
Aegis: A Trusted, Automatic and Accurate Verification Framework for Vertical
Federated Learning

Cengguang Zhang1 , Junxue Zhang1,2 , Di Chai1,2 , Kai Chen1,3

1iSING Lab, Hong Kong University of Science and Technology
2Clustar Technology Co., Ltd.

3Peng Cheng Lab
{czhangch, jzhangcs, dchai, kaichen}@cse.ust.hk

Abstract

Vertical federated learning (VFL) leverages various
privacy-preserving algorithms, e.g., homomorphic
encryption or secret sharing based SecureBoost, to
ensure data privacy. However, these algorithms
all require a semi-honest secure definition, which
raises concerns in real-world applications. In this
paper, we present Aegis, a trusted, automatic, and
accurate verification framework to verify the secu-
rity of VFL jobs. Aegis is separated from local par-
ties to ensure the security of the framework. Fur-
thermore, it automatically adapts to evolving VFL
algorithms by defining the VFL job as a finite state
machine to uniformly verify different algorithms
and reproduce the entire job to provide more accu-
rate verification. We implement and evaluate Aegis
with different threat models on financial and medi-
cal datasets. Evaluation results show that: 1) Aegis
can detect 95% threat models, and 2) it provides
fine-grained verification results within 84% of the
total VFL job time.

1 Introduction
Vertical federated learning (VFL), or feature-based federated
learning, has recently attracted increasing research and in-
dustrial interest since its first paper proposed by WeBank in
2019 [Yang et al., 2019]. Unlike Google’s horizontal feder-
ated learning that targets co-training a model by securely ag-
gregating parameters from a local model trained over homo-
geneous datasets on massive mobile devices, VFL co-trains
a model across heterogeneous datasets that share the same
data ID. These datasets are usually owned by several compa-
nies or institutions. For example, company A has user online
behavior data X1; company B has user credit, consumption
data X2 and label Y ; they can combine the two datasets and
increase the conversion rate of financial products purchases
by using VFL. To support the computation paradigm of VFL,
WeBank open-sources the most widely adopted VFL frame-
work: FATE. Our paper mainly focuses on the FATE but
should be applicable to other VFL frameworks.

VFL enables security data cooperation among different
data silos by leveraging several secure protocols, e.g., a

privacy-preserving vertical tree-based model through homo-
morphic encryption and secret sharing in [Wu et al., 2020].
These protocols guarantee that no one can reveal the data of
other parties. However, existing privacy-preserving protocols
typically require the semi-honest secure definition [Yang et
al., 2019], indicating that the system is privacy-preserving
only when the participants all follow the pre-defined proto-
col. However, the semi-honest assumption is hard to be guar-
anteed in reality and malicious participants exist. These ma-
licious parties will not follow the secure protocol, making the
VFL system vulnerable to a broader set of attacks, e.g., the
malicious participants could use model poisoning to dirty the
jointly trained model, which brings significant performance
reduction. (§2.2)

Therefore, we propose a new notion of VFL verification.
However, VFL verification mainly faces three challenges: 1)
The VFL party is easy to be compromised or imitated by ma-
licious insiders. Thus it is challenging to guarantee the cred-
ibility of the verification framework if deployed at the end.
2) It is difficult for the verification framework to adapt to the
continuously evolving privacy-preserving algorithms in VFL.
3) As various random algorithms are used in VFL to further
protect privacy, ensuring the framework’s verification accu-
racy under such randomness is challenging. Our framework
supports two modes, real-time verification and postponed ver-
ification, to balance the trade-off between efficiency and se-
curity. Real-time verification is low-latency but cannot detect
some of the attacks, and postponed verification takes more
time but can give a comprehensive ensure on security.

In this paper, to address the above challenges, we build
a trusted, automatic and accurate verification framework:
Aegis (§3.1). Aegis has the following design choices:

• To prevent the malicious attackers on the endhost, our
framework is integrated with the L-7 gateway, which can
not be accessed by VFL parties. We collect data from the
gateway and store it in a non-tamperable storage system
such as blockchain, ensuring the security of collected data.

• To adapt to the rapidly evolving VFL algorithm, we use a
finite state machine to describe a VFL algorithm generally.
Then we design a module to automatically generate finite
state machine and data rule tables for different algorithms.
Besides, we reproduce the VFL process to verify the sent
data from the local party.

ar
X

iv
:2

10
8.

06
95

8v
2 

 [
cs

.C
R

] 
 2

3 
A

ug
 2

02
1



• To reproduce the original job process, we store job meta-
data, including training data, model configuration files,
code, homomorphic encryption key pairs, model parame-
ters and random seeds. Therefore, we can reproduce the
job accurately and reduce the overhead, which includes
communication and calculation time.

From the perspective of system architecture, Aegis is com-
posed of three modules: Aegis Core, Message Collector, and
VFL Analyzer. The Aegis Core module is used as an inter-
mediate scheduling module to coordinate the work of Mes-
sage Collector and VFL Analyzer and manage their life cy-
cle (§3.2). Message Collector collects the transmission data
and the data is verified by VFL Analyzer (§3.3, §3.4).

We implement Aegis based on FATE. We use Kubernetes
to manage the modules and use the spring MVC framework to
provide external RESTful APIs. We take FATE as an exam-
ple, integrate Message Collectors in Exchange. Messages are
collected and preprocessed in Message Collector and stored
according to downstream application requirements in differ-
ent storage systems. Aegis uses a finite state machine for au-
tomatic verification. For data verification, we use rule tables
and local replication experiments to verify the security (§4).

We built some representative threat models for security
analysis and used our framework for verification. The eval-
uation results show that our framework detects most of the
potential security risks but can not detect the attacks, such as
model poisoning (§5.1). In addition, we conducted sufficient
experiments on different datasets to describe the overhead
while using Aegis in real-time verification. We also demon-
strate the overhead reduction of reproducing VFL jobs locally
for different models (§5.2).

2 Background & Motivation

2.1 Vertical Federated Learning Process

We first introduce the concept and workflow of VFL based
on FATE, which is an industry-level VFL platform. Verti-
cal federated learning applies when two datasets share the
same sample ID space but differ in feature space. VFL
is the process of aggregating these different features and
computing the training losses and gradients in a privacy-
preserving manner to build a model with data from both par-
ties collaboratively[Yang et al., 2019]. The recent concen-
tration point of VFL research is overcoming statistical chal-
lenges and promote security. Although the VFL algorithm
theoretically guarantees data privacy security, in the actual
industrial landing, there are still many system-level security
risks that need to be considered. For example, pre-trained
models from other organizations may provide a backdoor for
adversary [Wang et al., 2020], and insiders of parties may
collude with the other malicious parties to leak data or poi-
son the model. The increment of VFL algorithms and frame-
works exacerbated these problems. To better analyze these
problems, we start with the analysis of the VFL process.

Figure 1: Vertical Federated Learning Process

As shown in Figure 1, we define the whole VFL process
with three different granularities of message flow, control
flow, algorithm flow, and data flow. When we start a VFL job,
the job can be described as a directed acyclic graph(DAG).
Between each component of the DAG, there are control flow
messages to deliver the control command of the process, such
as submit a job or report progress. Each component of the
DAG is a subtask of VFL job, such as intersection or Secure-
Boost. Inside the component, there are algorithm flow mes-
sages to synchronize variables. The most fine-grained mes-
sage flow is the data flow inside each algorithm flow message,
which transfers the encrypted data between parties.
2.2 Threat Model
Based on the above analysis, we have categorized VFL’s ex-
changing messages into three levels: control flow, algorithm
flow, and data flow. Following, we organize the existing at-
tack models according to our categorization and briefly in-
troduce how to perform an attack under each message level.

• Control Flow Attack The malicious party can send spe-
cific control messages in the control flow to attack VFL
jobs. For example, the malicious adversary can prohibit the
model from converging to the best performance by sending
an early ”stop” control message.

• Algorithm Flow Attack The algorithm flow highly de-
pends on the machine learning models. The exchanging
messages in algorithm flow are carefully designed not to
leak private information (e.g., protected by homomorphic
encryption) and keep a minimum amount to reduce the
communication burden. The overall logic is called the se-
cure protocol. The malicious parties will not follow the
secure protocol and modify the transmitted message to per-
form an attack. For example, people in the guest party can
be corrupted by the malicious parties and send extra mes-
sages that contain the samples’ label, which is the most
private data at the guest party.

• Data Flow Attack Apart from violating the pre-defined
protocol, the malicious participants can also attack the sys-
tem through model poisoning and data poisoning. Existing
studies have shown that model poisoning is more powerful
than data poisoning [Cao et al., 2020], and most data poi-
soning attacks will eventually take effect by dirtying the



model parameters. Thus we only consider model poison-
ing in the data flow attack. The malicious parties can use
the poisoning attacks to perform a targeted [Bagdasaryan
et al., 2020; Xie et al., 2019] (e.g., misleading the model
to predict green cars into birds) or untargeted attack [Fang
et al., 2020] (e.g., simply poison the model such that per-
formance in each label is reduced).
It is worth noting that the above attacks happen when there

are malicious participants in the system, and all the works that
proved to be secure under semi-honest assumptions will face
the above attack challenges. Thus a verification framework to
detect malicious activities and enhance the system’s privacy-
preservation in the real-world application is the need of the
day.

2.3 Challenge
Our goal is to design a trusted, automatic and accurate frame-
work for VFL job verification. Thus we mainly face the fol-
lowing challenges:
• When there are malicious attackers on the end host, how

to ensure that the framework is trustworthy and difficult to
hack.

• With the rapid development of federated learning, a vari-
ety of new algorithms emerge in an endless stream, and
a variety of algorithms are also integrated in FATE, such
as FedAvg[McMahan et al., 2017], FedVision[Liu et al.,
2020], SecureBoost[Cheng et al., 2019] and so on. How
to ensure that the framework automatically adapts to most
algorithms in this case.

• Various random algorithms are used in federated learning
to ensure randomness. How to overcome randomness in
postponed verification to ensure that the original experi-
ment is reproduced?

3 Aegis
3.1 Overview of Aegis
Design rationality Our design is based on the following
observations. First, most of the VFL frameworks deployed
in industrial applications are based on a star topology. A star
topology is a topology in which all nodes are individually
connected to a central connection node. Therefore all mes-
sages will be forwarded through the central point, the gate-
way, or the router. We assume that the gateway is secure
and can not be accessed by VFL parties. From this obser-
vation, Aegis is designed to integrate with the gateway. We
collect messages from the gateway and store them in a non-
tamperable storage system such as blockchain, which ensures
the security of collected messages. In this way, we not only
make Aegis trusted but also convenient to collect messages.

Secondly, although VFL algorithms vary from each other,
the whole process can be represented by a finite state ma-
chine(FSM). Thus we use an FSM to decouple the VFL al-
gorithm and verification. Furthermore, we design a module
to automatically generate finite state machine and data rule
tables for different algorithms in verification, which make
Aegis can automatically adapt to different VFL algorithms.

Last but not least, the randomness in the VFL algorithm
is provided by random variables, such as random seeds and

random masks, which means if we fix the random variable,
the VFL job can be perfectly reproduced. For data flow ver-
ification, we store random seeds for data sampling, shuffle,
encryption, and decryption, to reproduce the VFL job and
provide accurate verification.

The whole framework contains three main components:
Aegis Core, Message Collector, VFL Analyzer. The Aegis
core model mainly acts as a coordinator of the whole frame-
work. The Message Collector is integrated with the gateway,
which collects, preprocesses, and classifies messages. The
VFL Analyzer verifies the security of VFL jobs.

Figure 2: Aegis Workflow

Workflow Figure 2 demonstrates Aegis’s workflow to ver-
ify a VFL job. After the federated learning job is initiated, the
process will initiate a request to the KMS service in the Aegis
Core module and obtain a secret key pair to encrypt the data.
Then, the communication traffic of the federated learning job
is forwarded through the L-7 gateway. Thus, the Message
Collector in the gateway will collect the transmission data,
classify and preprocess the data according to the data trans-
mission method, and store it in different storage according
to the needs of downstream applications In the system. Fur-
thermore, in VFL Analyzer, on the one hand, the process is
verified according to the FSM generated in advance by the
federated learning job. On the other hand, the private key is
obtained from the KMS service for decryption, and the data
is verified according to the rule table. In the postponed veri-
fication, we will also reproduce the training process based on
the collected training-related data, such as code, model pa-
rameters, training data, random seeds, etc., and compare the
transmitted data to ensure security.
3.2 Aegis Core
First of all, the Aegis Core module will create and manage
the gateway through Kubernetes and supervise the life cycle
of the gateway. Furthermore, it provides a KMS for each VFL
task to generate and manage the secret key used in the task,
facilitating us to decrypt the data in the VFL Analyzer for ver-
ification. When a VFL task is started, the Message Collector
on the gateway will report the new task to the Aegis Core
module. Then the Aegis Core module will create the cor-
responding VFL Analyzer according to the user-customized
verification level. The results of the VFL Analyzer verifica-
tion will be reflected in real-time. If it is a postponed verifica-
tion, users can also start the VFL Analyzer through the Aegis
Core to achieve it.



Figure 3: FSM Example: Secure Boost

Key Management Service The secret key plays a vital role
in cryptographic encryption and affects the security of the
encryption algorithm. Therefore, the secret keys need to be
properly managed. Most VFL frameworks will generate se-
cret keys during VFL jobs and discard the secret keys after
use. However, we need to obtain the corresponding secret
keys after running the encryption algorithm to decrypt and
verify the data. In this case, KMS is added to our system.
VFL jobs generate and obtain secret keys through the KMS
API. In addition, KMS can also provide functions such as up-
dating the secret keys regularly, setting the expiration date of
the secret keys, etc.

3.3 Message Collector

Message Collector is integrated with a gateway, especially
in the FATE framework with an exchange, and collects the
transferred data before forwarding. But these messages need
to be preprocessed and classified by the Message Collector.
For example, in the FATE framework, we can divide the mes-
sage based on the transfer method. The control flow messages
are transferred by gRPC unary call, while the algorithm flow
and data flow messages are transferred by gRPC stream call.
After that, some of the messages will be divided into several
partitions, so Message Collector should reassemble the mes-
sages and filter out the useless metadata. The messages clas-
sified as control flow, algorithm flow, and data flow are stored
in different databases according to the requirements for effi-
ciency and security. If real-time verification is required, then
we will store the message in the message queue. If it is post-
poned verification, we store the data in a time-series database
or blockchain storage.

3.4 VFL Analyzer

In this section, we will illustrate the key part of verification,
named VFL Analyzer, which is formed by two parts, Gener-
ator and Verifier.

Generator The generator mainly includes two parts: a finite
state machine generator for control flow and algorithm flow
verification, and the other is a rule table generator for data
flow verification. The operation of a VFL job is carried out
according to a DAG. We automatically generate the different
states of the FSM through each node in the DAG and auto-
matically generate the state machine transactions according
to the dependencies between each node of the DAG. For the
generation of the finite state machine of the algorithm flow,
the user can generate it by providing the config file or by run-
ning the algorithm once in a safe environment with a small
data set. After that user can obtain a template config file and
make minor modifications such as the number of loop vari-
ables to generate the config file. Data may vary depending on
the algorithm. Therefore, we will generate Data Rule Table
to check the attributes of encrypted data. We can obtain some
data attributes by static analyzing the code, such as data size,
data type, etc. Besides, the rule table can be customized by
users to check extra attributes of data.

Verifier Verifier is divided into three parts, respectively, to
verify control flow, algorithm flow, and data flow. Control
flow between different algorithms is not very different, so we
set a unified verification process. On the other hand, the algo-
rithm and data flow vary greatly with different algorithms, so
we use the results obtained in the Generator for verification.
To verify control flow and algorithm flow, we abstract the
entire process as a finite state machine, a message or a com-
bination of multiple messages as an event, which can trigger
a state transition. Each time the verification of the algorithm
flow starts from an initial state, the state of the state machine
changes with the message flow. When an abnormal state oc-
curs, the algorithm flow verification will alarm and trigger
the pre-set handling methods. If the state machine runs as
expected, the VFL process can pass the verification of the
algorithm flow. Take algorithm flow as an example, Secure
Boost algorithm can be abstracted like the state machine dia-
gram shown in Figure 3. We can obtain the states, events, and
transactions based on the diagram.

To verify data flow, we will first request a private key corre-
sponding to the VFL job to decrypt the data. Then, encrypted
data attributes will be checked according to the rule table.
Finally, we will reproduce the VFL job locally, refer to the
training data and metadata, and compare the results with the
transmitted data to ensure the security of the VFL job.

4 Implementation

In the specific implementation of this system, we use Kuber-
netes to manage our various components, which is also suit-
able for large-scale distributed federated learning scenarios.
The system follows the micro-service architecture, making
our framework low-coupling, extensible, and easy to main-
tain. We expose RESTful API for external access, such as
FATE and UI, and use gRPC API for internal access.



4.1 Aegis Core
We implement the Aegis Core module based on the Spring
MVC framework, mainly including key management ser-
vice(KMS) and Aegis Core service.

KMS We provide user registration, login, authorization,
and authentication services. We will provide the generated
JSON Web Token (JWT) for subsequent authentication when
the user logs in. Two types of authentications are applied
with different granularities. The coarse-grained authentica-
tion is verifying if the user is registered, and the fine-grained
authentication uses the Access Control List(ACL) to authenti-
cate the user permission of each key. The creator of the secret
key will grant user permissions. The verification department
is a superuser and has access to all secret keys.

Aegis Core service We implemented authorization, authen-
tication, and basic CURD operations for Message Collectors
and VFL Analyzers. In addition, the Aegis Core service is
connected to the Kubernetes API server to manage the under-
lying Message Collector and VFL Analyzer containers. Users
can easily manage the Message Collectors and VFL Analyz-
ers with RESTful API in the Aegis Core service. The lifecy-
cle of Message Collectors and VFL Analyzers will be mon-
itored and updated with gRPC API by Aegis Core service.

4.2 Message Collector
This module is integrated with the gateway, specifically,
FATE exchange. In FATE exchange, we make minor mod-
ifications to the code both in gRPC unary call and stream
call, add different Message Collectors and call the collect
method before each forwarding to collect messages. In the
FATE framework, the data is divided into multiple partitions
according to the number of processors, which perform calcu-
lations during the training process. Therefore, after classify-
ing the data according to the metadata and transfer method,
we also need to reassemble the transferred data to facilitate
subsequent algorithm flow and data flow verification. Finally,
we store the preprocessed data in different databases for dif-
ferent usage in chronological order. In particular, we use Rab-
bitMQ and Kafka as our message queue in real-time verifica-
tion. While for postponed verification, we use influxDB and
FISCO BCOS to ensure data security and immutability. We
will store the hash value in blockchain for verification and
other original data in influxDB for VFL reproduction.
4.3 VFL Analyzer
Generator We provide users with multiple ways to gener-
ate FSM. One is to write configuration files following our pre-
scribed format directly. The second is that the program auto-
matically outputs a configuration file that conforms to the for-
mat, and the user can customize it based on the configuration
file we generated. Automatic generation is divided into static
and dynamic generation. The static method is to add annota-
tions when transmitting data and entering the loop. We can
output configuration files that conform to the format through
static analysis of the code. The dynamic method is to run a
small-scale experiment in a trusted environment, obtain the
configuration file based on the data transmitted, and then ob-
tain the correct number of loops based on the loop variable

in the code. For the generation of the rule table, we also ob-
tain the characteristics of the transmission variable through
static code analysis and generate the corresponding rule ta-
ble. Users can customize more check items based on our rule
table.

Verifier Regarding verification, we will divide it into two
parts: real-time and postponed. In the real-time part, we
will first use the finite state machine to verify the correct-
ness of the control flow and algorithm flow, whether there
is any private information, and destroy the training informa-
tion. Secondly, we will verify the correctness of some meta-
information of the encrypted data, such as data length, data
type, etc. In the postponed part, we will run the VFL job
with a trusted code, the random variable of the job will be
obtained from a database. In the training process, we record
the sent messages and get remote data collected in immutable
storage. Finally, after model reproduction, we will verify the
hash value of the model and sent messages.

5 Evaluation
5.1 Security Analysis
We now discuss how adversaries could attempt to attack the
VFL job. Table 1 summarizes the attacks and respective de-
fense mechanisms. Finally, we discuss why the protection
from the above adversaries implies the fulfillment of the se-
curity goal and therefore solves the initial challenges. Most
attacks can be prevented successfully, while the attack, e.g.,
model poisoning, is hard to prevent unless we conduct a fed-
erated verification with other parties.
Adversary Types Attacks can be carried out by insiders
and outsiders. Insider attacks include those launched by the
VFL server and the participants in the VFL system. Outsider
attacks include those launched by the eavesdroppers on the
communication channel and by users of the final VFL model
when it is deployed as a service. Insider attacks are generally
more dangerous than outsider attacks, as it strictly enhances
the adversary’s capability.[Lyu et al., 2020]

A01: FATE Client Impersonation Malicious processes in
the local system pretend to be a FATE Client and use the
channel between parties to exchange private messages. In
the control flow FSM, our framework will verify the control
command and therefore prevents such attacks.
A02: Control Flow Tampering Malicious parties or out-
siders can tamper with the control flow message, e.g., send a
stop command to damage the training. This kind of attack can
be prevented by the control flow FSM verification as well.
A03: Private Data Leakage Private data can be revealed
in each message flow. For example, malicious parties can
send extra algorithm flow messages with private information
to other parties, and the VFL job runs as expected. However,
such privacy data leakage will be detected by our verification
framework.
A04: Algorithm Flow Tampering Algorithm flow mes-
sages can be distorted by the adversary, e.g., the stop flag in
the VFL algorithm indicates the time to early stop VFL job.
Thus, if the stop flag is tampered with by malicious parties,
the performance of VFL will be affected. Our framework will



Message Flow Attack Adversaries Verification Mechanisms Results

Control
A01: FATE Client Impersonation Insider Control Flow FSM Verification
A02: Control Flow Tampering Insider, Outsider Control Flow FSM Verification
A03: Private Data Leakage Insider Control Flow FSM Verification

Algorithm A03: Private Data Leakage Insider Algorithm Flow FSM Verification
A04: Algorithm Flow Tampering Insider, Outsider Algorithm Flow FSM Verification

Data A03: Private Data Leakage Insider VFL job Repo
A05: Code/Data Tampering Insider Data Rule Table + VFL job Repo
A06: Model Poisoning Insider, Outsider Data Rule Table + VFL job Repo
A07: Direct Remote Control Insider, Outsider Data Rule table

Other A08: Attacking VFL Keys Insider KMS

Table 1: Assessment of attacks on VFL job and respective countermeasures, following the attacker models defined in Section 5.

check the algorithm flow messages using FSM verification,
therefore prevents these attacks.
A05: Code/Data Tampering Code and VFL data in the local
system can be changed by the adversary, which significantly
affects the VFL job. Therefore we use Data Rule Table to
check the variable size and other features. Besides, we re-
produce the VFL job with trusted code and data to prevent
tampering.
A06: Model Poisoning The model poisoning attacks could
be performed by malicious outsiders or insiders corrupted by
the adversary. Briefly, our system can reveal the poisoning
activities during the joint training, e.g., modifying the model
updates. Because our system logs all the intermediate results,
and the participants could jointly perform a reproduction trial
to verify the intermediate results. If any difference is found,
then there are suspicious activities during the training. There
are cases in which the attacks cannot be discovered. For ex-
ample, the malicious adversary could also use a poisoned data
at the beginning and pretends to be honest during the training.
Thus our framework is partially secure regarding the poison-
ing attacks.
A07: Direct Remote Control VFL platforms such as FATE
have some system-level backdoors. For instance, the Pickle
package in Python transfers the Python object to a byte array
and sends the byte array to the receiver. If we convert some
shell commands into a binary stream, the other party’s system
will execute the corresponding commands, which means the
system could be controlled by the adversary remotely. Our
framework decrypts and deserializes the data for verification,
thereby defending against such attacks.
A08: Attacking VFL Keys KMS provides a security guar-
antee for the entire life cycle of the key. Thus, users do not
need to worry about key leakage during the entire cycle of
key creation, update, and invalidation.

5.2 Overhead Analysis
We conducted sufficient experiments with Secure Boost and
Logistic Regression models as examples which are the two
most popular VFL models in real-world applications, to show
that the delay of real-time verification is low, and the time of
postponed verification is also within the acceptable range.
Experiment Settings We use different datasets to test the
overhead of our framework. Datasets details are shown in
Table 2. We use Intel(R) Xeon(R) Silver 4114 CPU @

2.20GHz and Ubuntu 18.04 for experiments. The average de-
lay is about 50ms, and the average bandwidth is about 1Gbps,
which roughly simulates a wide area network.

Name Guest Dim Host Dim Size Description
Small 10 20 569 Breast cancer diagnostic data

Medium 20 80 5000 Mock data
Large 13 10 30000 Credit card clients data

Table 2: Datasets Description

Real-time Verification Delay The delay of real-time verifi-
cation is shown in Table 3. We can find from the data that the
time to verify the control flow is generally shorter than that
of the algorithm flow because the FSM of the control flow is
simple, and the amount of messages for the control flow is
also less. In addition, the real-time verification time is ex-
tremely short compared to the time of the overall task. For
actual jobs, security problems can be found by Aegis within a
very short delay. Noted that we use the small dataset because
real-time verification overhead has little correlation with the
dataset. However, even in the smallest dataset, the total VFL
time greatly exceeds the real-time verification time, so our
conclusion is still valid under a larger dataset.

Algorithm Control Flow Algorithm Flow FL job Time
Secure Boost 461ms 593ms 129s

Logistic Regression 448ms 648ms 111s
RSA Intersection - 458ms 6.47s
Raw Intersection - 432ms 5.88s

Table 3: Real-time Verification Overhead Analysis

Reproduce Overhead Reduction Compared with the orig-
inal task, the time to reproduce the job saves two parts of
time. One part is the time consumed by communication, and
the other part is the time waiting for other parties to calculate.
We take two-party federated learning as an example. We, as
a guest, analyze the changes in these two parts of time un-
der different data sizes and the ratio of the host to guest data
dimensions, Rh/g . It shows that in our framework when the
amount of data and Rh/g is larger, the amount of time saved
will be longer, so the overall reproduction time will be within
an acceptable range. Noted that our experiments are based
on medium and large datasets, specifically, using different di-
mensions of host data in the medium dataset and different
data sizes in large datasets.



Figure 4: Communication overhead reduction for different dataset
size

Figure 5: Calculation overhead reduction rate for different Rh/g

6 Related Work
Federated Learning Federated learning aims to collabora-
tively train machine learning models across data silos with-
out privacy leakage. Horizontal federated learning targets
at securely training a model across homogenous samples
on different mobile devices [Chai et al., 2020; Chai et al.,
2021]. Later, vertical federated learning paradigm [Yang et
al., 2019], targeting at training machine models across het-
erogenous data in different data silos is proposed.Currently,
different VFL algorithms have been proposed, such as het-
erogenous logistic regression [Yang et al., 2019], Secure-
Boost [Cheng et al., 2019], FedRec [Yang et al., 2020], etc.
Poisoning Attacks and Defense Methods Federated learn-
ing is vulnerable to poisoning attacks, in which the malicious
parties could poison the local data or model during the joint
training. [Bagdasaryan et al., 2020] and [Fang et al., 2020]
proposed model poisoning attacks, in which the local ma-
licious participants modify the local updates before upload-
ing or directly use dirty label in training. Meanwhile, meth-
ods against the poisoning attacks have also been proposed.
[Cao et al., 2020] proposed a defense method in which the
server maintains a trusted gradients and verifies the clients’
uploaded updates by measuring the cosine similarity between
the trusted gradients and the received updates.

7 Conclusion
In this paper, we proposed Aegis, a trusted, automatic, and
accurate VFL verification framework. Aegis can give a com-
prehensive verification within an acceptable time. This work
will promote the practical use of the VFL algorithm, thereby
promoting the development of federation learning.

References
[Bagdasaryan et al., 2020] Eugene Bagdasaryan, Andreas

Veit, Yiqing Hua, Deborah Estrin, and Vitaly Shmatikov.
How to backdoor federated learning. In International
Conference on Artificial Intelligence and Statistics, pages
2938–2948. PMLR, 2020.

[Cao et al., 2020] Xiaoyu Cao, Minghong Fang, Jia Liu, and
Neil Zhenqiang Gong. Fltrust: Byzantine-robust fed-
erated learning via trust bootstrapping. arXiv preprint
arXiv:2012.13995, 2020.

[Chai et al., 2020] Di Chai, Leye Wang, Kai Chen, and
Qiang Yang. Secure federated matrix factorization. IEEE
Intelligent Systems, 2020.

[Chai et al., 2021] Di Chai, Leye Wang, Lianzhi Fu, Junxue
Zhang, Kai Chen, and Qiang Yang. Federated singular
vector decomposition. arXiv preprint arXiv:2105.08925,
2021.

[Cheng et al., 2019] Kewei Cheng, Tao Fan, Yilun Jin,
Yang Liu, Tianjian Chen, and Qiang Yang. Secure-
boost: A lossless federated learning framework. CoRR,
abs/1901.08755, 2019.

[Fang et al., 2020] Minghong Fang, Xiaoyu Cao, Jinyuan
Jia, and Neil Gong. Local model poisoning attacks to
byzantine-robust federated learning. In 29th {USENIX}
Security Symposium ({USENIX} Security 20), pages
1605–1622, 2020.

[Liu et al., 2020] Yang Liu, Anbu Huang, Yun Luo,
He Huang, Youzhi Liu, Yuanyuan Chen, Lican Feng, Tian-
jian Chen, Han Yu, and Qiang Yang. Fedvision: An on-
line visual object detection platform powered by federated
learning. In Proceedings of the AAAI Conference on Arti-
ficial Intelligence, volume 34, pages 13172–13179, 2020.

[Lyu et al., 2020] Lingjuan Lyu, Han Yu, Xingjun Ma,
Lichao Sun, Jun Zhao, Qiang Yang, and Philip S Yu. Pri-
vacy and robustness in federated learning: Attacks and de-
fenses. arXiv preprint arXiv:2012.06337, 2020.

[McMahan et al., 2017] Brendan McMahan, Eider Moore,
Daniel Ramage, Seth Hampson, and Blaise Aguera y Ar-
cas. Communication-efficient learning of deep networks
from decentralized data. In Artificial Intelligence and
Statistics, pages 1273–1282. PMLR, 2017.

[Wang et al., 2020] Shuo Wang, Surya Nepal, Carsten
Rudolph, Marthie Grobler, Shangyu Chen, and Tianle
Chen. Backdoor attacks against transfer learning with pre-
trained deep learning models. IEEE Transactions on Ser-
vices Computing, 2020.

[Wu et al., 2020] Yuncheng Wu, Shaofeng Cai, Xiaokui
Xiao, Gang Chen, and Beng Chin Ooi. Privacy preserving
vertical federated learning for tree-based models. arXiv
preprint arXiv:2008.06170, 2020.

[Xie et al., 2019] Chulin Xie, Keli Huang, Pin-Yu Chen, and
Bo Li. Dba: Distributed backdoor attacks against feder-
ated learning. In International Conference on Learning
Representations, 2019.

[Yang et al., 2019] Qiang Yang, Yang Liu, Tianjian Chen,
and Yongxin Tong. Federated machine learning: Concept
and applications, 2019.

[Yang et al., 2020] Liu Yang, Ben Tan, Vincent W Zheng,
Kai Chen, and Qiang Yang. Federated recommendation
systems. In Federated Learning, pages 225–239. Springer,
2020.


	1 Introduction
	2 Background & Motivation
	2.1 Vertical Federated Learning Process
	2.2 Threat Model
	2.3 Challenge

	3 Aegis
	3.1 Overview of Aegis
	3.2 Aegis Core
	3.3 Message Collector
	3.4 VFL Analyzer

	4 Implementation
	4.1 Aegis Core
	4.2 Message Collector
	4.3 VFL Analyzer

	5 Evaluation
	5.1 Security Analysis
	5.2 Overhead Analysis

	6 Related Work
	7 Conclusion

