
Practical Lossless Federated Singular Vector Decomposition over
Billion-Scale Data

Di Chai

dchai@cse.ust.hk

Hong Kong University of

Science and Technology

Clustar Co., Ltd

Leye Wang

leyewang@pku.edu.cn

MOE Key Lab of High

Confidence Software

Technologies,

Peking University

Junxue Zhang

jzhangcs@cse.ust.hk

Hong Kong University of

Science and Technology

Clustar Co., Ltd

Liu Yang

lyangau@cse.ust.hk

Hong Kong University of

Science and Technology

Clustar Co., Ltd

Shuowei Cai

scaiak@cse.ust.hk

Hong Kong University of

Science and Technology

Clustar Co., Ltd

Kai Chen

kaichen@cse.ust.hk

Hong Kong University of

Science and Technology

Qiang Yang

qyang@cse.ust.hk

Hong Kong University of

Science and Technology

AI Group, WeBank Co., Ltd

Abstract
With the enactment of privacy-preserving regulations, e.g., GDPR,

federated SVD is proposed to enable SVD-based applications over

different data sources without revealing the original data. However,

many SVD-based applications cannot be well supported by existing

federated SVD solutions. The crux is that these solutions, adopting

either differential privacy (DP) or homomorphic encryption (HE),

suffer from accuracy loss caused by unremovable noise or degraded

efficiency due to inflated data.

In this paper, we propose FedSVD, a practical lossless feder-

ated SVD method over billion-scale data, which can simultane-

ously achieve lossless accuracy and high efficiency. At the heart of

FedSVD is a lossless matrix masking scheme delicately designed for

SVD: 1) While adopting the masks to protect private data, FedSVD

completely removes them from the final results of SVD to achieve

lossless accuracy; and 2) As the masks do not inflate the data,

FedSVD avoids extra computation and communication overhead

during the factorization to maintain high efficiency. Experiments

with real-world datasets show that FedSVD is over 10000× faster
than the HE-based method and has 10 orders of magnitude smaller

error than the DP-based solution (𝜖 = 0.1, 𝛿 = 0.1) on SVD tasks.

We further build and evaluate FedSVD over three real-world ap-

plications: principal components analysis (PCA), linear regression

(LR), and latent semantic analysis (LSA), to show its superior per-

formance in practice. On federated LR tasks, compared with two

state-of-the-art solutions: FATE [17] and SecureML [19], FedSVD-

LR is 100× faster than SecureML and 10× faster than FATE.

CCS Concepts
• Security and privacy→Privacy-preserving protocols; •Com-
puting methodologies→ Factorization methods.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

KDD ’22, August 14–18, 2022, Washington, DC, USA.
© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9385-0/22/08. . . $15.00

https://doi.org/10.1145/3534678.3539402

Keywords
Federated Learning; SVD; Privacy-preserving Matrix Factorization

ACM Reference Format:
Di Chai, Leye Wang, Junxue Zhang, Liu Yang, Shuowei Cai, Kai Chen,

and Qiang Yang. 2022. Practical Lossless Federated Singular Vector Decom-

position over Billion-Scale Data. In Proceedings of the 28th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining (KDD ’22), August
14–18, 2022, Washington, DC, USA. ACM, New York, NY, USA, 10 pages.

https://doi.org/10.1145/3534678.3539402

1 Introduction
Singular vector decomposition (SVD) is an essential primitive to

build various data analytics and machine learning applications over

large-scale data. SVD is widely used in 1) principal component

analysis (PCA) to reduce the dimensionality of large-scale features;

2) latent semantic analysis (LSA) [8] on large-scale natural language

processing (NLP) tasks to extract compressed embedding features.

These large-scale data usually come from various data sources in

the real world [26] and it is hard for a single institution to collect

sufficient data to produce robust results.

However, since the enacting of privacy-preserving laws, e.g.,
GDPR [23], the data from different sources are restricted from

being collected in one central place for conventional centralized

SVD computation. To solve the problem, pioneer researchers have

explored the SVD in a federated1 approach (Federated SVD), i.e.,
the SVD computation can be performed cooperatively by different

participants without revealing or gathering their original data. We

will give a formal definition of Federated SVD in §2.1.

In this paper, we show that these Federated SVD solutions [2,

9, 11, 16] cannot efficiently and accurately process large-scale

data, making them impractical to support real-world SVD appli-

cations. Specifically, prior works either leverage the differential

privacy (DP) or the homomorphic encryption (HE) for privacy pro-

tection. The DP-based solution [9] suffers from dramatic accuracy
loss because it adds unremovable noise in the data to hide individ-

ual privacy. Our evaluation results show that DP-based federated

SVD (𝜖 = 0.1, 𝛿 = 0.1) has over 10 orders of magnitude larger

1
We use the term of federated since the Federated SVD works similarly as Federated

Learning [26].

https://doi.org/10.1145/3534678.3539402
https://doi.org/10.1145/3534678.3539402

KDD ’22, August 14–18, 2022, Washington, DC, USA. Di Chai et al.

accuracy loss compared with centralized SVD (more details are

presented in §2.2). The inherent loss of data utility hindered its

application in the real world [22], e.g., inaccurate SVD results dur-

ing medical studies [13] can cause severe issues in the subsequent

medical diagnosis tasks. In contrast, the HE-based solution [16] can

achieve lossless accuracy. However, the HE involves large compu-

tation/communication overhead due to the inflated data, causing

significant performance degradation. Our evaluation results show

that it takes ∼ 15 years for HE-based methods [16] to factorize a 1K

× 100K matrix, i.e., 100 million elements (more details in in §2.2).

We ask: Can we build a practical lossless and efficient federated
SVD solution over billion-scale data. Our answer is FedSVD. The
core of FedSVD is a matrix masking method delicately designed for

the SVD algorithm. The advantage of this matrix masking method

is that it can simultaneously achieve lossless accuracy and high

efficiency. Specifically, 1) The masking method protects users’ pri-

vate data by multiplying two random orthogonal matrices. These

random masks can be removed entirely from the final SVD results

to achieve lossless accuracy; 2) Unlike HE-based methods that sig-

nificantly inflate the original data (e.g., from 64-bits to 2048-bits),

FedSVD’s masking method does not inflate the data size. There-

fore, FedSVD can achieve similar performance as centralized SVD

theoretically. Furthermore, based on the matrix masking method,

we design optimization strategies including block-based mask gen-

eration, efficient data masking/recovering through block matrix

multiplication, mini-batch secure aggregation, and advanced disk

offloading to further improve the efficiency of communication, com-

putation, and memory usage (more details in §3). Eventually, we

have provided privacy analysis and attack experiments showing

that FedSVD is secure and the raw data cannot be revealed from the

masked data when the hyper-parameter is appropriately settled.

We implement and evaluate FedSVD on SVD tasks and three

applications: PCA, linear regression (LR), and LSA. Our evaluation

results show that: 1) On SVD tasks, FedSVD has 10 orders of magni-

tude smaller error compared with DP-based methods, and FedSVD

is more than 10000× faster than HE-based solution. Approximately,

the HE-based method needs more than 15 years to factorize 1K ×
100K data (i.e., 100 million elements), while FedSVD only needs

16.3 hours to factorize 1K × 50M data which containers 50 billion

elements; 2) On PCA application, FedSVD takes 32.3 hours to com-

pute the top 5 principal components on 100K × 1M synthetic data,

which contains 100 billion elements; 3) On LR application, we have

compared FedSVD with two well-known federated LR solutions:

SecureML [19] and FATE [17]. The evaluation results show that

FedSVD is 100× faster than SecureML and 10× faster than FATE; 4)

On LSA application, FedSVD takes 3.71 hours to compute the top

256 eigenvectors on a 62K × 162K MovieLens real-world datasets,

which contains 10 billion elements; 5) We perform attack exper-

iments showing that, given proper hyper-parameter, FedSVD is

secure against state-of-the-art (SOTA) ICA attack [15] which is

delicately designed for masked data.

The FedSVD is fully open-sourced
2
and we believe, besides the

three mentioned applications, FedSVD can benefit more applica-

tions that require SVD as their cores under the increasingly strict

data protection laws and regulations.

2
https://github.com/Di-Chai/FedEval/tree/master/research/FedSVD

2 Background & Motivation
2.1 SVD and Federated SVD
SVD decomposes matrix X ∈ R𝑚×𝑛 into a product of three matrices

X = UΣVT
(1)

where U ∈ R𝑚×𝑚 and VT ∈ R𝑛×𝑛 are the left and right singular

vectors, Σ ∈ R𝑚×𝑛 is a rectangular diagonal matrix containing the

singular values. U and VT
are orthogonal matrices.

SVD is an essential building block in many studies. Here we

introduce two of the most well-known SVD-based applications and

they all require lossless accuracy and large-scale performance to be

simultaneously achieved. 1) Principal components analysis (PCA).

PCA is one of the most essential techniques for eliminating redun-

dancy in high-dimensional data, and it is widely used in medical

diagnosis [13], biometrics [20], and many other applications [21].

SVD is the standard solution to conduct PCA. The SVD-based PCA

deals with large-scale private data containing high-dimensional

features, and it also requires lossless accuracy to avoid severe issues

like inaccurate disease analysis. 2) Linear regression (LR). LR is

a popular machine learning model commonly used for risk man-

agement, marketing, etc., for its high efficiency and interpretability.

SVD could serve as a basis of the least square solution to LR. Com-

pared with stochastic gradient descent (SGD), solving LR through

SVD requires only one iteration and guarantees that the result is the

global optimum. In such commercial scenarios, SVD-based LR deals

with large-scale sensitive user data and requires lossless precision

to avoid financial loss.

Typically, the federated SVD is defined as following: assume we

have 𝑘 parties, and each party i owns data matrix X𝑖 ∈ R𝑚×𝑛𝑖 .
Those 𝑘 parties would like to carry out SVD jointly on data X =

[X1,X2, ...,X𝑘], where X ∈ R𝑚×𝑛 and 𝑛 =
∑𝑘
𝑖=1 𝑛𝑖 .

[X1, ...,Xi, ...,Xk] = UΣ[VT
1 , ...,V

T
i , ...,V

T
k] (2)

Eq. (2) shows the federated SVD results. Accordingly, in a feder-

ated SVD solution, the 𝑖-th party (1 ≤ 𝑖 ≤ 𝑘) getsX𝑖 = UΣV𝑇
𝑖
, where

U,Σ are shared results among all participants, and V𝑇
𝑖
∈ R𝑛×𝑛𝑖 is

the secret result possessed by party-𝑖 . Figure 1 also illustrates the

above problem definition. Party-𝑖’s data (i.e., X𝑖) cannot be leaked
to any other parties during the computation.

															A B C = U

𝑋 ∈ ℝ!×($!%$"%$#)

⋱ 	
	 ⋱Σ 														𝑉'(𝑉)(𝑉*(

=

=

=

Federated
SVD

Results

A U
⋱ 	
	 ⋱Σ 𝑉'(

B U
⋱ 	
	 ⋱Σ 𝑉)(

C U
⋱ 	
	 ⋱Σ 𝑉*(

Shared Results

Private Results

Figure 1: Problem formulation of federated SVD
The real-world applications mainly contain two data partition

scenarios, i.e., horizontally and vertically partitioned scenarios.

https://github.com/Di-Chai/FedEval/tree/master/research/FedSVD

Practical Lossless Federated Singular Vector Decomposition over Billion-Scale Data KDD ’22, August 14–18, 2022, Washington, DC, USA.

Horizontally partitioned scenario assumes that different parties

share the same feature space but different sample space, while

the vertically partitioned scenario assumes that participants share

different feature space but the same sample space. In this paper,

we do not make assumption on the data partition schema and our

method is suitable for both two scenarios. Because one type of

partition could be easily transferred to another through matrix

transpose in SVD. Without loss of generality, as shown in Fig. 1,

we assume the data matrix is vertically partitioned among parties.

2.2 Prior Work Suffering from Either Accuracy
Loss or Performance Penalty

10−1

10−3

10−5

10−7

DP-Wine
DP-MNIST
DP-ML100K
DP-Synthetic

10 1 0.1 0.01 0.001
ε of DP

10−14

10−15

Pr
oj

ec
tio

n
D

is
ta

nc
e

FedSVD(4 Datasets)

(a) DP-SVD (𝛿 = 0.01) has 7 ∼ 14 magni-

tudes larger error compared with FedSVD

on four datasets.

10 100 1k 10k 100k
of Samples

100

103

106

109

T
im

e(
s)

15.1 Years!PPDSVD
Approximated

(b) HE-based SVD needs 15.1 years to

factorize 1K × 100K data (100 million

elements).

Figure 2: Quantifying accuracy loss and performance penalty.
Pilot federated learning work designed privacy-preserving SVD

methods in two brunches: the DP-based and HE-based methods.

Accuracy Loss: On the one hand, Grammenos et al. [9] proposed

a federated and (𝜖, 𝛿)-DP principal component analysis method, in

which the leaf nodes apply DP locally and upload the local PCA

results to one root node, which will asynchronously aggregate

the received updates. Although DP-based solutions are easy to

implement and does not have efficiency issue, it unavoidably brings

loss to the data utility and hindered its application in real-world

[22]. For example, accuracy loss of SVD in medical study can cause

severe issues in subsequent medical diagnosis. Fig. 2(a) shows that

DP-based SVD has 7∼ 14 orders of magnitude larger error compared

with FedSVD under different parameters.

Performance Penalty: On the other hand, Liu and Tang [16] pro-

posed a HE-based SVD solution, in which the parties jointly com-

pute the covariance under additive HE (i.e., HE algorithm that only

supports addition operation on cipher-text), then a trusted server

decrypts the covariance matrix and conducts the SVD. Although

HE is lossless, it brings heavy computation and communication

overhead because it swells up the data size from 64-bit to 2048-bit,

assuming the key length is set to 2
20

bits. Thus HE-based SVD has

large computation overhead. In particular, as shown in Fig. 2(b),

HE-based method needs more than 15 years to factorize a 1K ×
100K data (i.e., million-scale data).

Conclusion: None of the exiting federated SVD work can simul-

taneously achieve lossless accuracy and high efficiency.

3 FedSVD
To solve this problem, we ask: Can we find a type of removable noise
to protect data privacy as well as keep the data size unchanged to
simultaneously achieve lossless accuracy and high efficiency? Our

answer is FedSVD. Briefly, 1) we propose a removable random

mask delicately designed for SVD to protect privacy, and the masks

could be completely removed from SVD results; 2) The masked data

has the same size as the raw data, which results in no efficiency

overhead during matrix decomposition. Meanwhile, we propose

optimizations from algorithm and system aspects, including block-

based mask generation, efficient data masking and data recovering,

mini-batch secure aggregation, and advanced disk offloading, to

further improve efficiency. With our delicate design, FedSVD could

achieve lossless accuracy and high practicality over billion-scale

data. Furthermore, we provide privacy analysis on FedSVD and

show that FedSVD is highly confidential. In this section, we present

the technical details of FedSVD.

Roles: According to the different functionalities, we specify three

types of roles in our system:

• Trusted Authority (TA): TA is responsible for generating re-

movable secret masks and delivering them to the users. TA can

remain offline once the system initialization is done.

• Computation Service Provider (CSP): The CSP is responsible

for running a standard SVD algorithm on the masked data and

delivering the masked SVD results to the users.

• Users: The parties that own raw data (i.e., X) and wish to run

an SVD-based algorithm jointly.

WorkflowOverview: FedSVD has the following four steps, which

is also illustrated in Fig. 3 :

Step ➊ : TA generates two removable random orthogonal masks

P ∈ R𝑚×𝑚 and Q ∈ R𝑛×𝑛 . Mask P is broadcasted to all users. The

matrix Q is horizontally split into 𝑘 parts Q𝑇 = [Q𝑇
1
, .,Q𝑇

𝑖
, .,Q𝑇

𝑘
],

and TA sends Q𝑖 to user-i. The detail of the removable randommask

is introduced in §3.1. To support billion-scale applications, we have

proposed efficiency mask generation (§3.1) and delivery method

(§3.2), reducing the computation and communication complexity

from 𝑂 (𝑛3) and 𝑂 (𝑚2 + 𝑛2) to 𝑂 (𝑛).
Step ➋ : All users compute X′

𝑖
= PX𝑖Q𝑖 , where X′

𝑖
is the local

masked data. The CSP gets X′ through secure aggregation on X′
𝑖
.

To support billion-scale data, we propose efficient block matrix

multiplication to reduce computation complexity from 𝑂 (𝑚2𝑛 +
𝑚𝑛2) to 𝑂 (𝑚𝑛) and mini-batch secure aggregation to reduce the

memory usage at the server. More details are introduced in §3.2.

Step ➌ : CSP runs a standard SVD algorithm, factorizing X′

into U′ΣV′𝑇 . We do not specify the algorithm (e.g., householder
transformation) of solving the SVD problem, and FedSVD can work

with any lossless SVD solver.

Step ➍ : Users downloads U′,Σ, and recover U by P𝑇U′. V𝑇
𝑖
is

jointly recovered under the protection of random masks between

the CSP and users. We propose efficient mask removing of V𝑇
𝑖

via block matrix computation which reduces the complexity from

𝑂 (𝑛3
𝑖
) to 𝑂 (𝑛𝑖). The details are introduced in §3.3.

Organization of this section: §3.1 introduces the removable ran-

dom mask delicately designed for SVD. §3.2 introduces the detail

of mask initialization and applying the mask, §3.3 introduces the

detail of removing mask. In §3.4, we propose an advanced disk

offloading strategy according to the data access patterns. §3.5 gives

privacy analysis of FedSVD.

3.1 Removable Random Masks for SVD
We propose a masking method that allows running SVD directly on

the masked data and the masks could be removed from the results.

Denoting the data matrix as X, we use two random orthogonal

KDD ’22, August 14–18, 2022, Washington, DC, USA. Di Chai et al.

[]

TA

Users

Random
Seed

𝑷
𝑸𝒊

Network 𝑟"

Generate 𝑷
using 𝑟! 𝑸𝒊

𝑿
Efficient block matrix multiplication for 𝑷𝑿𝑸𝒊

*
*
*

𝑿

𝑷𝑿

*
*

𝑷𝑿𝑸𝒊

𝑷

𝑷𝑿𝑸𝒊

Client i

𝑷𝑿𝑸𝟎

Client 0 Client K

𝑷𝑿𝑸𝑲

… …

Network
…

Mini-Batch
SecureAggregation

CSP SecAgg Round 1
SecAgg Round 2
SecAgg Round 3

SecAgg Final Round

…

𝑷𝑿𝑸

CSP ⋱ 	
	 ⋱Σ𝑼′ 𝑽′

Network 𝑼′ 𝜮

Users Remove the mask of 𝑼′ locally and save 𝜮.𝑸𝒊𝑻

Add mask
to 𝑸𝒊𝑻 𝑹𝒊

*

[𝑸𝒊𝑻]𝑹= 𝑸𝒊𝑻𝑹𝒊

Network []

𝑽′ 𝑸𝒊𝑻𝑹𝒊

*

CSP
[𝑽𝒊𝑻]𝑹= 	𝑽′𝑸𝒊𝑻𝑹𝒊

Block matrix
multiplication

Network

𝑹𝒊#𝟏
[𝑽𝒊𝑻]𝑹 𝑽

Users

[𝑸𝒊𝑻]𝑹

𝑸𝒊

*

Init

Apply
Masks

SVD

Remove
Masks

[𝑽𝒊𝑻]𝑹

Figure 3: Detailed Workflow of FedSVD, which has four steps: Step ➊: Trusted Authority (TA) initialize and send the masks
to users. Step ➋: Users apply masks and deliver the masked data to the computation service provider (CSP) through secure
aggregation. Step ➌: CSP conducts standard SVD on masked data. Step ➍: Users remove the masks and get final results.

matrices P and Q to mask the data X as X′ = PXQ. Theorem 1

proves that X′ has the same singular values with X, the singular

vectors of X and X′ can be orthogonal transformed to each other

using matrices P and Q. Thus we can get the singular vectors of X
by removing the masks from the singular vectors of X′ (i.e., using
orthogonal transformation).

Theorem 1. For an arbitrary matrix X ∈ R𝑚×𝑛 with SVD result
X = UΣVT, we can use two random orthogonal matrices P ∈ R𝑚×𝑚
and Q ∈ R𝑛×𝑛 to mask X into X′ = PXQ. Assuming the SVD result
of X′ is U′Σ′V′𝑇 . Then we can get SVD results of X through: Σ = Σ′,
U = P𝑇U′ and VT = V′𝑇Q𝑇 .

Proof. By plugging X = UΣVT
into X′, X′ could be represented

as X′ = PXQ = (PU)Σ(V𝑇Q). According to Eq. (3), PU and V𝑇Q
are orthogonal matrices:

(PU)−1 = U−1P−1 = UTPT = (PU)T

(VTQ)−1 = Q−1 (VT)−1 = QTV = (VTQ)T
(3)

Then (PU)Σ(V𝑇Q) is the SVD result of X′. Accordingly, PU = U′,
Σ = Σ′, and V𝑇Q = V′𝑇 . Then U = P𝑇U′ and VT = V′𝑇Q𝑇 . □

We present a random orthogonal matrix generation method in

Algorithm 1 using the Gram-Schmidt process [5]. It is proved in

prior work [10] that Gram-Schmidt process on Gaussian matrices

produces uniformly distributed random orthogonal matrices.

Block-based Efficient Mask Generation: However, the complex-

ity of Gram-Schmidt process on a 𝑛 dimensional square matrix is

𝑂 (𝑛3) [5]. Thus we propose an efficient random orthogonal matrix

generation algorithm through building blocks, which is presented

in Algorithm 2. Briefly, we decompose the problem of generating

a 𝑛 dimensional orthogonal matrix into generating small orthog-

onal matrices with size 𝑏, placing these small matrices at the di-

agonal position, and forming a 𝑛 dimensional matrix. Then the

complexity of generating 𝑛 dimensional orthogonal matrix reduces

to 𝑂 (𝑏3 𝑛
𝑏
) = 𝑂 (𝑏2𝑛) = 𝑂 (𝑛), where 𝑏 ≪ 𝑛.

Algorithm 1: Generate Random Orthogonal Matrix

Input: Dimension of the matrix 𝑛

Output: Orthogonal matrix Q ∈ R𝑛×𝑛
1 Function Orthogonal(𝑛):
2 Randomly sample matrix R ∈ R𝑛×𝑛 , where 𝑅𝑖,𝑗 ∼ N(0, 1)
3 [Q,∼] = 𝐺𝑟𝑎𝑚𝑆𝑐ℎ𝑚𝑖𝑑𝑡 (R)
4 return Q
5 End Function

Algorithm 2: Efficient Orthogonal Matrix Generation

Through Building Blocks

Input: Dimension of the matrix 𝑛, size of building blocks 𝑏

Output: Orthogonal matrix Q ∈ R𝑛×𝑛
1 Function EfficientOrthogonal(𝑛,𝑏):
2 Q← [], 𝑖 ← 0

3 while 𝑖 < 𝑛 do
4 𝑏′ ←𝑚𝑖𝑛 (𝑏,𝑛 − 𝑖)
5 Q𝑏 ← 𝑂𝑟𝑡ℎ𝑜𝑔𝑜𝑛𝑎𝑙 (𝑏′) // Algorithm 1

6 Q←
[
Q 0
0 Qb

]
, 𝑖 ← 𝑖 + 𝑏′

7 end
8 return Q
9 End Function

Block size controls the trade-off between efficiency and pri-
vacy protection It is worth noting that the block size (i.e., 𝑏) si-
multaneously impacts the system privacy protection and efficiency.

Theoretically, large block size increases the freedom of the masks,

thus increases the effectiveness of privacy protection. Meanwhile,

large block size increases the computation overhead, thus decreases

the system efficiency. We have reported attack experiments using

Practical Lossless Federated Singular Vector Decomposition over Billion-Scale Data KDD ’22, August 14–18, 2022, Washington, DC, USA.

the SOTA attack method in §5.4 showing that the attack fails in

recovering valid information as long as 𝑏 is large enough. We set

𝑏 = 1000 in our experiments since our attacking experiments on

many datasets show that 1000 is a good choice of gaining enough

privacy protection and benefiting from the efficiency brought by

the block-based optimizations. The proper block size may differ on

different datasets, and we suggest adjusting block size according to

the datasets in the application, which is also discussed in §5.4.

3.2 Initialization & Applying the Masks
We propose a federated computation process based on the remov-

able random masks to apply masks on the raw data. At the begin-

ning of the computation, TA holds masks P,Q and users jointly hold

X = [X1,X2, ...,X𝑘]. At the end of the computation, CSP receives

X′ = PXQ and does not learn any other information.

Equation 4 shows our idea of federally computing X′. According
to the rule of block matrix multiplication, we can decompose PXQ
into

∑𝑘
𝑖=1 PX𝑖Q𝑖 .

X′ = PXQ = P[X1, .,Xi, .,XK] [QT
1 , .,Q

T
i , .,Q

T
k]

T =

𝑘∑︁
𝑖=1

PXiQi (4)

Thus the federated computation of X′ can be divided into two

steps. Step ➊: TA broadcasts P to all users, then horizontally splits

the mask Q into {Q𝑖 ∈ R𝑛𝑖×𝑛 |1 ≤ 𝑖 ≤ 𝑘}, and sends Q𝑖 to user-𝑖 .

Step ➋: Users compute PXiQi, the CSP runs a secure aggregation

to get

∑
𝑖 PX𝑖Q𝑖 . The secure aggregation conceals the intermediate

results (i.e., PX𝑖Q𝑖), and guarantees that CSP only learns X′.

Communication Efficient Mask Delivery: We observe that

directly transferring P,Q has𝑂 (𝑚2+𝑛2) communication complexity.

Based on Algorithm 2, we propose to reduce the communication

complexity through transferring only one random number or small

blocks of the mask. More specifically, the TA only broadcast a

random seed 𝑟𝑝 for mask P since Gram-Schmidt is a deterministic

algorithm that yields the same orthogonal matrix as long as the

input matrices are the same, thus the users can generate P locally

using the same random seed. TA only sends the sliced matrix blocks

for mask Q and the zeros are omitted during the transmission.

In summary, communication complexity of transferring P,Q are

reduced to 𝑂 (1) and 𝑂 (𝑏2 𝑛
𝑏
) = 𝑂 (𝑛).

Efficient Data Masking via Block Matrix Multiplication: We

observe that our data masking process (i.e., computing PXQ) has cu-

bic complexity (i.e.,𝑂 (𝑚2𝑛+𝑚𝑛2)) which brings large computation

overhead in large-scale applications. To reduce the complexity, we

adopt block matrix multiplications since P,Q are sparse matrices

and consist of blocks. A concrete example is presented in Eq. (5),

where the zeros are omitted in the computation. After adopting the

block matrix multiplication, the data masking complexity is reduced

from cubic complexity to 𝑂 (𝑚
𝑏
∗ 𝑏2 ∗ 𝑛 + 𝑛

𝑏
∗ 𝑏2 ∗𝑚) = 𝑂 (𝑚𝑛).

P1 0 0

0 P2 0

0 0 P3

X1
X2
X3

 =

P1X1
P2X2
P3X3

 (5)

Memory Efficient Mini-batch Secure Aggregation: We observe

that secure aggregation (SecAgg) directly processes the whole data

matrix (i.e., X′
𝑖
= PX𝑖Q𝑖), and it will bring significant memory

burden to the server and users in FedSVD since X′
𝑖
is a large matrix.

We propose to split X′
𝑖
into batches and only process one batch of

data in each round of SecAgg. Mini-batch SecAggworks because the

aggregations of different rows or columns of X′
𝑖
are independent.

3.3 Removing the Masks
Intuitively, the masks in the final results could be removed by each

user locally if the CSP broadcast U′ and V′𝑇 , i.e. U = P𝑇U′ and
V′𝑇𝑖 = Q𝑇

𝑖
V′𝑇 . However, V′𝑇 contains masked eigenvectors of all

users, sending V′𝑇 from CSP to users may bring privacy issues

because users hold more information than CSP, e.g., Q𝑖 . Thus we
propose a federated computation process to recover V′𝑇 . For U′,
users can remove the mask locally because U is the defined as the

shared result in federated SVD (i.e., §2.1).
During the recovery of V′𝑇 , we want to guarantee the confiden-

tiality of both Q𝑇
𝑖
and V′, i.e., the users cannot get the whole V′

matrix and the CSP cannot learn Q𝑇
𝑖
.

Our solution is first masking Q𝑇
𝑖
using another random matrix

R𝑖 ∈ R𝑛𝑖×𝑛𝑖 according to Eq. (6). Then user 𝑖 sends the [QT
i]
𝑅

(i.e., the masked Q𝑇
𝑖
) to the CSP, which will subsequently compute

[V𝑇
𝑖
]𝑅 and send [V𝑇

𝑖
]𝑅 back to user 𝑖 . Then user 𝑖 can remove the

random mask according to Eq. (6) and get the final result (i.e., V𝑇
𝑖
).

[QT
i]
𝑅 = QT

i Ri, [VT
i]
𝑅 = V′T [QT

i]
𝑅,VT

i = [VT
i]
𝑅R−1

i (6)

It is worth noting that V𝑇
𝑖
also could be recovered through V𝑇

𝑖
=

Σ−1𝑛 U𝑇𝑛X𝑖 , where Σ−1𝑛 and U𝑇𝑛 mean the first 𝑛 rows of Σ−1 and U𝑇 .
However, this method only works when 𝑚 >= 𝑛. When 𝑚 < 𝑛,

we can only recover the first𝑚 rows of V𝑇
𝑖
but not the full matrix.

Thus this method is not a general solution.

Efficient Recovery of V𝑇 via Block Matrix Computation: We

observe that although Q𝑇
𝑖
is a sparse matrix consisting of blocks

according to Algorithm 2. However, the computing and transferring

Q𝑇
𝑖

R𝑖 is costly since R𝑖 is a dense random matrix. The computation

and communication of Q𝑇
𝑖

R𝑖 has 𝑂 (𝑛𝑖𝑏 𝑏
2𝑛𝑖) = 𝑂 (𝑛2

𝑖
) complexity.

To improve efficiency, our solution generates R𝑖 through putting

a bunch of square random matrix diagonally and the size of each

small random matrix is decided by Q𝑇
𝑖
, such that Q𝑇

𝑖
R𝑖 is still a

sparse matrix consists of blocks, Eq. (7) shows an example. The

complexity is reduced from 𝑂 (𝑛2
𝑖
) to 𝑂 (𝑛𝑖

𝑏
𝑏3) = 𝑂 (𝑛𝑖). Moreover,

since R𝑖 is consist of block matrices, the complexity of computing

its inverse (i.e., R−1
i) also reduces from 𝑂 (𝑛3

𝑖
) to 𝑂 (𝑛𝑖).

QT
i Ri =

0 0

QT
i,1 0

0 QT
i,2

0 0

[
R1

i 0

0 R2
i

]
=

0 0

QT
i,1R1

i 0

0 QT
i,2R2

i
0 0

 (7)

3.4 Disk Offloading via Data Access Patterns
Observation: Dealing with large-scale matrices usually requires

large hardware memory. For example, a 100K × 1M 64-bit matrix

requires approximately 745GB RAM, making the memory space for

computation very limited. A standard solution is offloading part of

the memory storage to disks using swap memory and reloading the

data when needed. The operating system (OS) will automatically

schedule the disk offloading. However, naively following the OS

scheduling with no specific design for our algorithm is inefficient.

Solution: We propose an advanced disk offloading strategy accord-

ing to the data access pattern for FedSVD. 1) Offloading strategy

KDD ’22, August 14–18, 2022, Washington, DC, USA. Di Chai et al.

for P,Q. According to our observation, P,Q are used twice in the

computation when applying and removing the masks. Hence, on

the client-side, we immediately save the blocks of P,Q to disk when

they are generated or received from TA. When applying or remov-

ing themasks, we load and use P,Q block by block (i.e., sequentially).
And each block will be removed from the memory when its compu-

tation finishes; 2) Offloading strategy for large dense data matrices

(e.g., X, PXQ,U,V𝑇). We store the large data matrices in disk and

leave a file map in memory. The file map will automatically read the

needed matrix components. However, direct adoption of file maps

may bring severe efficiency issues. The file map uses consistent

storage on the disk and the matrix is stored by rows by default. If

the manner we access the matrix conflicts with the storage man-

ner (e.g., access by column), the efficiency will be very low. Thus

we have optimized the implementation such that all the file-map

matrices are stored adaptively according to the access pattern. The

evaluation results show that our advanced disk offloading strategy

reduces the time consumption by 44.7% compared with using swap

memory scheduled by OS. Detail could be found in §5.5.

3.5 Privacy Analysis
In this section, we analyze the confidentiality of FedSVD. We con-

sider the TA to be a fully trusted entity, while the CSP and users

are semi-honest parties. This means, both the CSP and users will

honestly follow the pre-designed protocols but also attempt to infer

private data. We also assume there is no collusion between the CSP

and the users.

CSP cannot reveal the original matrix: According to Fig. 3,

the total messages received by the CSP are X′ =
∑
𝑖 [X′𝑖]

𝑅
and

[Q𝑇
𝑖
]𝑅 . 1) According to the prior work [3], the CSP only learns the

aggregated results X′, no information is leaked during the secure

aggregation; 2) In Theorem 2, we show that there is an infinite

number of raw data that could be masked into the same matrix. If

the CSP has no prior knowledge about the data distribution, it can

never recover the true data because the true data is not identifiable.

Alternatively, the CSP can empirically choose data distribution

as prior knowledge and perform attacks [15] on the masked data.

However, the attack experiments in §5.4 show that the attack fails

in getting valid information if we set the hyper-parameter properly;

3) According to the prior work [27], the masked data [Q𝑇
𝑖
]𝑅 cannot

be computationally distinguished from a random matrix, thus leaks

no information.

In conclusion, FedSVD is secure against CSP which cannot reveal

the raw data.

Theorem 2. Given a masked data X′ = P1X1Q1, there are infinite
number of raw data X2 that can be masked into X′, i.e., P2X2Q2 =

P1X1Q1 = X′.

Proof. Given two random orthogonal matrix R1 ∈ R𝑚×𝑚 and

R2 ∈ R𝑛×𝑛 , we can rewrite X′ into

X′ = P1X1Q1 = P1UΣVTQ1 = P1U(RT
1 R1)Σ(R2RT

2)V
TQ1

= (P1URT
1) (R1ΣR2) (RT

2 VTQ1)
(8)

Let X2 = R1ΣR2, P2 = P1UR𝑇
1
, Q2 = R𝑇

2
V𝑇Q2, then we get

P2X2Q2 = P1X1Q1 = X′. R1,R2 are random orthogonal matrices

and the number of orthogonal matrices with certain size is infinite

in real number field, thus we have infinite number of X2 that also

can bemasked into X′ and the CSP cannot identify the real data. □

The users can only learn the final results: According to Fig. 3,

the user i receives: P,Q𝑖 ,U′,Σ, [V𝑇𝑖]
𝑅
, and the valid information

are U,Σ,V𝑖 , which are exactly the final results of the federated SVD

problem defined in §2.1. Thus each user only learn its final results

and receives nothing about other users’ private data. Additionally,

FedSVD is secure against collusion between the users because a

group of cooperated users could be treated as a single user who

owns more local data, and they cannot obtain the privacy of other

users outside the group.

The TA learns nothing: Since TA receives nothing in Fig. 3 and

remains offline after initialization, it learns nothing in the algorithm.

In summary, FedSVD is secure against CSP, TA receives nothing

during the computation, and the users only get their final results.

FedSVD is highly confidential.

4 Applications Based on FedSVD
Based on FedSVD, we propose three applications: principal com-

ponent analysis (PCA), linear regression (LR), and latent semantic

analysis (LSA). All these applications have the same first three steps

with FedSVD and only differ at the last step. Tailored optimizations

are also made for each application to further improve efficiency.

PCA
Sample

Fe
at

ur
e

PCA

U1 U2

Sa
m

pl
e

Feature
LR

Sample
LR

Feature

y
Fe

at
ur

e

Sa
m

pl
e

U1 U2

Label

Horizontally partitioned
scenario

Vertically partitioned
scenario

U1 U2

y

U1 U2

y

Label

Figure 4: Federated PCA and LR under different data settings.

PCA in horizontally partitioned scenario: PCA in federated

learning setting typically has two data partition schemas, i.e., hori-
zontally and vertically, which are illustrated in Fig. 4. In this paper,

we consider the horizontal federated PCA since it is the most com-

mon data setting inmedical and biometric studies in whichmultiply

institutions have the same feature on different samples. Given a

normalized matrix X, PCA decomposes it into X = U𝑟Σ𝑟V𝑇𝑟 , where
𝑟 is the number of principal components in PCA, U𝑟 ∈ R𝑚×𝑟 and
V𝑇𝑟 ∈ R𝑟×𝑛 are the top-𝑟 singular vectors with largest singular val-

ues. Such decomposition is also called truncated SVD. Considering

PCA in horizontally partitioned scenario, the PCA result for user

i is U𝑇𝑟 X𝑖 ∈ R𝑟×𝑛𝑖 . Accordingly, in FedSVD-based PCA, CSP only

calculates and broadcasts the masked U′𝑟 to all users and ignores

the computation and transmission of Σ,V′𝑇 to improve efficiency.

LR in vertically partitioned scenario: LR in federated learning

setting also has two data partition schemas, i.e., horizontally and

vertically, which are illustrated in Fig. 4. In this paper, we consider

the vertical federated LR since it is the most common scenario of fed-

erated risk management and marking in the real-world applications

[26], in which different institutions hold different features on the

same samples. Given a data matrix X = [X0;𝑏] ∈ R𝑚×𝑛 and label

y, where b is the bias term, LR try to find a vector w ∈ R𝑛 such that

y = Xw. w could be solved through SVD on X and w = VΣ−1U𝑇 y.
In FedSVD-based LR, the user add mask to label y through y′ = Py,

Practical Lossless Federated Singular Vector Decomposition over Billion-Scale Data KDD ’22, August 14–18, 2022, Washington, DC, USA.

then upload the masked label to CSP, which will subsequently com-

pute w′ = V′Σ−1 (U′)𝑇 y′ = Q𝑇VΣ−1U𝑇 y = Q𝑇w. Then CSP broad-

cast the masked parameter matrix w′ to all users, and each user

can get the local parameters through w𝑖 = Q𝑖w′, where w𝑖 ∈ R𝑛𝑖 .
In our LR design, the CSP will only broadcast the masked param-

eters and the U′,Σ and V′𝑇 are not transmitted to improve the

communication efficiency.

LSA: Federated LSA is not sensitive to the data partition schemas

since there is no clear definition of sample and feature in LSA.

Briefly, LSA decomposes a data matrix X ∈ R𝑚×𝑛 (e.g., word-
document matrix) into X = U𝑟Σ𝑟V𝑇𝑟 , where 𝑟 is the number of

embedding feature in LSA andΣ𝑟 are the top-𝑟 singular values. After
the decomposition, U𝑟 and V𝑇𝑟 are treated as embedding features

and used in the subsequent tasks, e.g., computing the similarity of

different documents in NLP. Accordingly, in FedSVD-based LSA,

the CSP and users run the same protocol of recovering U′ and V′𝑇

to recover their first 𝑟 vectors with the largest singular values, and

the vectors outside 𝑟 are ignored to improve the efficiency.

5 Experiments
In this section, we provide a comprehensive evaluation of FedSVD

regarding the lossless and efficiency on SVD task (§5.2) and three

applications (§5.3). Then we present the attack experiments in

§5.4. Lastly, we show the effectiveness of the proposed system

optimizations in §5.5.

5.1 Experiment Settings
We have used five datasets in our experiments: MNIST [14], Wine

[6], MovieLens-100K [12], MovieLens-25M [12], and synthetic data

[9]. We compare FedSVD with three state-of-the-art models: WDA-

PCA [2] which is a distributed rank-𝑘 PCA method, FedPCA [9]

which is a federated (𝜖, 𝛿)-differentially private PCA method, and

PPD-SVD [16] which is a HE-based distributed SVD method. In

particular, on LR application, we compare FedSVD with two well-

known federated LR solution: FATE [17] and SecureML [19]. We

set 𝑏 = 1000 in FedSVD and 𝜖 = 0.1, 𝛿 = 0.1 for DP-based method.

By default, following the prior work [11, 19, 26], we uniformly

partition the data on two users, and partitioning data to more users

will not impact our evaluations. Due to the space limitation, we put

the detailed experiment setting in the Appendix A.

5.2 Evaluation on SVD
Lossless: We have proved in Theorem 1 that the masking-based

protection in FedSVD is lossless. Here we would like to use more

experimental results to show that the precision of FedSVD is lossless

in the implementation.

We compare the precision of FedSVDwith FedPCA on SVD tasks.

The precision of SVD is measured by calculating the distance of

singular vectors [9] between the proposed methods and the stan-

dalone SVD.We use root-mean-square-error (RMSE) as the distance

metric. Tab. 1 shows the results. FedSVD has about 10 orders of

magnitude smaller error compared with DP-based solution.

To give a more straightforward understanding, we also evaluate

the reconstruction error of FedSVD, i.e., distance to the raw data:

| |X − UΣV𝑇 | |. Using mean absolute percentage error as the metric,

FedSVD’s reconstruction error is only 0.000001% of the raw data.

It is worth noting that FedSVD’s tiny deviation in the experiment

is brought by the floating number representation in computers.

Theoretically, as proved in Theorem 1, FedSVD is lossless.

100 1k 2k
Data Size (n)

100
101
102
103
104
105
106
107
108

T
im

e(
s)

53.1
Hours

Synthetic Data (m=1k)

1M10M 30M 50M

16.3
Hours

PPDSVD
FedSVD

(a) Comparing to HE-based method on

SVD task and billion scale data.

100 1k 2k 3k
Data Size (n)

100

101

102

103

C
om

m
un

ic
at

io
n(

M
B

)

Synthetic Data (m=100)
PPDSVD
FedSVD

(b) Comparing to HE-based method on

communication size.

10Gb/s 1Gb/s 100Mb/s
Bandwidth

100

101
102
103
104
105
106

T
im

e(
s)

Synthetic Data (m=100, n=2k)
FedSVD PPDSVD

(c) Impact of network bandwidth on SVD

efficiency.

10 20 30 40 50 60 70 80 90 100
RTT(ms)

100

101

102

103

T
im

e(
s)

Synthetic Data (m=100, n=2k)
FedSVD

(d) Impact of network latency on SVD

efficiency.

10 100 1000 10000
BlockSize

103

104

105

T
im

e(
s)

Synthetic Data (m=10k, n=100k)
FedSVD (SVD)
FedSVD (LR)
FedSVD (LSA)
FedSVD (PCA)

(e) Impact of block size on FedSVD’s ef-

ficiency.

2 4 6 8 10 12 14 16 18 20
of users

0.0

0.5

1.0

1.5

C
om

m
un

ic
at

io
n(

G
B

)

Synthetic Data (m=1k)
ni=5k
ni=4k
ni=3k

ni=2k
ni=1k

(f) Communication size of FedSVD un-

der different # of users and data size.

Figure 5: Evaluation on SVD task.
Time Consumption: Fig. 5(a) shows the time consumption of

HE-based SVD (i.e., PPDSVD) and FedSVD on large-scale data.

Specifically, we use synthetic data matrix X ∈ R𝑚×𝑛 , fix𝑚 = 1K,

and vary 𝑛 from 10 to 50 million. The experiment of PPDSVD stops

at 𝑛 = 2K because it takes too much time to further increase 𝑛.

PPDSVD takes 53.1 hours to factorize a 1K × 2K matrix which is

10000× slower than FedSVD. Meanwhile, we also observe that the

time consumption of PPDSVD increases quadratically with 𝑛 when

fixing𝑚, while FedSVD increase linearly. Approximately, PPDSVD

needs more than 15 years to factorize a 1K × 100K matrix, i.e.,
million-scale elements. FedSVD only needs 16.3 hours to factorize

a 1K × 50M matrix, which contains 50 billion elements.

Communication: FedSVD also has more than 10 times smaller

communication size compared with PPDSVD, which is presented in

Fig. 5(b). Fig. 5(c) and Fig. 5(d) show the efficiency when we change

networking bandwidth and latency, and FedSVD works well given

different networking conditions. Figure 5(f) shows the amount of

communication data per user when we change the data size of each

user (i.e., 𝑛𝑖) and the number of users. Each user’s communication

size linearly increases with the size of local data.

Hyper-parameter (Block Size): Block size is the only hyper-

parameter in our solution and we present the system efficiency

using different block size in Fig. 5(e). FedSVD’s time consumption

slowly increases with𝑏. We suggest using a proper block size to gain

enough privacy protection, which is discussed in §5.4, and benefit

from the efficiency brought by the block-based optimizations.

KDD ’22, August 14–18, 2022, Washington, DC, USA. Di Chai et al.

Table 1: Lossless evaluation on SVD task and three applications.

SVD PCA / LSA Applications LR Application

Datasets
FedPCA FedSVD FedPCA WDA FedSVD

SGD (10 Epoch)

(FATE & SML)

SGD (100 Epoch)

(FATE & SML)

SGD (1000 Epoch)

(FATE & SML)
FedSVD

Wine 3.25 ∗ 10−1 5.51 ∗ 10−10 1.68 1.69 1.37 ∗ 10−10 1.04 0.767 0.666 0.539

MNIST 9.37 ∗ 10−2 1.99 ∗ 10−10 5.34 ∗ 10−2 5.97 ∗ 10−3 2.79 ∗ 10−14 48.7 5.53 3.78 3.19

ML100K 7.95 ∗ 10−2 1.45 ∗ 10−13 4.45 6.02 ∗ 10−1 1.11 ∗ 10−14 127 53.8 45.1 43.9

Synthetic 1.79 ∗ 10−1 9.03 ∗ 10−12 4.45 9.13 ∗ 10−4 9.09 ∗ 10−15 1.71 0.974 0.849 0.813

1M 10M 20M 30M 40M 50M
Data Size (m)

103

104

105

106

T
im

e(
s)

43.2 Hours
12.9 Hours

13.5
 Hours

Synthetic Data (n=1k)

SecureML(1Epoch)
FATE(1Epoch)
FedSVD

(a) Comparing FedSVD with FATE and

SecureML on billion-scale data.

10Gb/s 1Gb/s 100Mb/s
Bandwidth

101

102

103
T

im
e(

s)

Synthetic Data (m=10k, n=1k)
SecureML
FATE

FedSVD

(b) Impact of network bandwidth on LR

efficiency.

10 20 30 40 50 60 70 80 90 100
RTT(ms)

101

102

103

T
im

e(
s)

Synthetic Data (m=10k, n=1k)
SecureML
FATE

FedSVD

(c) Impact of network latency on LR effi-

ciency.

Figure 6: Evaluation on LR Application.

NoOpt Opt1 Opt1,2 Opt1,2,3
0%

50%

100%

C
om

pa
ri

ng
 to

 N
oO

pt

4.4%

18.1%
26.8%

Communication
Time Consumption
Memory

Figure 7: Effectiveness of the
Proposed Optimizations.

5.3 Evaluation on the Applications
In this section, we evaluate FedSVD on three applications: PCA, LR,

and LSA regarding accuracy and efficiency.

Lossless: The lossless evaluations of three applications are pre-

sented in Tab. 1. For PCA and LSA, we measure the precision by

calculating the the projection distance [9] (i.e., | |UU𝑇 − ÛÛ𝑇 | |2) to
standalone SVD. For LR, we report the mean square error (MSE) on

the training data. PCA and LSA share the same evaluation results

because their nature are both truncated SVD. In Tab. 1, we set 𝑟 = 10

for PCA and LSA. Compared with FedPCA and WDA, FedSVD con-

sistently has more than 10 orders of magnitude lower projection

distance on PCA and LSA applications. On LR application, FedSVD

has the lowest MSE compared to FATE and SecureML which solves

LR using SGD. Moreover, FedSVD only needs to factorize the data

once to find the optimal solution, while SGD-based method usually

needs multiple epochs of training to converge.

Efficiency: Fig. 6(a) shows the LR time consumption of FedSVD,

FATE and SecureML when we fix 𝑛 = 1K and vary 𝑚 from 1M

to 50M, and the results show that FedSVD is 100x faster than Se-

cureML and 10x faster than FATE. Fig. 6(b) and Fig. 6(c) show the

time consumption of LR under different network bandwidth and

latency, the results show that FedSVD is less sensitive to network

compared with SecureML, and FedSVD achieves consistently best

performance under different network conditions. We have per-

formed billion-scale data evaluation on all the applications and

the results are reported in Tab. 2. The results show that FedSVD is

practical and successfully supports billion-scale applications.

Table 2: Evaluate Applications on Billion-Scale Data. The
data is uniformly partitioned on 2 users and network band-
width=1Gb/s, RTT=50ms.

Application Datasets Data Size Time

PCA

(top-𝑟 = 5)
Synthetic Data

100K × 1M

(100 Billion Elements)
32.3 Hours

LSA

(top-𝑟 = 256)

MovieLens-25M

(RealWorld)

62K × 162k

(10 Billion Elements)
3.71 Hours

LR Synthetic Data
1K × 50M

(50 Billion Elements)
13.5 Hours

5.4 Attacks
We have provided privacy analysis of FedSVD in §3.5 showing

that CSP cannot recover the raw data from the masked data when

having no prior knowledge. In this section, we assume the CSP em-

pirically choose data distributions as prior knowledge and perform

independent component analysis (ICA) attacks [15] on the masked

data. Meanwhile, we set block size to different values and observe

its impact on the effectiveness of privacy protection.

The ICA attack is the SOTA attack method on masked data pro-

posed by Li et al. [15] for revealing raw data frommasked databases.

The main idea is to treat the masked data as a linear combination

of different data sources, which are assumed to be independent and

non-gaussian distributed. The attackers empirically choose distri-

butions of the data sources (e.g., using sigmoid as the cumulative

probability distribution function), and try to find the inverse of the

linear combination that maximizes the likelihood function.

Table 3: ICA attacks on the masked data. Pearson correlation
between the attack results and raw data are reported.

Attacks 𝑏 MNIST ML-100K Wine

Random Values NA 0.12590 0.17957 0.49313

ICA 10 0.20329 0.18623 0.44268

ICA(𝑏) 10 0.32029 0.28434 0.45971

ICA 100 0.12590 0.18387 0.45183

ICA(𝑏) 100 0.13051 0.20910 0.45826

ICA 1000 0.11104 0.18020 0.44712

ICA(𝑏) 1000 0.12531 0.18057 0.44862

In our experiments, we run ICA attack on both side of themasked

data since FedSVD has two masks, and Tab. 3 shows the results.

Meanwhile, we also perform attacks assuming the CSP knows the

block size 𝑏, denoted as ICA(𝑏) in Tab. 3, which reduces the number

of parameters to solve in the attack. We use Pearson correlation

to assess the attack results. Since ICA has disordered outputs (i.e.,
recovered data might be shuffled by row or by column), we compute

n-to-n matching Pearson correlation between the attack results and

real data, and report the maximum value. We use random value

as the baseline, and if the Pearson correlation between the attack

results and the raw data is close to the Pearson correlation between

random value and raw data, then we can conclude that the attack

fails in recovering valid information. We can observe from Tab. 3

Practical Lossless Federated Singular Vector Decomposition over Billion-Scale Data KDD ’22, August 14–18, 2022, Washington, DC, USA.

that 1) ICA(𝑏) is more effective than ICA, whichmeans that knowing

𝑏 is helpful to the attacks; 2) When increasing 𝑏 from 10 to 1000,

attacking effectiveness of both ICA and ICA(𝑏) decrease; 3) When

setting 𝑏 = 1000, all the attacks fail in recovering valid information.

In conclusion, 1) The Pearson correlation between the attack

results and raw data decreases with the increase of block size, when

the block size is large enough (e.g., 1000 in our experiments), the ICA

attack fails in recovering valid information; 2) Leaking the block

size reduces the complexity of ICA attack, however, the attack still

could be defensed as long as the block size is large enough.

In the application, since different datasets have various distri-

butions, we suggest the users run local ICA attacks and choose a

proper block size that can resist the attack.

5.5 Effectiveness of Proposed Optimizations
In this section, we compare the efficiency with and without the

proposed optimizations to show the effectiveness of our design.

We categorize three types of optimizations from our system: 1)

Opt1: the block-based optimizations including efficient mask ini-

tialization, data masking, and recovery of V′T; 2) Opt2: mini-batch

secure aggregation; 3) Opt3: advanced disk offloading. Fig. 7 shows

the evaluation results using 10K × 50K synthetic data. Compared

with using no optimizations, our solution reduces the communica-

tion, time consumption, and memory usage by 73.2%, 81.9%, and

95.6%, respectively. To further demonstrate the effectiveness of

Opt3, we compare the efficiency of RAM+AdvancedOffLoading and

RAM+SwapOffLoading on larger data (10K × 100K), the results

show that our solution reduces the time consumption by 44.7%

compared with swap disk offloading scheduled by OS.

6 Related Work
Apart from the federated SVD methods introduced in §1, there are

also other research topics that closely related to our work:

Privacy-preserving Funk-SVD: The Funk-SVD is utilized in the

federated recommender system [25]. The major difference between

Funk-SVD and SVD is that Funk-SVD runs on the sparse rating

matrix. Chai et al. [4] solved the federated Funk-SVD problem using

HE. Berlioz et al. [1] proposed a DP-based Funk-SVD method.

Outsourcing matrix factorization techniques: The secure out-

sourcing computation is a traditional research topic. Zhang et al.

[27] proposed a secure outsourcing computation framework for

PCA-based face recognition. Duan et al. [7] proposed outsourcing

computation frameworks for non-negative matrix factorization.

Luo et al. [18] proposed a masking based outsourcing computation

method for QR and LU factorization.

7 Conclusion
In this paper, we propose a practical lossless federated SVD method

over billion-scale data. Compared with the existing federated SVD

methods, FedSVD is lossless and efficient. The experiments show

that FedSVD is over 10000× faster than HE-based method and has

10 orders of magnitude smaller error compared DP-based method.

Acknowledgments
The work is supported by the Key-Area Research and Development

Program of Guangdong Province (2021B0101400001), the NSFC

Grant no. 61972008, the Hong Kong RGC TRS T41-603/20R, the

National Key Research and Development Program of China under

Grant No.2018AAA0101100, and the Turing AI Computing Cloud

(TACC) [24].

References
[1] Arnaud Berlioz, Arik Friedman, Mohamed Ali Kâafar, Roksana Boreli, and Shlomo

Berkovsky. 2015. Applying Differential Privacy to Matrix Factorization. In RecSys.
ACM, 107–114.

[2] Aditya Bhaskara and Maheshakya Wijewardena. 2019. On Distributed Averaging

for Stochastic k-PCA. In NeurIPS. 11024–11033.
[3] Kallista A. Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H. Bren-

dan McMahan, Sarvar Patel, Daniel Ramage, Aaron Segal, and Karn Seth. 2017.

Practical Secure Aggregation for Privacy-Preserving Machine Learning. In CCS.
ACM, 1175–1191.

[4] Di Chai, Leye Wang, Kai Chen, and Qiang Yang. 2021. Secure Federated Matrix

Factorization. IEEE Intell. Syst. 36, 5 (2021), 11–20.
[5] James W Daniel, Walter Bill Gragg, Linda Kaufman, and Gilbert W Stewart. 1976.

Reorthogonalization and stable algorithms for updating the Gram-Schmidt QR

factorization. Math. Comp. 30, 136 (1976), 772–795.
[6] Dheeru Dua and Casey Graff. 2017. UCI Machine Learning Repository.

[7] Jia Duan, Jiantao Zhou, and Yuanman Li. 2021. Secure and Verifiable Outsourcing

of Large-Scale NonnegativeMatrix Factorization (NMF). IEEE Trans. Serv. Comput.
14, 6 (2021), 1940–1953.

[8] Susan T. Dumais. 2004. Latent semantic analysis. Annu. Rev. Inf. Sci. Technol. 38,
1 (2004), 188–230.

[9] Andreas Grammenos, Rodrigo Mendoza-Smith, Jon Crowcroft, and Cecilia Mas-

colo. 2020. Federated Principal Component Analysis. In NeurIPS.
[10] Arjun K Gupta and Daya K Nagar. 2018. Matrix variate distributions. Vol. 104.

CRC Press.

[11] Shuguo Han, Wee Keong Ng, and Philip S. Yu. 2009. Privacy-Preserving Singular

Value Decomposition. In ICDE. IEEE Computer Society, 1267–1270.

[12] F. Maxwell Harper and Joseph A. Konstan. 2016. TheMovieLens Datasets: History

and Context. ACM Trans. Interact. Intell. Syst. 5, 4 (2016), 19:1–19:19.
[13] Fatma Latifoglu, Kemal Polat, Sadik Kara, and Salih Günes. 2008. Medical di-

agnosis of atherosclerosis from Carotid Artery Doppler Signals using principal

component analysis (PCA), k-NN based weighting pre-processing and Artificial

Immune Recognition System (AIRS). J. Biomed. Informatics 41, 1 (2008), 15–23.
[14] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. 1998. Gradient-

based learning applied to document recognition. Proc. IEEE 86, 11 (1998), 2278–

2324.

[15] Rui Li, Alex X. Liu, Ying Liu, Huanle Xu, and Huaqiang Yuan. 2019. Insecurity

and Hardness of Nearest Neighbor Queries Over Encrypted Data. In ICDE. IEEE,
1614–1617.

[16] Bowen Liu and Qiang Tang. 2019. Privacy-Preserving Decentralised Singular

Value Decomposition. In ICICS (Lecture Notes in Computer Science, Vol. 11999).
Springer, 703–721.

[17] Yang Liu, Tao Fan, Tianjian Chen, Qian Xu, and Qiang Yang. 2021. FATE: An

Industrial Grade Platform for Collaborative Learning With Data Protection. J.
Mach. Learn. Res. 22 (2021), 226:1–226:6.

[18] Changqing Luo, Kaijin Zhang, Sergio Salinas, and Pan Li. 2021. SecFact: Secure

Large-scale QR and LU Factorizations. IEEE Trans. Big Data 7, 4 (2021), 796–807.
[19] Payman Mohassel and Yupeng Zhang. 2017. SecureML: A System for Scalable

Privacy-PreservingMachine Learning. In IEEE Symposium on Security and Privacy.
IEEE Computer Society, 19–38.

[20] Alkes L Price, Nick J Patterson, Robert M Plenge, Michael E Weinblatt, Nancy A

Shadick, and David Reich. 2006. Principal components analysis corrects for

stratification in genome-wide association studies. Nature genetics 38, 8 (2006),
904–909.

[21] Parinya Sanguansat. 2012. Principal Component Analysis: Engineering Applications.
BoD–Books on Demand.

[22] H. Tian, C. Zeng, Z. Ren, D. Chai, J. Zhang, K. Chen, and Q. Yang. 2022. Sphinx:

Enabling Privacy-Preserving Online Learning over the Cloud. In 2022 2022 IEEE
Symposium on Security and Privacy (SP). 1135–1149.

[23] Paul Voigt and Axel Von dem Bussche. 2017. The eu general data protection reg-

ulation (gdpr). A Practical Guide, 1st Ed., Cham: Springer International Publishing
10, 3152676 (2017), 10–5555.

[24] Kaiqiang Xu, Xinchen Wan, Hao Wang, Zhenghang Ren, Xudong Liao, Decang

Sun, Chaoliang Zeng, and Kai Chen. 2021. TACC: A Full-stack Cloud Computing

Infrastructure for Machine Learning Tasks. CoRR abs/2110.01556 (2021).

[25] Liu Yang, Ben Tan, Vincent W. Zheng, Kai Chen, and Qiang Yang. 2020. Federated

Recommendation Systems. In Federated Learning. Lecture Notes in Computer

Science, Vol. 12500. Springer, 225–239.

[26] Qiang Yang, Yang Liu, Tianjian Chen, and Yongxin Tong. 2019. FederatedMachine

Learning: Concept and Applications. ACM Trans. Intell. Syst. Technol. 10, 2 (2019),
12:1–12:19.

[27] Yushu Zhang, Xiangli Xiao, Lu-Xing Yang, Yong Xiang, and Sheng Zhong. 2020.

Secure and Efficient Outsourcing of PCA-Based Face Recognition. IEEE Trans.
Inf. Forensics Secur. 15 (2020), 1683–1695.

KDD ’22, August 14–18, 2022, Washington, DC, USA. Di Chai et al.

A Datasets and Baseline Models
Datasets: We have used five datasets in the experiments. Following

is the detailed description and the parameter settings:

• MNIST [14]: A standard hand-written digits image testset, and

each image contains 784 (i.e., 28 × 28) features. We take 10K

labeled images in the experiment, thus 𝑋𝑚𝑛𝑖𝑠𝑡 ∈ R784×10𝐾 .
• Wine [6]: The physicochemical data for 6498 variants of red

and white wine, and each sample has 12 features. Thus 𝑋𝑤𝑖𝑛𝑒 ∈
R12×6489.

• movielens [12]: Movielens dataset describes people’s expressed

preferences for movies. It contains contains millions of users’

rating records over different movies. We select two groups of

movielens data: movielens-100K and movielens-25M for our

experiment. Movielens-100k contians 943 users’ rating on 1682

movies, thus 𝑋 ∈ R1682×943. Movielens-25M contians 162542

users’ rating on 59047 movies, thus 𝑋 ∈ R59047×162542.
• Synthetic data [9]: Apart from the real-world datasets, we also

use synthetic data in the evaluation. The synthetic data is gen-

erated from a power-law spectrum 𝑌𝛼 ∼ 𝑆𝑦𝑛𝑡ℎ(𝛼)𝑚×𝑛 us-

ing 𝛼 = 0.01. More specifically, 𝑌 = 𝑈 Σ𝑉𝑇 , where [𝑈 ,∼] =
𝑄𝑅(𝑁𝑚×𝑚), [𝑉 ,∼] = 𝑄𝑅(𝑁𝑚×𝑛), Σ𝑖,𝑖 = 𝑖−𝛼 , and 𝑁𝑚×𝑛 is an

matrix with i.i.d entries drawn from N(0, 1).
Baseline Models: We compare FedSVD with three existing works,

and following is the detailed introduction and parameter setting.

• WDA-PCA [2]: In the weighted distributed averaging PCA

(WDA-PCA), the participants upload local rank-𝑘 approximation

of the covariance matrix to the server, which will aggregate all

the approximations through weighted average and do a rank-𝑘

PCA on the aggregated matrix to get the final results. WDA-PCA

reduces the private data leakage since each users only uploads

a rank-𝑘 approximation of the covariance matrix. In our ex-

periments, we only compared FedSVD and WDA-PCA in PCA

applications, since WDA-PCA is specially designed for rank-𝑘

PCA and not suitable for SVD tasks.

• FedPCA [9]: Federated principal component (FedPCA) analysis

is a federated, asynchronous, and (𝜖, 𝛿)-differentially private

algorithm. Follow the setting in [9], we set 𝜖 = 0.1, 𝛿 = 0.1. We

compare FedSVD and FedPCA in both PCA and SVD tasks.

• PPD-SVD [16]: Privacy-preserving decentralized SVD (PPD-

SVD) used homomorphic encryption to protect user’s private

data during the joint computation of covariance matrix, then

decrypt the covariance matrix and do regular SVD tasks. Accord-

ing to the original paper’s setting, we set the key size of HE to

1024.

Hardware: All the experiments are performed on a Ubuntu 20.04

Server with a 3.6GHz 8-core CPU, 128GB RAM, and 2TB SSD. The

programming language is Python. For all the experiments, we put

participants into different Docker containers, which are connected

using the docker-bridge network, and we simulate the network

bandwidth and latency between containers.

	Abstract
	1 Introduction
	2 Background & Motivation
	2.1 SVD and Federated SVD
	2.2 Prior Work Suffering from Either Accuracy Loss or Performance Penalty

	3 FedSVD
	3.1 Removable Random Masks for SVD
	3.2 Initialization & Applying the Masks
	3.3 Removing the Masks
	3.4 Disk Offloading via Data Access Patterns
	3.5 Privacy Analysis

	4 Applications Based on FedSVD
	5 Experiments
	5.1 Experiment Settings
	5.2 Evaluation on SVD
	5.3 Evaluation on the Applications
	5.4 Attacks
	5.5 Effectiveness of Proposed Optimizations

	6 Related Work
	7 Conclusion
	Acknowledgments
	References
	A Datasets and Baseline Models

