
Load Balancing in Data Center Networks

Henry Xu

Computer Science
City University of Hong Kong

HKUST, March 2, 2015

Background

2

Aggregator

Aggregator Aggregator

Worker Worker Worker Worker… …

Low latency for a huge number of short query/response
flows, especially the tail latency (e.g. 99-th)

Background

3

Fat-tree Spine-Leaf

…

Data centers use multi-stage Clos topologies

‣ Multiple equal-cost paths for a pair of hosts – How to load
balance?

‣ Today’s practice: ECMP, local, random – lots of problems

Background
‣ Current data center transport is ill-fitted for the task

4

RTT measurement in EC2 us-west-2c, 100K samples

‣ Corroborated by measurements from many existing
papers

Mean RTT: 0.5ms 99-th RTT: 17ms

Background
‣ Culprit: ECMP is static and agnostic to congestion

5

H1 H2 H3 H4

S1 S2

S4S3
elephant flow

mice flow

‣ Tail latency is even worse with elephants colliding on the
same path due to ECMP

Our quest
‣ How can we improve load balancing in data center

networks?

‣ Scalable enough to handle millions of mice flows traversing
numerous links

‣ Smart enough to avoid congestion in the network dynamically

6

Our answer
‣ Patch solution: RepNet

‣ Application-layer transport that can be implemented today

‣ INFOCOM 2014, under submission

‣ Fundamental solution: Expeditus

‣ Distributed, congestion-aware load balancing protocol to
replace ECMP

‣ CoNEXT student workshop 2014 best paper, on-going work

7

Chapter I

8

RepNet

RepNet in a nutshell
‣ Replicate each mice flow to exploit multipath diversity

9

H1 H2 H3 H4

S1 S2

S4S3
elephant flow

mice flow

replicated flow

‣ No two paths are exactly the same – The power of two
choices, M Mitzenmacher

‣ Clos based topologies provide many equal-cost paths

RepNet’s design
‣ Which flows?

‣ Less than 100KB, consistent with many existing papers

‣ When?

‣ Always! (We’ll come back about the overhead issue)

‣ How?

‣ RepFlow: replicate each byte of the flow

‣ RepSYN: only replicate SYN packets and choose the quicker
connection

10

Is RepNet effective?

11

Simplified queueing analysis

12

path 1 ⇢

path n ⇢
…

choose 1 effective load: ⇢

path 1

path n

…

choose 2
(1 + ✏)⇢

(1 + ✏)⇢

 fraction of total bytes from mice (< 0.1)

effective load: (1 + ✏)2⇢2

Packet-level NS-3 simulations
‣ Topology: 16-pod 1Gbps fat-tree, 1,024 hosts

‣ Traffic pattern: Poisson, random src/dst, 0.5s worth

‣ Flow size distribution:

‣ Web search cluster from DCTCP paper

‣ >95% bytes are from 30% flows large than 1MB

‣ Data mining cluster from VL2 paper (not shown here)

‣ >95% bytes are from 3.6% flows large than 35MB

13

Benchmarks
‣ TCP: TCP NewReno, initial window 12KB, DropTail

queues with 100 packet buffer

‣ RepFlow

‣ DCTCP: source code from authors of D2TCP

‣ RepFlow-DCTCP: RepFlow on top of DCTCP

‣ pFabric: state-of-the-art, near-optimal FCT with priority
queueing, source code obtained from authors

14

Results [1/4]
‣ Mean FCT, mice flows (<100KB)

15

40%-45%

40%

Results [2/4]
‣ 99-th percentile FCT, mice flows (<100KB)

16

>60%

Results [4/4]
‣ Mean FCT, elephant flows (>=100KB)

17

no impact
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

3.45%
%

2.78% 3.13% 3.38% 3.29% 3.47% 3.22% 3.27%

Replication overhead

Is RepNet really effective?

18

Implementation
‣ Based on node, a highly scalable platform for real-time

server-side networked applications

‣ Single-threaded, non-blocking socket, event driven

‣ Widely used in industry for both front-end and back-end

19

Implementation
‣ A module RepNet based on Net, the standard library for

non-blocking sockets

‣ Applications only need to change one line:

‣ require(‘net’) —> require(‘repnet’)

‣ RepNet.Socket: a single socket abstraction for
applications while having two TCP sockets

‣ RepNet.Server: functions for listening for and
managing both replicated and regular TCP connections

20

Testbed evaluation

‣ Pronto 3295 switches. 1Gbps links. Oversubscribed at
2:1

‣ Ping RTT 178us across racks

‣ Flow size distribution from the DCTCP paper
21

Core 1 Core 2 Core 3

ToR 1 ToR 2

Rack 1 Rack 2

Testbed evaluation

‣ RepFlow and RepSYN significantly improve tail FCT when
load is high in an oversubscribed network

‣ RepFlow is more beneficial

22

More results
‣ Application level performance using RepNet

‣ Mininet emulation with a 6-pod fat-tree

‣ All source code and experiment scripts are online

‣ https://bitbucket.org/shuhaoliu/repnet

‣ https://bitbucket.org/shuhaoliu/repnet_experiment

23

https://bitbucket.org/shuhaoliu/repnet
https://bitbucket.org/shuhaoliu/repnet_experiment

Recap
‣ Takeaway: RepNet is a practical and effective application

layer low latency transport

‣ Open-source implementation and experimental evaluation

‣ Patch solution, short-term

24

Chapter II

25

Expeditus

26

How to build a distributed congestion-aware load
balancing protocol, for a large-scale data center network?

‣ Naive solution: track congestion information for all
possible paths

‣ This simply can’t scale

Per-path isn’t scalable

‣ k2/4 paths between edge switches of distinct pods

‣ An edge switch talks to k2/2-k/2 edge switches in distinct
pods

‣ Each edge switch needs to track O(k4) paths!

27

k-pod fat tree

Design
‣ One-hop congestion information collection

‣ Each edge and aggr switch maintains congestion information
for k ports in k-pod fat-tree

‣ Two-stage path selection

28

One-hop info collection
‣ Northbound congestion information can be obtained by

polling buffer occupancy of egress ports

29

One-hop info collection
‣ Southbound congestion information needs to be

transmitted by piggybacking in packets

30

Aggr switches collect
congestion information
coming from core switches

Edge switches collect
congestion information
coming from aggr switches

Two-stage path selection
‣ SYN packet carries congestion information at source

edge switch to destination edge switch

‣ Destination edge switch chooses the aggr switch with the
least combined congestion at the first and last hop

31
src dst

3 5 2 8...

Two-stage path selection
‣ SYN-ACK packet carries congestion information at

destination aggr switch to source aggr switch

‣ Source aggr switch chooses the core switch with the
least combined congestion at the second and third hops

32
src dst

3 5 2 8

4 6 3 10

...

Two-stage path selection
‣ Assemble a complete path based on selected aggr and

core switches, store in host’s flow routing table

‣ IP-in-IP encapsulation to enforce source routing

33

src dst

3 5 2 8

4 6 3 10

...

Preliminary evaluation
‣ NS-3 simulation with a 16-pod fat-tree (1,024 hosts),

oversubscribed at 4:1, DCTCP flow size distribution

34

mean FCT 99th percentile FCT

Implementation–on-going
‣ Click software router implementation (together with

CONGA)

‣ Experiments on a fat-tree on Emulab

‣ 20 PCs with 5 NICs as Expeditus switches

‣ 16 PCs with 1 NICs as hosts

‣ https://www.emulab.net/showproject.php3?pid=expeditus

35

https://www.emulab.net/showproject.php3?pid=expeditus#profile

Related work
‣ Reducing (tail) latency in data center networks is an

important problem

‣ Reduce queue length: DCTCP (2010), HULL (2012)

‣ Prioritize scheduling: D3 (2011), PDQ (2012), DeTail (2012),
pFabric (2013)

‣ They all require modifications to end-hosts and/or
switches, making it difficult to deploy in reality

36

Thank you!

37

Henry Xu
City University of Hong Kong

