H2 H3 H4

S1 S2

S4S3
elephant flow

mice flow

‣ Tail latency is even worse with elephants colliding on the 
same path due to ECMP



Our quest
‣ How can we improve load balancing in data center 

networks? 

‣ Scalable enough to handle millions of mice flows traversing 
numerous links 

‣ Smart enough to avoid congestion in the network dynamically
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Our answer
‣ Patch solution: RepNet 

‣ Application-layer transport that can be implemented today 

‣ INFOCOM 2014, under submission 

‣ Fundamental solution: Expeditus 

‣ Distributed, congestion-aware load balancing protocol to 
replace ECMP 

‣ CoNEXT student workshop 2014 best paper, on-going work
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Chapter I
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RepNet



RepNet in a nutshell
‣ Replicate each mice flow to exploit multipath diversity
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‣ No two paths are exactly the same – The power of two 
choices, M Mitzenmacher 

‣ Clos based topologies provide many equal-cost paths



RepNet’s design
‣ Which flows? 

‣ Less than 100KB, consistent with many existing papers 

‣ When? 

‣ Always! (We’ll come back about the overhead issue) 

‣ How? 

‣ RepFlow: replicate each byte of the flow 

‣ RepSYN: only replicate SYN packets and choose the quicker 
connection
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Is RepNet effective?
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Simplified queueing analysis
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path 1 ⇢

path n ⇢
…

choose 1 effective load: ⇢

path 1 

path n 

…

choose 2
(1 + ✏)⇢

(1 + ✏)⇢

 fraction of total bytes from mice (< 0.1)

effective load: (1 + ✏)2⇢2



Packet-level NS-3 simulations
‣ Topology: 16-pod 1Gbps fat-tree, 1,024 hosts 

‣ Traffic pattern: Poisson, random src/dst, 0.5s worth 

‣ Flow size distribution: 

‣ Web search cluster from DCTCP paper 

‣ >95% bytes are from 30% flows large than 1MB 

‣ Data mining cluster from VL2 paper (not shown here) 

‣ >95% bytes are from 3.6% flows large than 35MB
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Benchmarks
‣ TCP: TCP NewReno, initial window 12KB, DropTail 

queues with 100 packet buffer 

‣ RepFlow 

‣ DCTCP: source code from authors of D2TCP 

‣ RepFlow-DCTCP: RepFlow on top of DCTCP 

‣ pFabric: state-of-the-art, near-optimal FCT with priority 
queueing, source code obtained from authors
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Results [1/4]
‣ Mean FCT, mice flows (<100KB)
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40%-45%

40%



Results [2/4]
‣ 99-th percentile FCT, mice flows (<100KB)
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>60%



Results [4/4]
‣ Mean FCT, elephant flows (>=100KB)
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no impact
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

3.45%
%

2.78% 3.13% 3.38% 3.29% 3.47% 3.22% 3.27%

Replication overhead



Is RepNet really effective?
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Implementation
‣ Based on node, a highly scalable platform for real-time 

server-side networked applications 

‣ Single-threaded, non-blocking socket, event driven 

‣ Widely used in industry for both front-end and back-end
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Implementation
‣ A module RepNet based on Net, the standard library for 

non-blocking sockets 

‣ Applications only need to change one line: 

‣ require(‘net’) —> require(‘repnet’)

‣ RepNet.Socket: a single socket abstraction for 
applications while having two TCP sockets  

‣ RepNet.Server: functions for listening for and 
managing both replicated and regular TCP connections
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Testbed evaluation

‣ Pronto 3295 switches. 1Gbps links. Oversubscribed at 
2:1 

‣ Ping RTT 178us across racks 

‣ Flow size distribution from the DCTCP paper
21

Core 1 Core 2 Core 3

ToR 1 ToR 2

Rack 1 Rack 2



Testbed evaluation

‣ RepFlow and RepSYN significantly improve tail FCT when 
load is high in an oversubscribed network 

‣ RepFlow is more beneficial
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More results 
‣ Application level performance using RepNet 

‣ Mininet emulation with a 6-pod fat-tree 

‣ All source code and experiment scripts are online 

‣ https://bitbucket.org/shuhaoliu/repnet 

‣ https://bitbucket.org/shuhaoliu/repnet_experiment 
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https://bitbucket.org/shuhaoliu/repnet
https://bitbucket.org/shuhaoliu/repnet_experiment


Recap
‣ Takeaway: RepNet is a practical and effective application 

layer low latency transport 

‣ Open-source implementation and experimental evaluation 

‣ Patch solution, short-term
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Chapter II
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Expeditus
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How to build a distributed congestion-aware load 
balancing protocol, for a large-scale data center network?

‣ Naive solution: track congestion information for all 
possible paths 

‣ This simply can’t scale



Per-path isn’t scalable

‣ k2/4 paths between edge switches of distinct pods 

‣ An edge switch talks to k2/2-k/2 edge switches in distinct 
pods 

‣ Each edge switch needs to track O(k4) paths!
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k-pod fat tree



Design
‣ One-hop congestion information collection 

‣ Each edge and aggr switch maintains congestion information 
for k ports in k-pod fat-tree 

‣ Two-stage path selection
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One-hop info collection
‣ Northbound congestion information can be obtained by 

polling buffer occupancy of egress ports
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One-hop info collection
‣ Southbound congestion information needs to be 

transmitted by piggybacking in packets
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Aggr switches collect 
congestion information 
coming from core switches

Edge switches collect 
congestion information 
coming from aggr switches



Two-stage path selection
‣ SYN packet carries congestion information at source 

edge switch to destination edge switch 

‣ Destination edge switch chooses the aggr switch with the 
least combined congestion at the first and last hop
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Two-stage path selection
‣ SYN-ACK packet carries congestion information at 

destination aggr switch to source aggr switch 

‣ Source aggr switch chooses the core switch with the 
least combined congestion at the second and third hops
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Two-stage path selection
‣ Assemble a complete path based on selected aggr and 

core switches, store in host’s flow routing table 

‣ IP-in-IP encapsulation to enforce source routing
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Preliminary evaluation
‣ NS-3 simulation with a 16-pod fat-tree (1,024 hosts), 

oversubscribed at 4:1, DCTCP flow size distribution
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mean FCT 99th percentile FCT



Implementation–on-going
‣ Click software router implementation (together with 

CONGA) 

‣ Experiments on a fat-tree on Emulab 

‣ 20 PCs with 5 NICs as Expeditus switches 

‣ 16 PCs with 1 NICs as hosts 

‣ https://www.emulab.net/showproject.php3?pid=expeditus
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https://www.emulab.net/showproject.php3?pid=expeditus#profile


Related work
‣ Reducing (tail) latency in data center networks is an 

important problem 

‣ Reduce queue length: DCTCP (2010), HULL (2012) 

‣ Prioritize scheduling: D3 (2011), PDQ (2012), DeTail (2012), 
pFabric (2013) 

‣ They all require modifications to end-hosts and/or 
switches, making it difficult to deploy in reality
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Thank you!
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