
The Only Constant is Change: Incorporating Time-Varying
Network Reservations in Data Centers

Di Xie Ning Ding Y. Charlie Hu Ramana Kompella
Purdue University Purdue University Purdue University Purdue University

ABSTRACT

In multi-tenant datacenters, jobs of different tenants compete for
the shared datacenter network and can suffer poor performance and
high cost from varying, unpredictable network performance. Re-
cently, several virtual network abstractions have been proposed to
provide explicit APIs for tenant jobs to specify and reserve virtual
clusters (VC) with both explicit VMs and required network band-
width between the VMs. However, all of the existing proposals
reserve a fixed bandwidth throughout the entire execution of a job.
In the paper, we first profile the traffic patterns of several popu-

lar cloud applications, and find that they generate substantial traf-
fic during only 30%-60% of the entire execution, suggesting ex-
isting simple VC models waste precious networking resources.
We then propose a fine-grained virtual network abstraction, Time-
Interleaved Virtual Clusters (TIVC), that models the time-varying
nature of the networking requirement of cloud applications. To
demonstrate the effectiveness of TIVC, we develop PROTEUS, a
system that implements the new abstraction. Using large-scale sim-
ulations of cloud application workloads and prototype implementa-
tion running actual cloud applications, we show the new abstraction
significantly increases the utilization of the entire datacenter and re-
duces the cost to the tenants, compared to previous fixed-bandwidth
abstractions.

Categories and Subject Descriptors: C.2.3 [Computer-
Communication Networks]: Network Operations

General Terms: Algorithms, Design, Performance

Keywords: Datacenter, Network Reservation, Allocation, Band-
width, Profiling

1. INTRODUCTION
Cloud computing has transformed the enterprise computing

landscape significantly. By offering virtually unlimited resources
without any upfront capital investment and a simple pay-as-you-go
charging model, cloud computing provides a compelling alterna-
tive to enterprises constructing and maintaining their own cluster-
computing infrastructure. The long-term viability of cloud comput-
ing depends, among others, on two major factors—cost and per-
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formance. Unless cloud platforms prove cheaper than enterprise
ones, enterprises have no incentive to migrate their computational
requirement to the cloud. Similarly, cloud platforms need to pro-
vide some guarantees about job performance, otherwise enterprises
may be apprehensive to migrate to the cloud to begin with.

Unfortunately, today’s public cloud platforms such as Amazon
EC2 do not provide any performance guarantee, which in turn af-
fects tenant cost. Specifically, the resource reservation model in
today’s clouds only provisions CPU and memory resources but
ignores networking completely. Because of the largely oversub-
scribed nature of today’s datacenter networks (e.g., [19]), network
bandwidth is a scarce resource shared across many tenants. When
networking intensive phases of applications collide and compete
for the scarce network resources, their running times become un-
predictable. The uncertainty in execution time further translates
into unpredictable cost as tenants need to pay for the reserved vir-
tual machines (VMs) for the entire duration of their jobs.

Recent works such as SecondNet [20] and Oktopus [11] noted
this lack of networking SLA in cloud environments and proposed
new network abstractions for tenants to specify their networking
needs along with their CPU and memory needs, so that their appli-
cations can obtain predictable performance. For example, Second-
Net proposes bandwidth reservation between every pair of VMs.
Oktopus proposes a simpler virtual cluster (VC) model where all
VMs are connected to a virtual switch with links of bandwidth B.
While both models provide a good start, they fail to capture the
temporal dimension of network resource requirement. Specifically,
we observe that the networking requirement of many applications
experience significant changes throughout their execution. Hence
provisioning a single bandwidth B for an entire cluster or for each
pair of VMs throughout the job execution is clearly wasteful.

To illustrate this, we show the instantaneous network throughput
of the MapReduce Sort application in Figure 1(a) (details are in
§2.2). We observe from the figure that the Sort application utilizes
the network only during the first half of the execution (during the
shuffle phase), while the second half (merge sort and reduce phase)
requires very little networking resource. Effectively the network
utilization is in the form of a simple square wave. Figure 1 fur-
ther shows the network utilization characteristics of several other
applications such as Word Count, Hive Join and Hive Aggregation.
While they exhibit more complicated network characteristics than
Sort, a common takeaway is the relatively sparse, time-varying net-
working requirement.

Using a fixed bandwidth reservation can potentially waste pre-
cious resources of the datacenter. Consider several Sort jobs that
have bandwidth requirement B during the first half of their execu-
tion. If we use Oktopus’ virtual cluster (VC) model for specifying
the network requirement of Sort, the fixed bandwidth B is provi-
sioned during the entire duration of the job, preventing another Sort
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(a) Hadoop Sort, 4 GB per VM.
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(b) HadoopWord Count, 2 GB per
VM.
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(c) Hive Join, 6 GB per VM.
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(d) Hive Aggregation, 2 GB per
VM.

Figure 1: Time-varying traffic demand of cloud applications.

job from using the unused bandwidth B during the second half of
the job. Clearly, if there are enough VMs, we can schedule a sec-
ond Sort job such that the first half of the second job overlaps with
the second half of the already running first job.
Our main contribution in this paper is to exploit this key obser-

vation and explore a new, fine-grained network reservation abstrac-
tion called temporally-interleaved virtual clusters (TIVC), that al-
lows specifying the time-varying networking requirement of cloud
applications. By capturing the temporal networking usage, the
TIVC abstraction reduces over-reservation of network bandwidth
in fixed-bandwidth abstractions, allowing more jobs to be admit-
ted into the datacenter. Thus the new abstraction not only improves
the utilization of the network resource but also potentially increases
the VM utilization and hence the overall datacenter utilization. The
increased utilization of the entire datacenter in turn translates into
either increased cloud provider revenue, e.g., under today’s VM-
time only charging model, or both increased provider revenue and
reduced tenant cost, when the cloud provider adopts a bandwidth
charging model (e.g., [30, 10]), compared to fixed-bandwidth ab-
stractions.
For the TIVC abstraction to be viable in practice, there are two

fundamental questions that we must answer: How can we obtain
the TIVC model corresponding to a job? How do we allocate and
provision jobs with TIVC specifications in a physical datacenter?
While a similar question to the first confounded prior network ab-
stractions [11, 20], they simply assumed that the customer will
specify them somehow. In this paper, we propose a systematic,
profiling-based methodology for automatically generating TIVC
model parameters for a given application. There are several chal-
lenges that we need to tackle to make this profiling-based method-
ology practical.
The first challenge concerns the elastic nature of networking re-

quirement for many jobs; as we provide more bandwidth, job will
finish faster. So how should one determine the peak bandwidth re-
quirement for an application in deriving its TIVC model, e.g., in
profiling the application? Using a detailed study using real cloud
applications, we provide insights into this question, which previous
works have ignored completely.
The second challenge concerns designing TIVC model functions

so that they can be easily generated, they capture the time-varying
networking requirement of an application well, and yet they can be
practically enforced in the datacenter network. We propose to con-
vert the networking requirement output of the profiling stage into
coarse-grained pulse functions (square waves) with different widths
and heights. Our conversion scheme ensures the derived bandwidth
reservation model has little impact on the job completion time.
The final challenge concerns a practical allocation algorithm that

not only needs to identify where a TIVC job can be admitted spa-
tially (in the network topology), but also temporally (when the
bandwidth will be freed in the future to accommodate this job
throughout its execution). We propose an allocation algorithm
based on dynamic programming that is highly scalable and finds

valid allocations with the best spatial locality, i.e., in the lowest
subtree available.

We have developed PROTEUS, a system that implements the
TIVC abstraction. PROTEUS derives TIVC models for applica-
tions, accepts jobs online and allocates them to the physical dat-
acenter, and provisions network bandwidth according to the TIVC
models. We deployed our prototype on an 18-node datacenter with
a ternary tree topology using NetFPGA-based switches. Our sim-
ulations of a large-scale datacenter using real MapReduce applica-
tion workload show our TIVC abstraction can increase the datacen-
ter batched job throughput by 34.5%, and reduce the rejection rate
of dynamically arrived jobs from 9.5% to 3.4%, which translates
into 22% higher cloud provider revenue than the fixed-bandwidth
abstraction under today’s VM-time based charging model. When
the cloud provider moves to a bandwidth charging model, TIVC
can both improve cloud provider revenue by 11% and reduce ten-
ant cost by 12%, compared to the fixed-bandwidth abstraction.

2. BACKGROUND AND MOTIVATION
In this section, we first review the state of the art, and then mo-

tivate the time-varying networking abstraction proposed in this pa-
per.

2.1 State of the Art
To provide performance guarantees, several recent works [20,

11] have proposed virtual network cluster abstractions, which al-
low cloud users to specify not only the type and number of VMs
requested, but also the associated networking requirement, i.e., the
bandwidth requirement between the VMs. Such a virtual cluster
gives cloud users an assurance of their job performance based on
the VM and networking SLAs.

SecondNet [20] proposes APIs that let users specify either end-
to-end bandwidth for each pair of VMs (suitable for strong guar-
antees), or ingress/egress bandwidth for each VM (for better than
best-effort sharing). Oktopus [11] proposes two simplified abstrac-
tions: virtual clusters and virtual oversubscribed clusters. A virtual
cluster is a one-level logical tree topology, specified as <N, B>,
which asks for N VMs and each VM is connected to a virtual
switch by a bidirectional link of bandwidth B. A virtual oversub-
scribed cluster request, <N, B, S, O>, specifies a two-level logical
tree topology with an oversubscription ratio of O.

All the models above, however, only allow fixed bandwidth
guarantees, since they fundamentally assume the applications have
the same bandwidth requirement throughout the entire execution,
which is rarely true in practice. Specifically, our key observation is
that typical cloud applications generate varying amount of traffic in
different phases of their execution. Thus reserving their peak band-
width requirement for the entire execution wastes scarce network
resources in the datacenter, which reduces the number of jobs that
can fit in the datacenter to run concurrently, and hence the overall
utilization of the datacenter.
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2.2 Profiling Networking Demand
To assess the extent of networking requirement variations of

cloud applications, we conduct a measurement study. Since
MapReduce [17] is a popular programming paradigm for large-
scale data-intensive operations and many cloud applications have
been ported to MapReduce, such as search indexing, database, and
machine learning, we profile the networking patterns of several typ-
ical MapReduce jobs, including Sort, Word Count, Hive Join, and
Hive Aggregation, which have been used as the primary bench-
marks in recent datacenter studies (e.g., [16, 36, 24, 28]). While
this list of applications is not exhaustive, we believe they represent
an important class of applications found in datacenters.

Methodology. We conducted the profiling experiments on our 33-
machine cluster, using open-source Hadoop 0.20.0 as the MapRe-
duce platform. The 33 machines are connected to a Gigabit switch.
Each of the 33 machines is equipped with a 4-core Xeon 2.4GHz
processor, 4GB memory, and running 2 Xen virtual machines
(domU) and each VM is allocated 1.5GB memory and a dedicated
hard drive. To obtain the network traffic, we deployed tcpdump at
all the Hadoop slave VMs to log all communication (packet head-
ers) between them. Since the bidirectional traffic are almost identi-
cal for the set of applications, for each application, we plot the ac-
cess egress bandwidth of one VM in each time bin of 10ms, which
is in the same order of RTTs under load and hence sufficiently small
to capture the transient peak throughput. The throughput for differ-
ent VMs are very similar, and we study the variation in Section 4.

Traffic Patterns of Cloud Applications. We observe that the traf-
fic patterns of the set of applications fall into the following three
categories, of increasing generality. In all categories, a base band-
width needs to be reserved to facilitate job maintenance tasks such
as communicating with the job scheduler, and to support low vol-
ume network traffic among the VMs.

Type 1: Single peak. The Hadoop Sort benchmark sorts randomly
generated records with 10-byte keys and 90-byte values. Fig-
ure 1(a) plots the network throughput over the execution with 4
GB input data per VM. We observe that most of the network traffic
were produced in the first half of the job execution. In other words,
the traffic pattern exhibits a single peak, defined as a continuous
period of throughput above some base amount.

Type 2: Repeated fixed-width peaks. The Hadoop Word Count

benchmark counts the number of word occurrences in the input
data. Figure 1(b) shows that there was only a small amount of
data been shuffled over the network periodically throughout the ex-
ecution. The small amount of data is due to reduced map output
from enabling the combiner in map tasks, and the periodic network
traffic is because the map tasks finished in batches, and hence their
output were shuffled periodically. Thus the traffic demand exhibits
repeated bursts with a similar amount of traffic volume per burst,
and consequently similar duration.

Type 3: Varying-width peaks and Type 4: Varying height and width
peaks. Hive [2] implements a data warehouse system built on top
of Hadoop. It provides an SQL-like language for data queries. The
Hive performance benchmark [5] is used to compare the perfor-
mance of Hadoop, Hive, and PIG [3]. It consists of four queries:
grepping from a table, selecting columns from a table, aggregating
a table, and joining two tables. We generated a 4GB UserVisits
table and a 2GB Rankings table per node. Figures 1(c)-(d) plot
the throughput for the two queries Join and Aggregation. We ob-
serve that Hive Join exhibits a brief burst of network activity at the
beginning, followed by a longer duration of less-intensive traffic
from map tasks, followed by five bursts, corresponding to five re-
duce tasks. Hive Aggregation exhibits a long duration of moderate
traffic demand, followed by a long duration of more intense traffic
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Figure 2: TIVC models contain time-varying bandwidth speci-

fications B(t).

demand. These two applications fall into the more general category
of a sequence of traffic bursts of varying durations and of varying
intensities.

3. THE TIVC ABSTRACTION
Our key observations in the previous section clearly indicate the

need for a new networking abstraction that can express the time-
varying nature of application networking requirement. To this
end, we propose a novel network abstraction called temporally-

interleaved virtual cluster (TIVC) that captures the temporal varia-
tions in the network behavior of cloud applications.

The TIVC abstraction (shown in Figure 2) consists of a virtual
cluster of N nodes connected to a switch, via links of bandwidth
B, similar to the VC abstraction proposed in [11]. However, the
key difference is that the bandwidth for each link is a time-varying
function B(t) instead of a constant value in prior work. This al-
lows capturing the actual networking requirement of applications
much more precisely, which enables the cloud provider to achieve
better utilization of datacenter resources, and ultimately improves
the provider revenue and reduces the tenant cost without sacrificing
the job performance, as we will show in our experiments.

3.1 Different TIVC Models
Given the networking requirement profile of an application,

e.g., shown in Figure 1, one can potentially derive some compli-
cated function (e.g., high-order polynomials) to precisely model the
changing requirement over time. However, such smooth functions
significantly complicate the process of allocating a TIVC in the
physical datacenter network, as well as provisioning of the contin-
uously changing bandwidth requirement in the physical network.
To strike a balance between modeling precision and implementa-
tion difficulties1, we choose to model the networking requirement
as simple pulse functions in this paper. We leave exploring other
tradeoffs in the spectrum as future work.

Since TIVC is a generalization of the VC abstraction, we call
the model with a fixed bandwidth B(t) = B as Type 0 as shown
in Figure 2. To capture the several general time-varying patterns
observed in our profiling study, we propose the following model
functions, also shown in Figure 2.

Type 1: Single peak. A Type 1 model captures the networking de-
mand of applications that only generate network traffic in a certain
interval, and has a format of <N , T , Bb, P>, where P=(T1, T2,
B). The bandwidth function is given as

B(t) =



Bb : t ∈ [0, T1] or [T2, T ]
B : t ∈ [T1, T2]

1The fixed bandwidth specification in [20, 11] can be viewed as
going to one extreme in this tradeoff, ease of implementation.
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Figure 3: Simple tree with full-bisection bandwidth.

For example, the Sort application in Figure 1(a) would request for
a Type 1 TIVC with <N , 382s, 4Mbps, (18s, 191s, 800Mbps)>.

Type 2: Fixed-width peaks. The Type 2 TIVC model captures the
networking requirement of applications that have repeated traffic
peaks. A request of this type has the format <N, T, Bb, P1, ...,
PK>2, where Pi = (Ti1, Ti2, B). The bandwidth function is

B(t) =



B : t ∈ [Ti1, Ti2], i ∈ [1, K]
Bb : otherwise

The request specifies K repeated peaks of bandwidth B and the
same width to be provisioned, i.e., the widths of the peaks (Ti2 −

Ti1) are the same, and the base bandwidth Bb during the rest of
time. For example, the Word Count application in Figure 1(b)
would request for a Type 2 TIVC with <N , 672s, 2Mbps, (80s,
92s, 50Mbps), ..., (620s, 632s, 50Mbps)>.

Type 3: Varying-width peaks. The Type 3 TIVC model is more
general than previous two types and captures the networking re-
quirement of applications that have varying-width traffic peaks.
The request format and the bandwidth function are the same as
with Type 2, except the durations of the peaks (Ti2 − Ti1) can
differ. For example, Hive Join in Figure 1(c) would request for a
Type 3 TIVC with <N , 672s, 50Mbps, (52s, 172s, 800Mbps),
(336s, 361s, 800Mbps), (387s, 412s, 800Mbps), (434s, 459s,
800Mbps), (485s, 508s, 800Mbps), (550s, 607s, 800Mbps)>.

Type 4: Varying height and width peaks. The Type 4 TIVC
model refines the Type 3 model to allow varying heights for dif-
ferent peaks. The format is the same as in Type 3, except Pi =
(Ti1, Ti2, Bi), which specifies a bandwidth cap of Bi is requested
from time Ti1 to Ti2.
The four models based on pulse functions are of increasing gen-

erality. While we do not claim they are universal, we find they
capture well the traffic patterns of the applications we have stud-
ied (which are also widely used in previous datacenter networking
studies, e.g., [16, 36, 24, 28]).

3.2 Implication on Job Scheduling
By more precisely capturing the networking requirement of ap-

plications, TIVC enables the cloud provider to schedule more jobs
to run concurrently not only in over-subscribed networks, but also
in networks with full-bisection bandwidth, such as fat-trees [7, 19].
Consider the simple tree datacenter network with full-bisection

bandwidth shown in Figure 3. Consider a sequence of Sort-like
jobs, each requesting 4 VMs and access bandwidth of 500Mbps
during the first half of their 10-second execution. Under the VC
model which reserves the constant 500Mbps bandwidth through-
out the job execution, only one job can be scheduled to run every
10 seconds. The four VMs have to be allocated on the four servers
since each server has an access bandwidth of 500Mbps. In con-
trast, under TIVC, after the first job has run for 5 seconds and thus
finished the networking phase, the second job can be scheduled to

2We enumerate the peaks in all types for consistency.

run on the other VM of each of the four servers. This results in
doubling the resource utilization and hence the job throughput of
the whole system.

4. TIVC MODEL GENERATION
In this section, we study the key challenge in using TIVC ab-

stractions in practice: How to automatically generate the TIVC
model for a given cloud application? Since the quantitative
program behavior, e.g., networking requirement, is typically de-
pendent on the MapReduce framework configurations at runtime
(e.g., [22]) and potentially on input parameters, in this paper, we
propose a “black-box” approach to modeling the traffic require-
ment of a cloud application. The general idea is to collect the traffic
trace of the application during profiling runs,3 and use it in model
generation. We discuss the generality of our approach in §4.5.

Realizing the above profiling-based approach faces two immedi-
ate challenges. First, there exists a tradeoff between the bandwidth
cap and the execution time, since tightening the bandwidth con-
straint elongates the networking component of a job and affects the
completion time. The question then is what bandwidth cap should
be used during the profiling run? Second, given a traffic profile col-
lected from the profiling run, how to automatically derive the most
suitable TIVC model.

4.1 Impact of Bandwidth Capping
Under the TIVC abstraction, the cloud provider charges for both

the VMs and the network usage4. This raises the question of how to
balance the VM cost and the networking cost, e.g., in trying to min-
imize the total cost of a tenant’s job. Intuitively, a job can request
for a lower bandwidth limit which lowers the networking cost per
unit time and potentially the total networking cost, which however
may lead to longer networking time and hence longer job execu-
tion time, increasing the total VM cost. To our knowledge, this
important question has not been studied before, even in immedi-
ately relevant prior works such as Oktopus [11]. In the follow-
ing, we conduct experiments to characterize the first-order impact
that bandwidth capping has on the cloud application execution time
from which we draw implications to TIVC model generation.

We repeat the profiling experiments in §2.2 while gradually re-
ducing the access bandwidth limit per VM. Figure 4 shows the
measured application execution times. We make two observations.
First, for each application, until the bandwidth cap is reduced to a
certain threshold (e.g., 300 Mbps for Hive Join), there is virtually
no impact on the application execution time and network through-
put. Second, once the cap crosses below the threshold, denoted as
the no-elongation threshold bandwidth, the execution time is elon-
gated monotonically. We empirically confirmed that the elongation
of the execution time is due to the slowdown of the application net-
working activities, as we measured the execution time slowdown
to be equal to the elongation on the network active periods, i.e., the
width of the pulses captured in the TIVC model shown in §4.2.

The main reason for the above behavior is that cloud applications
have mixed communication and computation even in network-
intensive phases. For example, we calculated the average through-
put per VM of Hive Join during each of the four high pulses in
Figure 1(c) which had a bandwidth cap of 800 Mbps to be only 160
Mbps. This indicates that it may be unnecessary to set the band-
width cap to be much higher than the average application traffic
generation rate. However, we found that capping the bandwidth to

3We note profiling traffic demand is required even in Oktopus [11]
to meaningful decide on the constant bandwidth parameter B.
4Designing bandwidth charging models is currently being stud-
ied [30, 10] and is beyond the scope of this paper.
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width caps.

be exactly the same as the application data generation rate is too
rigid, i.e., it actually slows down the application network-intensive
phases. This is shown in Figure 4 where Hive Join under 200 Mbps
runs 25 seconds longer than under 300 Mbps. The reason is mainly
due to applications’ bursty networking behavior. Specifically, we
observe that applications tend to interleave computation and data
transfer phases, i.e., it generates traffic in bursts during data trans-
fer phases, at a rate higher than the average data generation rate.
Further, the computation has certain dependence on the data trans-
fer. For example, in MapReduce jobs, the data shuffling phase is
interleaved with map tasks which generate processed data. If the
bursty data transfer is slowed down due to bandwidth capping, it
pushes back the subsequent computation.
The above threshold behavior suggests that the tenant should al-

ways pick the bandwidth cap to be the same or lower than the no-
elongation threshold bandwidth, as higher capping wastes network-
ing cost without making the application run faster. However, below
the threshold, automatically deriving the bandwidth cap that opti-
mizes the total cost requires a precise modeling of the relationship
between the bandwidth cap and application execution time, which
is beyond the scope of this paper. Instead, in §5.1, we implement a
profiling-based approach to help the user to pick the bandwidth cap
that optimizes the total cost while meeting the performance goal.
The above study further helps us to draw an important impli-

cation in terms of automatic TIVC model generation. If the user
picks a bandwidth cap Bcap equal to or below the threshold value
in the profiling run to be used for model generation, in the gener-
ated TIVCmodel, the ceiling of the pulses should be conservatively
set to be the same as the bandwidth cap, as using a lower ceiling
will elongate the application execution time relative to the profile
run. However this rule can be loosened for certain pulses which
will be become clear in §4.3.

4.2 Model Generation
The model generation algorithm takes as input the traffic profile

of an application profiling run under bandwidth cap Bcap, and de-
rives the TIVC parameters that achieves the highest efficiency in the
following two steps. Here, we define efficiency of a TIVC model
as the ratio of the total application traffic volume over the total traf-
fic volume under the bandwidth reserved by the TIVC model, i.e.,
R T

0
B(t)dt.

Since TIVC models use pulse functions, i.e., square curves, the
main idea of automatic model generation is to derive square curves
to cap the continuous bandwidth demand curve from the profiling
run. There are potentially many ways of generating such bounding
square curves, and different bounding curves may have different
efficiencies. We note high efficiency fittings (and hence low total
bandwidth volume) may not necessarily translate into fitting more
jobs in the datacenter, as how well the TIVC models of competing
jobs complement each other also plays an important role. However,
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we envision it is more practical that TIVC models are generated
offline, i.e., oblivious to the competing jobs at (future) scheduling
time, and hence set maximizing the efficiency as the main objective
in model generation.

We generate the most efficient Type 4 model in two steps. First
we show how to generate the bounding square curves that maximize
the efficiency under Type 3 TIVC (which generalizes Type 1 and 2).
We then show the conditions when a Type 3 model is refined into
Type 4 in §4.3. Recall a Type 3 TIVC model specifies a base band-
width Bb and a list of fixed-height pulses Pi = (Ti1, Ti2, B). For a
fixed Bb value, to meet the application’s bandwidth need, all peri-
ods in which the bandwidth usage is observed to be greater than Bb

is conservatively rounded up toBcap, for reasons discussed in §4.1.
Thus Bb effectively controls the relative amount of bandwidth vol-
ume under the base bandwidth periods and under the pulse periods.
In general, the higher the Bb value, the more area under the base
bandwidth, and the less area under the (narrower) pulses, as shown
in Figure 5, which shows two tentative square curve fittings with
base bandwidth Bb1 and Bb2, respectively. Now given an applica-
tion bandwidth profile, the Type 3 TIVC parameters that maximize
the model efficiency can be found by searching through different
values of Bb.

Figure 6 shows the bandwidth profiles for the four applications
shown in Figure 1 but under the no-elongation threshold bandwidth
cap, and the corresponding TIVC models generated for these pro-
files. We make two observations. First, compared to Figure 1, using
threshold bandwidth capping did not elongate the application exe-
cution, but smoothed the traffic peaks. Second, the TIVC models
generated for the four applications are of Types 1, 2, 3 and 3, as
expected, and achieve 22.9%, 8.9%, 13.1%, and 6.3% efficiencies,
respectively.

4.3 Model Refinement
The Type 3 TIVC model generated for a given application traffic

profile consists of square curves of two different bandwidth limits,
base bandwidth Bb during valleys and capping bandwidth BCap

during peaks. A close look at the individual pulses and valleys in
Figure 6 reveals two findings. First. if we calculate the efficiencies
of different pulses (shown in Figure 6 next to each pulse), the val-
ues can differ significantly, with the peak efficiency being around
30%. Second, the profile for the same application under a lower
bandwidth cap (not shown due to page limit) shows the pulses with
the highest efficiency get elongated first, and with low efficiencies
can sustain a lower bandwidth cap without being elongated.

To improve the efficiency of the TIVC model, which allows the
cloud provider to potentially fit more jobs in the datacenter, we re-
fine the generated Type 3 model by lowering the bandwidth cap for
pulses that have very low bandwidth efficiencies, using the follow-
ing heuristic. If the efficiency is lower than a threshold γ, we lower
the bandwidth cap so that the efficiency is around α. We empir-
ically found for all the applications we studied, setting γ = 8%
and α = 20% is sufficiently conservative, i.e., it will not elongate
the pulses when running under the new bandwidth caps. Figure 7
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Figure 6: Bandwidth profiles under no-elongation threshold bandwidth cap and their Type 3 models.
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(a) Hive Join refined model.
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Figure 7: Hive Join and Hive Aggre. refined model.

shows the Type 4 models for Hive Join and Hive Aggre. which are
refined from their corresponding models in Figure 6. We do not
claim the two threshold values to be general and suitable thresh-
old values are likely dependent on the networking and computation
mix of the class of applications. Rather, the key point is that Type
4 models can be systematically derived by refining Type 3 models
from lowering the bandwidth cap for pulses with low efficiencies.

4.4 Incorporating Model Offsets
A final challenge faced by TIVC model generation is concerned

with the TIVC models for different VMs of the same job. There
are two related questions: how much do the traffic demand and
hence the TIVC models generated for different VMs differ, and if
the TIVC models are the same, how well are their timings aligned.
Our profiling study shows that for the set of MapReduce jobs, the
traffic demand and hence the TIVC models generated across the
VMs are of the same type and with the same number of pulses.
However, the rising and falling edges of the pulses can be offset,
potentially due to the delay in task dispatching from the task sched-
uler. Table 1 lists the standard deviation of the rise and fall timings
of the pulses for the four applications. We see that the standard
deviation of the pulses across 32 VMs is less than 9 seconds.
The above small misalignment between TIVCs of different VMs

suggests that instead of generating individual TIVCs for the VMs,
we can generate a single TIVC which is easier to provision, as
follows. We first process per-VM profiles to generate per-VM
refined TIVC models. We then calculate the max of their base
bandwidths, and regenerate per-VM TIVC models using this new
base bandwidth. Next we merge the new per-VM TIVC mod-
els by merging the corresponding pulses, taking the max of their
widths and heights. Figures 8(a)-(c) show the traffic profiles and
TIVCs for three randomly sampled VMs and Figure 8(d) shows the
merged TIVC, for Hive Join. Since the threshold bandwidth cap for
Word Count, 10Mbps, is already very low, it should be provisioned
throughout the application execution. The final TIVC models gen-
erated for the rest three applications are shown in Table 2.

4.5 Discussions
We discuss the generality and limitation of our profiling-based

model generation. Our model generation uses the enveloping tech-
nique (§4.4) to tolerate small offsets among the traffic demand
by different VMs of a job. This works well for the class of

Table 1: TIVC offsets, measured as the standard deviation of

the rise/fall timings of pulses across 32 VMs.
Sort WC Hive Join Hive Aggre.

Pulse 1 (rise, fall) 5.8, 7.9 3.5, 4.0 2.0, 3.2 0.1, 2.3
Pulse 2 (rise, fall) N/A 5.3, 5.6 8.1, 3.6 0.1, 0.3
Pulse 3 (rise, fall) N/A 5.4, 5.8 1.9, 2.7 N/A
Pulse 4 (rise, fall) N/A 5.1, 5.5 1.9, 2.4 N/A
Pulse 5 (rise, fall) N/A 5.7, 5.4 1.9, 2.4 N/A
Pulse 6 (rise, fall) N/A 5.5, 5.5 1.9, 2.4 N/A
Pulse 7 (rise, fall) N/A 5.3, 5.5 2.1, 2.6 N/A

MapReduce-type applications which tend to be highly regular in
nature – the worker VMs are performing similar tasks and hence
are likely to generate traffic of similar volume and at similar times.
For applications that generate non-uniform traffic, we can generate
and enforce per-VM TIVC models.

Our approach assumes the input data size per VM stays the same
during profiling runs and production runs. One potential source of
variation between the traffic patterns during profiling runs and pro-
duction runs is the input data, as the processing time of different
data items and hence across the VMs could be uneven. In our ex-
periments with input data generated using random seeds, we did
not find much difference in the traffic characteristics across runs.
Specifically, the standard deviation of the pulse edge timings across
5 runs of the four applications using input data generated using ran-
dom seeds is less than 10 seconds (not shown due to page limit).
In general, it is important to validate this assumption for any can-
didate application across multiple sample profile runs before using
the TIVC models.

We envision the primary use scenarios of TIVC models are when
customers repeatedly run the same type of jobs with the same input
size (and hence same number of VMs), with potentially similar data
sets from run to run. Such a scenario is common in iterative data
processing (e.g., [14]) such as PageRank [29], HITS (Hypertext-
Induced Topic Search) [25], recursive relational queries [12], so-
cial network analysis, and network traffic analysis where much of
the data stay unchanged from iteration to iteration, and is observed
in many production environments (e.g., in Bing’s production clus-
ters [6]), where the same job needs to be repeated day in and day
out, and the data change slightly. In such scenarios, the jobs could
be profiled on each run or periodically, with the TIVC models gen-
erated to help schedule the cluster during the next run.

Finally, as with all other network reservation approaches
(e.g., [20, 11]), TIVC faces a number of uncertainties during job
execution: the data processed by each VM (e.g., a map task) may
not be on the local disk, a job execution may experience strag-
glers or task failures which require some tasks to be re-executed
(e.g., [9]), or some VMs or network elements may fail. In general,
predictable performance in the presence of such uncertainties re-
quires adding fault tolerance to applications and overprovisioning
of not only network resources, but also extra VMs, for accommo-
dating backup tasks. We leave dealing with such uncertainties as
future work.
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Figure 8: Bandwidth profile and generated Type 4 TIVC models of Hive Join.

Table 2: TIVC models generated for the applications.
App. Type TIVC Efficiency
Sort 1 <N , 382s, 4Mbps, (17s, 202s, 400Mbps)> 22.8%

Hive Join 4
<N , 672s, 50Mbps, (46s, 183s, 100Mbps), (284s, 301s, 300Mbps), (329s, 363s, 300Mbps),

17.6%
(383s, 413s, 300Mbps), (434s, 464s, 300Mbps), (485s, 517s, 300Mbps), (539s, 634s, 100Mbps)>

Hive Aggre. 4 <N , 535s, 4Mbps, (27s, 253s, 60Mbps), (268s, 492s, 350Mbps)> 10.7%

5. THE PROTEUS SYSTEM
To demonstrate the effectiveness of TIVC models, we have de-

veloped a cloud sharing system called PROTEUS that implements
the TIVC models.

5.1 Overview
The goal of PROTEUS is to allow cloud customers to obtain pre-

dictable performance and cost guarantees for their applications.
This is achieved via three steps, as outlined in Figure 9. In the
first step, the customer’s application is profiled under different con-
figurations, i.e., of input data size per VM and bandwidth cap, and
TIVC models are generated for the profiling runs using the tech-
niques presented in §3. We note the profiling overhead can be dras-
tically reduced when customers repeatedly run the same type of
jobs with the same input size (see §4.5).
Each profiling run under a configuration in the first step results

in a TIVC model and a service completion time. In the second
step, the charging model published by the cloud provider is used
to estimate the cost for the candidate TIVC models under different
configurations. The customer can then pick whichever configura-
tion that best suits her performance/cost objective.
In the final step, given a TIVC job configuration that the cus-

tomer picks, the cloud provider runs a spatial-temporal TIVC al-
location algorithm to place the job in the physical datacenter in a
way that maximizes the utilization and hence the revenue of the
cloud datacenter, and configures the datacenter network to enforce
the requested time-varying bandwidth specified in the TIVC speci-
fication. We describe the details of these two components next.

5.2 Spatial-Temporal Allocation
The job manager implements the TIVC allocation algorithm to

allocate VM slots on the physical machines in an online fashion. It
achieves this by maintaining up-to-date information of (1) the dat-
acenter network topology; (2) the empty VM slots in each physical
machine; and (3) the residual bandwidth for each link, calculated
from tallying the TIVC allocations of currently running jobs. We
focus on tree-like topologies such as multi-rooted tree topologies
which are typical of today’s datacenters. In such a topology, ma-
chines are grouped into racks and the Top-of-Rack (ToR) switches
are in turn connected to higher level switches.
We present a generic allocation algorithm for all TIVC models,

each of which can be viewed as a sequence of pulses of different
bandwidth and duration. We first show how to find a valid alloca-
tion for a TIVC request, then show how to find a good allocation
out of all the valid allocations. Our allocation algorithm improves
the Oktopus allocation algorithm [11] with a novel dynamic pro-

gramming solution in searching valid allocations, which not only
significantly improves the search efficiency, but also guarantees to
find the most localized allocation, i.e., in the lowest subtree.

Bandwidth requirement of a valid allocation. Before presenting
the allocation algorithm, we first ignore the time dimension and
explain on how a fixed access bandwidth B per VM in a TIVC
request translates into the bandwidth requirement on the internal
links in the physical network.

If the N VMs required by a request can be found at a level-0
subtree, i.e., within a physical machine, they can be allocated right
away, as there should be enough bandwidth between the VMs in
the same machine. Otherwise, the N VMs will reside in multiple
subtrees, and the traffic between them will travel up and down the
tree. This poses a subtle challenge as to howmuch bandwidth needs
to be reserved on the tree links. Consider a link L that connects a
left subtree containing m allocated VMs and a right subtree with
(N−m)VMs. Since each VM cannot send or receive at a rate more
than B, the maximum bandwidth needed on link L is min(m, N−

m)∗B. Thus a valid allocation needs to satisfy min(m, N −m)∗
B < RL, where RL is the residual bandwidth of link L.

Now, taking the time dimension into account, a valid allocation
for a TIVC request is an embedding of the VMs into a subtree of
the datacenter where each link L connecting parts of the subtree
satisfies the bandwidth requirement of each pulse and valley in the
TIVC request. Specifically, for each Pi = (Ti1, Ti2, Bi) in the
TIVC request, link L should have enough residual bandwidth dur-
ing interval (Ti1, Ti2), i.e.,

min(m, N − m) ∗ Bi < RL(Ti1, Ti2) (1)

Efficient search via dynamic programming. As discussed above,
when the VMs of a TIVC request cannot be satisfied within a rack,
they may paternally be divided into subgroups which are then al-
located out of different racks under a depth-1 subtree, and if not,
out of different depth-2 subtrees, and so on. The cost for searching
for such possible valid allocations can quickly become combinato-
rial. We make a key observation that a valid suballocation of K1

VMs in a depth-(d − 1) subtree can be reused in searching for a
valid suballocation of K2 VMs, K2 > K1, in the parent depth-d
subtree, and hence we can formulate the searching algorithm as a
dynamic programming problem which runs very efficiently.

Finding a good allocation. Given a TIVC request, there can be
many possible valid allocations in the physical network. There are
two dimensions in the physical network that quantify a good allo-
cation. First, in the vertical dimension, a good allocation should
exhibit good locality, i.e., the VMs allocated to it should be as
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Figure 9: The Proteus system.

localized to a subtree as possible, as good locality conserves the
bandwidth of the links in the upper levels of the tree. Second, it is
possible that multiple equally localized allocations exist, i.e., each
within a depth-i subtree. A major consideration in choosing an
allocation out of them is fragmentation, as allocating a TIVC to
a subtree may result in the subtree having few VMs and little link
bandwidth left to fit any future TIVCs. This fragmentation problem
resembles the classic dynamic memory allocation problem in oper-
ating systems, for which a number of classic heuristic allocation
strategies, including first-fit, best-fit, and worst-fit, exist. Our em-
pirical experiments have shown there is no clear winner, and hence
PROTEUS uses the local, first-fit strategy; it picks the first fitting
lowest-level subtree out of all such lowest-level subtrees.

The algorithm. Figure 10 shows the TIVC allocation algorithm in
pseudo code. The set of all possible numbers of VMs out of the N
VMs needed by a job that can be allocated in the subtree rooted at
v form the M set for v, Mv . Because of the bandwidth constraint
(Equation 1), the numbers in Mv may not be continuous. Hence,
we need to record the valid allocation out of each subtree during dy-
namic programming search, using a few data structures. Let Lv[k]
denote the set that contains the numbers of VMs that could be ac-
commodated in the first k children of the subtree rooted at v, with-
out considering the uplink bandwidth constraint of v. Then Mv

contains all the values in Lv[n] that can satisfy the uplink band-
width constraint. To record the allocation in the traversed subtrees,
i.e., each possible value h in Lv[k], we record in Dv[k, h] the num-
ber of VMs assigned to the kth child of v, when it assigns h VMs
in the first k children. The dynamic programming step is shown in
lines 5–10, which calculates Lv[k] and Dv[k, h] recursively. After-
wards, all the candidate numbers of VMs are added to Mv if they
pass the uplink bandwidth requirement of v (lines 11-14). If N can
be allocated out of Mv , Alloc() is called which performs recursion
according to Dv[k, h] while recording the bandwidth reservation
of the relevant links, and eventually outputs the number of VMs
per machine (level 0), and the algorithm terminates. We can easily
show the algorithm outputs the first allocation (from left to right)
that fits in the lowest-level subtree.

5.3 Enforcing TIVC Reservations
After allocating the VMs for a job, PROTEUS needs to configure

the network elements to enforce the reserved bandwidth on the ac-
cess links and internal links that connect the VMs. Prior works [11,
34, 26] have opted for an end-host only approach, which reserves
per-VM access bandwidth in the hypervisor. To enforce reserva-
tions in in-network links, such approaches add significant complex-
ity in the hypervisor, which needs to perform online rate monitoring
for all VM pairs, communicate the rates to a centralized optimizer
which calculates the max-min fairness for each VM pair, etc., mak-
ing such approaches less scalable. Bloating the hypervisors is also
typically disliked since it adds complexity in the critical path and
compromise robustness and security [13].
We make a key observation that even in a large-scale datacenter,

the number of jobs that share a link at the same time is generally

Algorithm: Allocation for TIVC request r
Input: Datacenter topology tree T
1. For level l from 0 to height(T)
2. For each subtree v at level l
3. If (l==0) Lv [0] = {0, ..., # avail. VMs} // leaf machine
4. Else Lv [0] = {0}
5. For v’s child k from 1 to n
6. Lv [k] = {0}
7. For each possible value e in v’s kth child’s M set (Mvk

)
8. For each possible value h in Lv [k − 1]
9. Lv [k] = Lv [k] ∪ {e + h}
10. Dv [k, e + h] = e
11. Mv = ∅
12. For each value h in Lv [n]
13. If (bandwidth check of v’s uplink per Eq. (1) == true)
14. Mv = Mv ∪ {h}
15. If N ∈ Mv

16. Alloc(r, v, N )
17. Return true
18. Return false
function Alloc(r, v, m):
19. If v is a machine
20. allocate m VMs in v
21. Else
22. For v’s child k from n to 1
23. Alloc(r, vk , Dv [k, m])
24. record bw reservation on v’s kth link
25. m = m − Dv [k, m]

Figure 10: The TIVC Allocation algorithm.

low. Consider a typical rack in the production environment with
40 machines and hence 160 VMs assuming conservatively 4 VMs
per machine. If most jobs are small enough to fit within a rack,
few jobs need to straddle the rack boundaries. On the other hand,
very few large jobs which need to cross the core of the network
can be scheduled to run concurrently since each of them consumes
a large number of VMs. In our simulation runs over a datacenter
with 16,000 machines (§6), we found fewer than 26 concurrent jobs
per link (see Figure 17). Rate limiting such a low number of jobs
sharing a link can be easily implemented using network switches
available today. For example, the Cisco Nexus 7000 Series 32-
port 10Gb module already supports up to 16K policers (for rate
limiting 16K aggregates) [4] and 64K ACL entries (for defining
the traffic aggregates). Furthermore, the above low number of jobs
sharing a link, as well as the fact the edges of bandwidth pulses of
different jobs happen at different times, suggest that reconfiguring
the policers can be done with low overhead.

Multi-path routing. The TIVC allocation algorithm in §5.2 as-
sumes a simple tree topology where the traffic between a VM pair
follows a single path up and down the tree. However, datacen-
ters may have networks with richer connectivities such as multi-
rooted trees (e.g., [27]) and fat-trees [7, 19]. These networks typi-
cally use hash-based or randomized techniques such as ECMP and
Valiant Load Balancing to spread traffic across multiple equal cost
paths, and can use more involved techniques such as Hedera [8] and
MPTCP [31] to ensure uniform traffic spread despite flow length
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variations. Therefore, such topologies can be incorporated into the
TIVC allocation algorithm by treating the multiple links from each
physical machine or switch that are used in multiple equal cost
paths (to the same destination) as a single aggregation link, and en-
forcing bandwidth reservation of an aggregation link boils down to
enforcing equal reservation split among the multiple physical links
in the aggregate. We leave a detailed experimental study of such
physical networks as future work.

6. EVALUATION
We use both simulations of large scale datacenter networks and

our implementation on a testbed running real MapReduce applica-
tions to show PROTEUS exhibits significant advantage over a fixed-
bandwidth reservation scheme such as Oktopus.

6.1 Simulation Setup
To show the effectiveness of PROTEUS in large scale datacenter

settings, we developed a simulator that models VM and network
bandwidth reservations in a shared datacenter. The simulator sim-
ulates a datacenter of three-level tree topology. There are 16,000
machines at level 0, each with 4 VM slots. 40 machines form a
rack and are linked with a Top-of-Rack (ToR) switch with 1 Gbps
links. Every 20 ToR switches are connected to a level-2 aggrega-
tion switch, and 20 aggregation switches are connected to the core
switch of the datacenter. The default oversubscription of the phys-
ical network is 4, i.e., ToR switches are connected to aggregation
switches with 10 Gbps links, and aggregation switches to the core
switch with 50 Gbps links.

Alternate abstractions. We compare PROTEUS with Oktopus, the
state-of-the-art network abstraction [11]. Oktopus supports two
network abstractions: virtual clusters (VC) and virtual oversub-
scribed clusters (VOC). However, VOC places a significant burden
on the cloud users who not only have to specify the constant band-
width constraint B, but also explicit subclustering of VMs that ex-
hibit local communication and their oversubscription factors. Fur-
ther, we do not observe any such communication locality in the ap-
plications we have studied. Thus we leave comparison with VOC as
future work. Ideally, we should also compare TIVC with a baseline
model that schedules jobs solely based on the number of available
VMs. However, it is difficult to model in simulations the execution
time elongation when jobs compete for networking freely.

Workload. We simulate tenant jobs based on the network work-
load extracted from the MapReduce applications studied in §2.2:
Sort, Hive Join, and Hive Aggregation. We do not include Word
Count as it has insignificantly low bandwidth requirement and will
not benefit from bandwidth reservations provided by network ab-
stractions like VC and TIVC. We use the no-elongation threshold
bandwidth cap (§4.1) as the bandwidth requirement B under VC,
and as the capping bandwidth in application profiling and model
generation under TIVC. Using the same bandwidth cap B this way
ensures that the job running times stay the same under the two ab-
stractions during production runs. The generated TIVC parameters
are shown in Table 2. To simulate a datacenter with diverse job
mixes, we vary the number of VMs needed by each job; in our
experiments by default the number of VMs per job request is expo-
nentially distributed around a mean of 49 (following [11]).

6.2 Simulation Results
We compare PROTEUS with Oktopus under two scenarios: (1) A

large number of tenant jobs are pooled at the job queue waiting to
be scheduled to run. This workload captures production datacenters
that host time-insensitive jobs, e.g., data processing jobs to be run
overnight. (2) Tenant jobs arrive dynamically and are accepted only
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if they could be scheduled at the moment of arrival. This workload
is representative of shared clouds that host time-sensitive jobs. For
each scenario, we first simulate 5,000 jobs running a single appli-
cation, and then simulate 5,000 jobs of equally mixed applications.
The four workloads are denoted as Sort, Hive Join, Hive Aggrega-
tion and Mixed.

6.2.1 Batched Jobs

For batched jobs, the job scheduling policy tries to maximize the
job throughput. Under VC, this is achieved by going through the
job queue and schedule the jobs that can be scheduled to run, when-
ever a job is finished. Under TIVC, however, this can be inefficient,
as before any running job is finished, there can be enough residual
bandwidth freed up so that a new job can be scheduled. Instead,
the job scheduler rescans the job queue every 10 seconds, which is
20% of the average inter-job completion time.

Job completion time. Figure 11 plots the time to complete all
5,000 jobs under VC and TIVC. We see for all workloads, TIVC
significantly improves the completion time, and hence job through-
put of the datacenter, over VC. In particular, compared to VC,
TIVC reduces the completion time by 41.5%, 20.8%, 23.1%, and
34.5% for Sort, Hive Join, Hive Aggre., and Mixed, respectively.

Varying the oversubscription rate and job size. We repeat the
above experiments with varying oversubscription rates in the phys-
ical datacenter network. Figure 12 shows TIVC provides greater
advantage over TC when the oversubscription rate is larger, reduc-
ing the total completion time by 35.2%, 36.0%, and 41.5% under
oversubscription rates 6, 8, and 10, respectively. Similarly, Fig-
ure 13 shows increasing the mean job size N further increases the
performance advantage of TIVC over VC since larger jobs are more
likely to traverse the oversubscribed core network links.

6.2.2 Dynamically Arriving Jobs

We now consider the cloud scenario where job requests ar-
rive over time. Assume the job arrival follows a Poisson process
with rate λ, then the load on a datacenter with M VMs total is
λ · N · Tc/M where N is the mean job request size (i.e., 49) and
Tc is the mean job completion time. If a job cannot be allocated
upon its arrival, it is rejected, as is the case with Amazon’s EC2 job
admission control [1] today. We again simulate 5,000 job requests
under VC and TIVC while varying the load factor.
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(a) Sort.
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(b) Hive Join.
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(c) Hive Aggregation.
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(d) Mixed.

Figure 14: Percentage of rejected requests with varying datacenter load.
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(a) Concurrent jobs.
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(b) VM utilization.
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(c) Reserved access bandwidth.
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(d) Actual network utilization.
Figure 15: Concurrent jobs, VM utilization, reserved and actual utilization of bandwidth, for Mixed and 80% load.

Job rejection rate. Figures 14(a)-14(d) plot the rejection rates for
the three application workloads and the mixed workload. We ob-
serve that under low load, e.g., 20%, the total networking reserva-
tion under both VC and TIVC can be met and hence both accept
all jobs. As the load increases, VC rejects far more requests than
TIVC. For example, at 80% load, 20.0%, 2.7%, 20.6%, and 9.5%
of the requests are rejected under VC compared to 10.1%, 0.3%,
7.9%, and 3.4% under TIVC, for the four workloads, respectively.

Job concurrency and VM/network utilization. To understand
how TIVC achieves much lower rejection rates than VC, we look at
the number of concurrent jobs scheduled and the VM and network
utilization under the two models. Due to page limit, we only show
the results for the mixed workload under one load factor, 80%.
Figure 15(a) shows that after the initial job arrival ramp-up phase,
TIVC consistently achieves about 7% higher job concurrency than
VC. Since the extra jobs accepted by TIVC tend to be larger than
average, the 7% higher job concurrency under TIVC translates into
on average close to 13% higher VM utilization (of the total 64,000
VMs in the datacenter) than under VC, as shown in Figure 15(b).
Finally, the reason TIVC is able to fit more jobs is by exploit-

ing lower networking periods of a job to schedule other jobs. Fig-
ure 15(c) shows the average reserved access bandwidth over time
under VC and TIVC. We see VC reserves on average 26.4% (of the
link capacity) higher bandwidth than TIVC. However, Figure 15(d)
shows TIVC achieves on average about 20.1% actual network uti-
lization, calculated by adding the instantaneous traffic demand of
individual jobs over each access link, and then averaged over all ac-
cess links, much higher than the 8.9% under VC. This confirms that
by capturing the time-varying nature of application traffic demand,
TIVC is able to achieve much more efficient bandwidth reservation
than VC. We note the overall low actual network utilization un-
der the explicit network reservations may seem counter-intuitive.
This is precisely the price to pay for predictable performance, i.e.,
to reserve enough bandwidth so that the execution of real world
applications, which can have diverse, bursty traffic phases, is not
elongated (§4.1).

Job locality and link sharing. To assess the spatial locality of
the TIVC jobs allocated by PROTEUS, we plot the average number
of concurrent jobs allocated at different subtree levels in the dat-
acenter, for the mixed workload runs. Figure 16 shows that after
the ramp-up phase, under 80% load, on average around 795 out of
the 920 total concurrent jobs are allocated within level-1 subtrees,
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Figure 16: Number of concurrent jobs allocated to diff. tree

levels for Mixed.
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Figure 17: Max number of jobs sharing a link at diff. tree levels

for Mixed.

i.e., confined to ToR switches, and on average fewer than 99 and
26 jobs are within level-2 and level-3 subtrees, respectively. Under
100% load, there are fewer than 102 and 37 jobs within level-2 and
level-3 trees. These numbers confirm that the vast majority of the
jobs are localized to small subtrees. The immediate consequence
of such locality is that there are few jobs sharing any link at the
same time in the datacenter network. Figure 17 shows the maxi-
mum numbers of jobs sharing a link are less than 13 and 26 at level
2 and 3, and stay at 4 at level 1 (i.e., the 4 VMs of a machine are
allocated to 4 different jobs), under 80% and 100% load. We also
measured the locality in separate experiments when the workload
has only large jobs, i.e., requiring thousands of VMs, and when the
workload has mixed small and large jobs, and again found there are
few jobs sharing any given link in the whole network. The reason
is when jobs are large, few can be scheduled to run concurrently. In
summary, the low number of jobs sharing any link in the network
despite job size mixes suggests per-job bandwidth reservation in
the internal links can be easily accomplished using policers in off-
the-shelf switches (§5.3).

Tenant cost and provider revenue. Today’s cloud providers such
as Amazon EC2 charge tenants solely based on the consumed VM-
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Figure 18: Relative provider revenues and tenant costs for

mixed workload.

time. In this case, the fraction of job requests that are accepted and
the costs for them determine the cloud provider’s revenue. Since
the number of VMs allocated to each job and its execution time
stay the same under VC and TIVC, the lower rejection rate under
TIVC compared to VC directly translates into increased revenue
for today’s cloud provider, while the individual tenant’s cost stays
the same. For example, for the mixed workload in Figure 14(d),
VC rejects 4.6%, 6.1%, and 7.4% more jobs under 60%, 80%, and
100% load, respectively. Since the rejected jobs tend to be larger
than average, the extra rejected jobs translate into 16%, 22%, and
27% lower provider revenue under VC.
We envision that tomorrow’s cloud providers will and should ex-

plicitly charge for networking bandwidth in providing tenants with
explicit bandwidth reservations such as VC and TIVC. Since devel-
oping fair yet efficient charging model is still ongoing research [30,
10], we adopt the simple charging model in [11] which effectively
charges networking based on the total reserved bandwidth volume
over time in such a way that the cloud provider (e.g., Amazon EC2)
remains revenue neutral in transitioning from the VM-only charg-
ing model to the new model. Specifically, a tenant using N VMs
for time T will be charged N(T · kv + kb · V ), where kv is the
unit-time VM cost, kb is the unit-volume bandwidth cost, and V is
the total bandwidth volume reserved over the time period T .
Under the above charging model, we compare the cloud provider

revenue and the tenant cost under VC and TIVC for two sample
estimated kv and kb prices: (0.04$/hr, 0.00016$/GB) and (0.04$/hr,
0.00008$/GB), for the mixed workload run in Figure 14(d). We
calculate the ratio of the total cloud provider revenue and the ratio
of the tenant job cost, under TIVC versus under VC. Figure 18(a)
shows the two ratios under the first price. We see that TIVC allows
tenants to pay on average about 20% less than VC, for accepted
jobs, independent of the load, from reduced network usage. At
low load, e.g., 20–40%, the cloud provider revenue under TIVC is
about 20% lower than under VC because the cloud provider accepts
almost all jobs under both schemes while the tenants under TIVC
on average pay 20% less than under VC. At close to 100% load,
however, not only do tenants under TIVC pay 20% less than under
VC, the cloud provider stays revenue neutral under TIVC compared
to under VC. This is because the provider is able to accept about 7%
more jobs under TIVC than under VC, which corresponds to about
13% higher VM utilization (again since these extra jobs tend to be
larger than average). Finally, Figure 18(b) shows under the second
price, TIVC not only allows tenants to pay on average about 12%
less than under VC at all loads, but also allows the cloud provider
to make more revenue when the load crosses 60%.

6.3 Testbed Experiment
We implemented PROTEUS following the description in §5 on a

datacenter testbed consisting of 18 machines (specification in §2.2)
forming a 3-tier tree topology as shown in Figure 19. Each ma-
chine runs 2 VMs, and the testbed switches are implemented using
servers with NetFPGA cards with 4 1Gbps ports. We use the rate
limiter module provided in the base package of NetFPGA reference

router to limit the capacity of each internal tree link to emulate an
oversubscribed datacenter. The level-1 (i.e., between the machines
and ToR switches), level-2, and level-3 link capacities are 230, 700,
and 1000 Mbps, respectively.

The bandwidth provisioning for access links is implemented via
the Linux traffic control API tc. For internal links, since it is not
straight-forward to implement per-job rate limiters, we configured
the combined rate of jobs allocated to the sub-tree. For example,
assuming nodes 1−6 are allocated to jobs 1 and 2, then the link be-
tween A and G, shared between the two jobs, would be configured
with the sum of bandwidth requirements of the two jobs.

We use a mixed workload of 30 jobs, 10 each of the three ap-
plications, Sort, Hive Join, and Hive Aggre. PROTEUS profiles the
3 applications on the testbed, generates the TIVC and VC mod-
els using no-elongation threshold bandwidth cap, and allocates the
jobs accordingly. We also run the same 30 jobs under a baseline
model, which schedules the jobs solely based on the number of
available VMs. Figure 20 shows the completion time for the work-
load are 2405, 3770, 5140 seconds, for Baseline, TIVC, and VC,
respectively. TIVC reduces VC’s completion time by 27% from
more efficient bandwidth reservation and hence scheduling. How-
ever, Baseline has the shortest completion time since it aggressively
schedules jobs to compete freely for the network which results in
higher overall networking utilization, but however can lead to un-
predictable application performance. Figure 21 shows the CDF of
the per-job execution time under Baseline and under VC relative to
that under TIVC. We see that in the median case, per-job execution
time under Baseline is 10% longer than that under TIVC. Except
for a few variations, TIVC results in similar per-job execution times
as VC, because both models reserve the threshold bandwidth and
avoid unpredictable competition for the network.

To evaluate the scalability of the TIVC allocation algorithm, we
measure the time to allocate each of the 5,000 job requests in the
large datacenter with 64,000 VMs used in §6.1. Our allocation al-
gorithm is highly scalable; the single-threaded code running on an
8-core Intel Xeon E5410 2.33 Ghz processor and 16 GB RAM has
a median time of 18.0ms and the 99th percentile time of 28.0ms.

7. RELATEDWORK
Our work is closely related to the recently proposed virtual net-

work abstractions [20, 11, 33]. We discussed [20, 11] in detail in
§2. Like Oktopus, Gatekeeper [33] also proposes a per-VM hose
model but for full bisection networks and focuses on managing
servers’ access bandwidth. The hose model was originally intro-
duced in [18] for wide-area VPNs and did not consider allocating
physical or virtual machines. Compared to these work, our work
proposes TIVC, which extends the per-VM hose model to model
the time-varying nature of networking requirement of cloud appli-
cations. More importantly, our work takes the first step towards
automatically deriving the model parameters for a representative
class of cloud applications.

Our work is also related to previous work on mechanisms for
sharing datacenter networks. As discussed in §5.3, most of previ-
ous work (e.g., [11, 33] use a hypervisor-based framework for en-
forcing bandwidth reservation in the network which can suffer poor
scalability. Seawall [34] and Netshare [26] propose bandwidth slic-
ing mechanisms that aim to provide fair sharing of networks with
minimum bandwidth guarantee and statistical multiplexing, but do
not provide deterministic bandwidth guarantees.

PROTEUS shares the same profiling methodology with Elasti-
sizer [22], StarFish [23] and CBO [21] which focus on choos-
ing the type and number of VMs for MapReduce jobs to balance
cost/performance objectives. These work ignore networking re-
quirement and hence complement our network profiling technique.
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Figure 19: Testbed topology.
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Our TIVC allocation algorithm is related to previous work
on virtual network embedding (e.g., [15, 35]) and testbed map-
ping [32]. These work resort to heavy-weight optimization solvers
such as linear programming and can not scale to the larger number
of VMs in modern datacenters.
Finally, several very recent work [30, 10] start to study fair and

efficient charging model in sharing datacenter networks. These
studies are complementary to PROTEUS and can be incorporated
into PROTEUS in choosing cost-effective TIVC models.

8. CONCLUSIONS
In summary, the primary contributions of this paper are the de-

sign of the first network abstraction (to our best knowledge), TIVC,
that captures the time-varying nature of cloud applications, and a
systematic profiling-based methodology for making the abstraction
practical and readily usable in today’s datacenter networks. Our
experimental evaluation using real MapReduce applications shows
that TIVC significantly outperforms previous fixed-bandwidth net-
work abstractions in improving job throughput and hence cloud
provider revenue and reducing tenant cost. Our work takes a sig-
nificant step forward towards efficient and cost-effective sharing of
datacenter networks in providing cloud customers with predictable
performance and cost.
The PROTEUS system which implements the TIVC abstraction

can be readily used to extend today’s dominant utility computing
model offered by public clouds, which requires the customers to
explicitly request for, and manage, virtual machines for their jobs,
to support an extended utility computing model that directly meets
the service time objectives of cloud customers. In this model, PRO-
TEUS directly allocates an application slice of the datacenter, i.e.,
a TIVC specification, that meets the target service time of a given
application at the minimum cost to the customer.
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