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ABSTRACT
As datacenter network bandwidth keeps growing, proactive trans-
port becomes attractive, where bandwidth is proactively allocated
as “credits” to senders who then can send “scheduled packets” at
a right rate to ensure high link utilization, low latency, and zero
packet loss. While promising, a fundamental challenge is that proac-
tive transport requires at least one-RTT for credits to be computed
and delivered. In this paper, we show such one-RTT “pre-credit”
phase could carry a substantial amount of �ows at high link-speeds,
but none of existing proactive solutions treats it appropriately. We
present Aeolus, a solution focusing on “pre-credit” packet transmis-
sion as a building block for proactive transports. Aeolus contains
unconventional design principles such as scheduled-packet-�rst
(SPF) that de-prioritizes the �rst-RTT packets, instead of prioritizing
them as prior work. It further exploits the preserved, deterministic
nature of proactive transport as a means to recover lost �rst-RTT
packets e�ciently. We have integrated Aeolus into ExpressPass[14],
NDP[18] and Homa[29], and shown, through both implementation
and simulations, that the Aeolus-enhanced solutions deliver sig-
ni�cant performance or deployability advantages. For example,
it improves the average FCT of ExpressPass by 56%, cuts the tail
FCT of Homa by 20⇥, while achieving similar performance as NDP
without switch modi�cations.
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(a) Waiting credits in pre-credit
phase

(b) Blind burst in pre-credit phase

Figure 1: A substantial gap between existing proactive trans-
port baselines and the ideal performance. The setup is in §2.
Aeolus provides a commonbuilding block of proactive trans-
port to systematically bridge the performance gap caused by
the pre-credit phase.

1 INTRODUCTION
With datacenter network link speed growing rapidly from 1/10G to
100G, more �ows become “smaller” and can be �nished (in theory)
within a few RTTs (round trip time). Measurement of production
workloads reveals that, ideally, 60-90% of the �ows can be �nished
just in one RTT (§2.2). Therefore, it is crucial for transport to main-
tain low latency and high throughput at every single RTT.

Traditional "try and backo�" transports (e.g., DCTCP [9], DC-
QCN [36], Timely [27]) are thus ill-suited to these requirements,
as they only react to congestion signals (e.g., ECN or delay) “after
the fact” and take multiple rounds to converge to the right rate.
While they can maintain good average performance for long �ows,
it is hard to reach the right rate in each round, which is crucial for
small �ows and tail performance. Hence, a recent line of work (e.g.
ExpressPass [14], NDP [18], Homa [29], FastPass [30], pHost [16])
explores a promising alternative, called proactive transport, in which
link capacities are proactively allocated, by the receivers or a cen-
tralized controller, as credits to each active sender who then can
send scheduled packets at an optimal rate to ensure high bandwidth
utilization, low queueing delay, and zero packet loss.

Despite being promising, on a closer analysis, we found all ex-
isting proactive solutions fall short of achieving the best possible
performance stated above. The key culprit is that, as they require
at least one RTT to allocate credits to a new �ow, the �rst RTT
(the “pre-credit phase”) poses a basic dilemma that compromises
the performance of these solutions (Figure 1). If the sender sends
no packet when waiting for credits (e.g. ExpressPass [14]), the new
�ows will be paused by one RTT even though the network is under-
utilized (Figure 1(a)). If it bursts packets (e.g. Homa [29]), called
unscheduled packets, at a high rate, it can cause sporadic tra�c
spikes, non-trivial queueing delay, and eventually packet losses
of scheduled packets (Figure 1(b)). While there exists a potential
solution that relies on special hardware support from switches to
mitigate the consequence of packet losses (e.g. NDP [18]), it remains
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an open question whether the proactive transport’s potential can
be realized in a readily deployable way.

To address the problem, we observe that existing proactive trans-
ports can bene�t from an idealized pre-credit solution that meets
two seemingly contradicting principles:
• Fully utilizing spare bandwidth: new �ows (with pre-credit
unscheduled packets) should burst in the �rst RTT and strive to
complete if they can.
• Scheduled packet �rst (SPF): scheduled packets should pro-
ceed as if no unscheduled packets are present.

As shown in Figure 1, this idealized pre-credit solution greatly
improves the average FCT for ExpressPass and tail FCT for Homa,
albeit for di�erent reasons (see §2.3 for details).

The insight behind the idealized pre-credit solution is that proac-
tive transport is very susceptible to any delay or loss of scheduled
packets. A slight delay of scheduled packets can cause temporary
tra�c spikes at downstream switches, which can break the del-
icate bandwidth allocation and a�ect more �ows in a cascading
style, eventually creating a perfect storm (§2.4). Moreover, these
uncertainties cripple the proactive transport’s unique performance
predictability. In our experiment, we found that dropping one sched-
uled packet can increase �ow completion time by up to 100⇥ due
to the retransmission timeout. These problems can be further ex-
acerbated by the bursts of many short �ows comprising mostly of
unscheduled packets.

To summarize, the deterministic nature of proactive transport
means any drop or delay of scheduled packets could in�ict a dispro-
portional damage. As a solution, the idealized pre-credit scheme can
e�ectively avoid the pitfalls in recent proactive solutions (e.g. [16,
18, 29]) by safeguarding the scheduled packets and de-prioritizing
the unscheduled packets, as opposed to the other way around.

The key contribution of this work is to make the above idealized
pre-credit solution practical. We present Aeolus1, a readily deploy-
able building block for proactive transport that meets the above
two principles of scheduled packet �rst and fully utilizing spare
bandwidth with unscheduled packets simultaneously.

Aeolus realizes its design goal by proposing a novel selective
dropping mechanism (§3.2) which allows pre-credit new �ows to
burst at line-rate when there exists spare bandwidth left over by
scheduled packets, but immediately drops them selectively once
the bandwidth is used up. In this way, Aeolus e�ectively utilizes
available bandwidth with unscheduled packets while safeguarding
the scheduled packets, thus achieving the above two principles
simultaneously. In particular, we show that our selective dropping
is readily implemented with only one queue at commodity switches
by using the Active Queue Management (AQM) feature (§4.1).

Furthermore, it is worthwhile to note that since we have pro-
tected the scheduled packets, as a reward, our loss recovery of
unscheduled packets can be designed much simpler yet e�cient.
The idea is to reuse the preserved proactive transport as a reli-
able means to recover dropped pre-credit packets—any dropped
unscheduled packet will become a scheduled packet in the next
round, whose delivery is guaranteed. Therefore, we just need to
locate packet losses in the �rst RTT and then retransmit them once
using scheduled packets (§3.3).
1We presented a preliminary idea of Aeolus in an earlier workshop paper [21]

Aeolus is architecturally compatible with all existing proactive
solutions. We implemented an Aeolus prototype using DPDK [2]
and commodity switch hardware (§4.2), and integrated it with the
latest proactive solutions such as ExpressPass [14], Homa [29],
and NDP [18]. We further built a small testbed with one Mellanox
SN2000 switch and eight servers at 10Gbps (§5.1), together with
larger-scale trace-driven simulations at 100Gbps, to evaluate the
performance of Aeolus. We �nd that:
• Aeolus + ExpressPass reduces the FCT by up to 33% on aver-
age at 10G testbed experiments, while achieving 56% improve-
ment in large-scale 100G simulations. This is because Aeolus
fully utilizes the spare bandwidth with pre-credit unscheduled
packets in the �rst RTT which has not been used in ExpressPass.

• Aeolus + Homa reduces the tail FCT of small �ows by 20⇥,
from 100s of ms to a few ms in 10G testbed experiments, while
achieving 1400⇥ improvement in simulations. This is because
Aeolus e�ectively eliminates losses of scheduled packets caused
by the burst of unscheduled packets, by enforcing the scheduled
packet �rst principle.

• Aeolus + NDP achieves similar performance as NDP, but with-
out requiring switch modi�cations. This is because similar to
the cutting payload technique [13] adopted by NDP, Aeolus
can eliminate large queue buildup by selectively dropping ex-
cessive unscheduled packets at the switch, while ensuring fast
loss recovery by reusing the preserved deterministic nature of
proactive transport.

2 BACKGROUND AND MOTIVATION
2.1 Proactive datacenter transport
Datacenter congestion control traditionally (e.g. [9, 22, 27, 36])
uses a “try and backo�” approach and is thus largely reactive to
congestion. To meet increasing performance requirements, many
recent works are based on proactive transport, which operates in
a “request and allocation” style. The key conceptual idea behind
proactive transport is to explicitly allocate the bandwidth of bottle-
neck link(s) among active �ows and proactively prevent congestion.
As a result, the switch will have ultra-low bu�er occupancy and
(near) zero packet loss. Central to proactive transport’s superior
performance is the perfect credit allocation to active �ows, so any
new sender needs one RTT, which we call pre-credit phase, to inform
the receiver/controller to assign the credits.

There have been several implementations of the concept of proac-
tive transport. Fastpass [30] employs a centralized arbiter to enforce
a tight control over packet transmission time and path. PDQ [20]
and TFC [35] leverage switches to explicitly allocate link bandwidth
among the passing �ows. ExpressPass [14], pHost [16], NDP [18]
and Homa [29] use receiver-driven credit-based approaches to ex-
plicitly schedule the arrival of data packets destined for di�erent
receivers.

2.2 The pre-credit phase (1st RTT) matters
The rapid growth of DCN link speeds (from 1/10G to 100G) has
fundamentally changed the �ow characteristics, in particular, an ex-
plosion number of the �ows can complete in the �rst RTT. Figure 2
shows the fraction of �ows (and bytes) could have been �nished
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Figure 2: A substantial fraction of �ows (and bytes) could
have been �nished within the �rst RTT (pre-credit phase),
and this fraction grows rapidly as link speed increases.

within the �rst RTT (pre-credit phase) under di�erent link speeds.
Flows are generated according to four realistic workloads including
Web Server [31], Cache Follower [31] Web Search [9] and Data
Mining [17].

For Figure 2(a), we calculate FCTs of �ows by simply dividing
�ow size by the given link speed. For Figure 2(b), we calculate the
expected average �ow size of a given workload (denoted as A), and
the number of bytes a given link speed can transmit in one RTT
(denoted as B). We simply use B/A as the fraction of bytes could
have been �nished within the �rst RTT. Although admittedly, this
methodology is greatly idealized, it suggests a clear trend that the
rise of high-speed DCNs have dramatically shifted the distributions
of �ow completion time, with many �ows, in theory, being able to
complete in the �rst RTT.

In the light of existing proactive transport designs, the fact that
more �ows can complete in the �rst RTT has several important
implications:
• Many �ows will bene�t from sending data immediately after they
arrive, as opposed to waiting for credits (as in [14, 30]). This
coincideswith the ethos of recent proactive transport designs [16,
18, 29].
• There will be more spare bandwidth. This creates more poten-
tial bene�ts and motivation to send (unscheduled) packets in a
speculative fashion to take advantage of the spare capacity.
• More packets will be �rst-RTT packets. This means more frequent
contention between unscheduled packets (sent in the pre-credit
phase) and scheduled packets (sent with credits in all subsequent
RTTs), which potentially undermines the gains of unscheduled
packets.

In short, this short analysis indicates existing proactive transport
designs demand an e�ective pre-credit solution to fully utilize spare
bandwidth in the �rst RTT as the link speed signi�cantly increases.

2.3 Performance issues of exiting solutions
Through an empirical analysis on the representative proactive trans-
port solutions, we demonstrate a key tradeo� in how they handle
the �rst RTT (i.e., the pre-credit phase).
Why not wasting the pre-credit phase? On the one hand, if
the sender holds during the pre-credit phase, it can deal a heavy
blow on short messages, which could have been completed in the
�rst RTT. To concretely show its impact on performance, we chose
ExpressPass [14], the most recent proactive transport proposal that

(a) Cache Follower (b) Web Server

Figure 3: FCT of 0-100KB �ows under the original Express-
Pass and the hypothetical ExpressPass with idealized pre-
credit solution (fully utilizes the spare bandwidth in the�rst
RTT).

(a) Cache Follower (b) Web Server

Figure 4: FCT of 0-100KB �ows under the original Homa
and the hypothetical Homa with idealized pre-credit solu-
tion (no interference between scheduled and unscheduled
packets).

sends only scheduled packets after the pre-credit phase (although
it uses probe packets, but they do not carry actual data). We ran an
ns-2 simulation with a fat-tree topology of 8 spine switches, 16 leaf
switches, 32 top-of-rack (ToR) switches and 192 servers connected
via 100Gbps links2. Flows are generated according to two realistic
workloads, including Cache Follower [31] and Web Server [31].

In addition, to show the potential performance bene�t of not
hold in the �rst RTT, we considered a hypothetical ExpressPass,
which leverages an idealized pre-credit solution to send just enough
data to fully utilize the spare bandwidth in the �rst RTT (i.e. with
hindsight knowledge), and follows ExpressPass after the �rst RTT.

Figure 3 shows the FCT of small �ows (0-100KB) under the
original ExpressPass and the hypothetical ExpressPass. Across the
two workloads, we can see that 57 � 80% of small �ows take one
extra RTT to complete in ExpressPass than necessary, i.e. an almost
3⇥ in�ation (from 0.5 to 1.5RTT)!
Why not bursting in the pre-credit phase? On the other hand,
if each new sender sends data speculatively before credits are allo-
cated, it could increase the network load unpredictably and break
the delicate credit allocation, crippling the desirable properties
of proactive transport. To demonstrate this problem, we chose
Homa [29], a recent proactive transport variant that lets new �ows
blindly transmit unscheduled packets in the �rst RTT. We ran a
simulation with Homa’s OMNet++ simulator [6] with a two-tier

2The same topology as used in the ExpressPass [14] paper.
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Tail FCT/µs Transfer E�ciency Average FCT/µs
(0-100KB) (all �ows)

Hypothetical Homa 25.04 0.90 34.84
Eager Homa 99.59 0.31 141.82

Original Homa 50030 0.90 74.39
(tail excluded)

Table 1: Tail FCT, transfer e�ciency and average FCT under
hypothetical Homa, eager Homa and original Homa (with
Cache Follower workload).

tree topology of 8 spine switches, 8 leaf switches and 64 servers (8
servers per leaf switch) connected by 100Gbps links3. Each switch
has a per-port bu�er of 200KB. Flows are generated according to
Figure 3. To understand the impact of the interference between
scheduled and unscheduled packets, we consider a hypothetical
Homa, which knows the exact amount of spare bandwidth on each
link in the �rst RTT, with hindsight knowledge. This way, the hy-
pothetical Homa ensures the scheduled packets will always have
enough bandwidth to transmit and will not be queued or dropped.

Figure 4 compares the FCT distribution of the original Homa
and the hypothetical Homa with the idealized �rst RTT. We can
see that, although most �ows complete very quickly (< 30µs), the
tail FCT can be excessively bad, with 99.9th percentile exceeding
50 milliseconds in both workloads. We found that the tails are due
to bu�er buildups and subsequent packet drops caused by senders
bursting too many unscheduled packets in the �rst RTT. Worse
still, as scheduled packets are no longer lossless, the retransmitted
packets may also get lost. In contrast, the tail FCTs of the hypothet-
ical Homa are dramatically improved—99.9th percentiles are less
than 50 µs, a nearly 1000⇥ reduction.

Readers may wonder, can Homa signi�cantly reduce its tail FCT
by adopting a much more aggressive loss recovery? To study this,
we consider an eager version of Homa that uses 20µs retransmission
timeout (the base RTT is 4.5µs). The simulation results4 with Cache
Follower workload are summarized in Table 1.

As we can see, while eager Homa does achieve a much better
tail FCT for small �ows (only 3⇥ worse than Hypothetical Homa),
the cost is very expensive — we observe a much lower transfer
e�ciency5 (⇠65% downgrade) and a much higher average FCT of
all �ows (⇠300% increase). This is mainly because an aggressive loss
recovery will easily trigger pre-mature packet retransmission. Then
many packets are duplicately transmitted several times, wasting
scarce bandwidth that could have been used productively. As a
result, the transfer e�ciency drops to a small fraction of normal,
which signi�cantly prolongs the completion of themajority of �ows.
Note that for better demonstrating the overall performance of the
majority of �ows achieved by original Homa, we excluded its tail
�ows when calculating the average FCT (If tail �ows included, the
average FCT will be 641.74µs, which is the largest among the three
schemes.).

In conclusion, due to the breaking of the delicate credit alloca-
tion for scheduled packets, Homa faces a dilemma in handling the
delayed/dropped scheduled packets.

3The same topology as used in the Homa [29] paper.
4We ran simulations with the same setup, and omit similar results under other work-
loads for simplicity.
5 We calculate transfer e�ciency as total received data bytes over total sent bytes.
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Figure 5: An illustrative example of a �ow of unscheduled
packets causing delays on many scheduled �ows at down-
stream switches in a cascading manner.

2.4 Summary: Protect scheduled packets?
The abovemicrobenchmark shows that neither approaches to proac-
tive transport is ideal—wasting the �rst RTT leads to longer-than-
necessary FCTs in normal cases (Figure 3), while bursting with
unscheduled packets leads to excessively long tail FCTs (Figure 4)
or much higher average FCT (Table 1). Meanwhile, it indicates that
both solutions can greatly bene�t from an ideal solution to the �rst
RTT (i.e. pre-credit phase). In particular, such an idealized �rst-RTT
solution should achieve two seemingly con�icting objectives: (1)
fully utilize the spare bandwidth with unscheduled packets, and (2)
not interfere with scheduled packets.

Before diving into our design, we pause brie�y and put these two
goals into the perspective of existing solutions (Homa, pHost, NDP)
that send unscheduled packets in the pre-credit phase. While they
all aim to fully utilize the bandwidth in the �rst RTT with unsched-
uled packets, they fundamentally di�er from us in how unscheduled
should share bandwidth with scheduled packets. Homa and pHost
prioritize unscheduled packets over scheduled ones, while NDP
does not discriminate and let them share bandwidth fairly. Thus,
all of them might delay (or cut the payload of) scheduled packets,
potentially leading to the tail latency shown in Figure 4 or the
collapse of transfer e�ciency shown in Table 1.

To see a concrete example, let us consider Figure 5. Each link is
fully scheduled to transmit scheduled packets when a �ow of un-
scheduled packets arrives. Because the scheduled �ows have equal
or lower priority, �ow 1 will be delayed, which then delays �ow 2
on the next link, and then �ow 3, and so on. Note such cascading
delaying of scheduled �ows can even propagate to switches where
unscheduled packets are not present. Even worse, such delaying
can increase the chance of packet losses in proactive transport as
the queues can no longer absorb occasional bursts.

In short, the cost of delaying/dropping scheduled packets sug-
gests one should revisit the tenet of prioritizing unscheduled pack-
ets, even though they are from short �ows.

3 AEOLUS
Aeolus aims to achieve three design goals simultaneously: (1) new
�ows fully utilize spare bandwidth and strive to complete if they
can, avoiding longer-than-necessary FCTs; (2) safeguarding the
scheduled packets to preserve the deterministic nature of proactive
transport; and (3) to make it easy to deploy in production datacen-
ters, i.e., Aeolus must be implementable with commodity switches.

Figure 6 overviews Aeolus, which mainly contains 3 components:
rate control, selective dropping and loss recovery.
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Figure 6: Aeolus overview.

• Rate control (§3.1): Aeolus adopts a minimal rate control at
the end hosts: all �ows start at line-rate at the pre-credit stage
and then adjust their sending rates according to received credits
later on.
• Selective dropping (§3.2): The key for Aeolus to safeguard
scheduled packets is to enforce the scheduled packet �rst (SPF)
principle in the network. To do that, Aeolus introduces a novel
selective dropping mechanism at the switch, which selectively
drops unscheduled packets when the bandwidth is just used up,
without a�ecting scheduled packets. With such a scheme, Ae-
olus can e�ectively utilize leftover bandwidth for unscheduled
packets without crippling the desirable properties of proactive
transport. In addition, our selective dropping mechanism is read-
ily deployable using commodity switches (§4).
• Loss recovery (§3.3): Given Aeolus has safeguarded the sched-
uled packets, loss recovery is needed only for lost unscheduled
packets. For recovery, we exploit the well-protected proactive
transmission as a safe and e�cientmeans for loss re-transmission
— we come up with a loss detection mechanism that can accu-
rately locate unscheduled packet losses in the pre-credit phase,
and retransmit them as credit-induced scheduled packets only
once.

3.1 Rate Control
Ideally, the �ow’s sending rate in the pre-credit phase should be de-
termined by the spare bandwidth left by scheduled packets, which
keeps varying across time and space. Since it is almost impossible to
calculate such dynamic spare bandwidth, we leave it to the switch
to implement the desired bandwidth allocation (i.e., SPF in §3.2)
between scheduled packets and unscheduled packets. As a result,
the need for rate control at the end hosts becomes minimal. In
particular, we do not require sophisticated rate control to prevent
either queue buildups or spurious packet drops due to tra�c bursts.
This is because queue buildup can be eliminated by selective drop-
ping (§3.2) while any packet loss in the pre-credit stage can also
be recovered shortly in the upcoming credit-based stage through
scheduled packets (§3.3).

With the above thought, our minimal rate control mechanism is
designed to work simply as follows:
• Pre-credit line-rate burst: A �ow sender enters the pre-credit
state on its initiation and sends a bandwidth-delay product (BDP)
worth of unscheduled packets at line-rate.We use such an aggres-
sive rate to fully utilize any spare bandwidth when it presents
in the network.
• Credit-based rate control:Alongwith the unscheduled packet
bursting, the sender also sends a request to the receiver or central
arbitrator to seek credits. Once the credit returns, it will exit
the pre-credit state immediately even it has not yet sent out all

unscheduled packets. After that, the sender enters the credit-
induced state and transmits scheduled packets according to the
assigned credits. We design Aeolus to be compatible with all
existing credit-based rate control algorithms [16, 18, 30].

3.2 Selective Dropping
As Aeolus imposes nearly no rate control on unscheduled packets at
the end host, it should safeguard scheduled packets in the network.
To ensure unscheduled packets only utilize the spare bandwidth
leftover by scheduled packets, Aeolus enforces SPF by prioritizing
scheduled packets over unscheduled packets at the switch. A con-
ventional way to realize this is through priority queueing [10, 11, 28].
However, we identify a few problems of directly using priority
queues in our design of Aeolus. Instead, we implement a novel
selective dropping scheme by re-interpreting RED/ECN feature of
commodity switches in an unconventional way.
Why not priority queueing? We choose not to use priority
queueing for three reasons. First, it creates ambiguity: when the
receiver has been waiting for an unscheduled packet for a long
time, it is hard to decide whether this packet has been dropped or
is still being trapped in the network. This is because, with priority
queueing, subsequent scheduled packets in in the high priority
may arrive earlier than unscheduled packets in the low priority.
Such ambiguity introduces a similar dilemma faced by Homa (as
discussed in §2.3). If we use a conservative loss recovery approach
(e.g., a large RTO), we may prolong tail latency for lost packets. If
we use an aggressive approach (e.g., a small RTO), we may incur
unnecessary retransmissions for trapped packets, downgrading the
transfer e�ciency. We showcase this problem numerically in §5.5.
Second, unscheduled packets in the low priority may still occupy
considerable bu�er that risks a�ecting scheduled packets (showcase
in §5.5), due to the reason that proactive solutions require certain
bu�er space to accommodate imperfect network conditions such
as transient queue buildups caused by RTT variations [14]. Third,
commodity switches have a smaller number of queues (typically
8), which may be usef for other purposes such as isolating tra�c
of di�erent services [12]. We do not want to consume additional
queue resources by presenting Aeolus.
Selective dropping: We seek to implement SPF while avoiding
the downsides of priority queueing. To avoid ambiguity and save
queue resources, we prefer a mechanism that uses only one queue
and keeps in-order packet transmissions. Furthermore, to reserve
su�cient bu�er headroom to hold scheduled packets, we should
limit the bu�er space used by unscheduled packets.

According to this insight, we transmit all the data packets in
a FIFO queue (unless special requirement of the transport) and
enforce a selective dropping mechanism at the switch: when an un-
scheduled packet arrives, the switch drops it if the bu�er occupancy
exceeds a very small threshold (e.g., 2-8KB), but such dropping does
not apply to scheduled packets. In this way, Aeolus achieves mul-
tiple bene�ts simultaneously — it avoids ambiguity with just one
queue in-order transmission, prioritizes scheduled packets through
proactively dropping unscheduled packets once queue builds up,
while still allowing unscheduled packets to fully utilize any left-
over bandwidth with minimal bu�er occupancy. One contribution
of this paper is that we show such selective dropping is e�ective
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yet very easy to implement using the Active Queue Management
(AQM) feature at commodity switches. In §4.1, we introduce two
implementation options using Weighted Random Early Detection
(WRED) and RED/ECN, respectively. In our testbed experiments,
we adopt RED/ECN to realize the proposed selective dropping.

3.3 Loss Recovery
In Aeolus, scheduled packets are less likely to be dropped as we
well protect them. However, unscheduled packets can be dropped
under selective dropping. Hence, a fast loss recovery of unscheduled
packets is needed. Given we have safeguarded scheduled packets,
our idea is to retransmit lost unscheduled packets using subsequent
scheduled packets, whose deliveries are guaranteed by the property
of proactive transport. Therefore, loss recovery simply reduces to
loss detection in Aeolus.
Loss detection: Aeolus enables per packet ACK at the receiver to
quickly notify the sender of arrival unscheduled packets. We use
selective ACK rather than cumulative ACK for loss detection in
the middle, and leverage a simple probing to detect tail losses of
unscheduled packets. Speci�cally, the Aeolus sender transmits a
probe packet right after the last unscheduled packet. This probe
packet carries the sequence number of the last unscheduled packet,
and is of minimum Ethernet packet size, e.g., 64 bytes. When the
receiver receives the probe packet, it returns an ACK carrying the
sequence number of the probe packet. Once the sender receives such
a probe ACK, it can immediately infer all the losses of unscheduled
packets, including the last one. Finally, it is worthwhile to note that
to guarantee the delivery of the probe packet and all ACKs, we treat
them as scheduled in the network.
Retransmission: As introduced above, Aeolus retransmits lost
unscheduled packets using subsequent scheduled packets. Upon
receiving credits, the sender can retransmit old packets or trans-
mit new packets. Speci�cally, the sender has three types of pack-
ets to transmit: sent but unacknowledged unscheduled packets,
loss-detected unscheduled packets, and unsent scheduled pack-
ets. We prioritize them in the order of loss-detected unscheduled
packets, unsent scheduled packets, and sent but unacknowledged
unscheduled packets, respectively. We give the highest priority
to loss-detected unscheduled packets because we want to �ll the
gap as soon as possible to minimize the memory footprint of re-
sequence bu�er. We prioritize unsent scheduled packets over sent
but unacknowledged unscheduled packets to avoid redundant re-
transmissions.

3.4 Why this Works
The key of Aeolus is its simple yet e�ective selective dropping
mechanism, which not only delivers good performance but also
signi�cantly simpli�es both rate control and loss recovery designs.
With selective dropping, new �ows can start at line-rate to fully
utilize spare bandwidth without a�ecting scheduled packets. For
pre-credit unscheduled packets, the cooperation of line-rate start
and selective dropping maximizes their potential bene�ts (e.g., uti-
lize the spare bandwidth) and minimizes their side e�ects (e.g.,
a�ect scheduled packets) simultaneously. Furthermore, by selec-
tive dropping, Aeolus only drops unscheduled packets. Therefore,
loss recovery becomes relatively simple because packet losses only
happen in the pre-credit stage (or �rst batch) and the deliveries of

subsequent scheduled packets are guaranteed. We just need to lo-
cate the losses in the �rst batch and then e�ciently retransmit them
only once using scheduled packets. We do not need sophisticated
schemes to handle many challenging corner cases, e.g., packet loss
of retransmission packets. Compared to TCP which has many com-
plex loss recovery mechanisms [15] for di�erent scenarios, Aeolus’s
loss recovery is extremely simple but more e�cient.

4 IMPLEMENTATION
4.1 Switch implementation
The Aeolus switch selectively drops unscheduled packets while
preserving scheduled packets in one switch queue. Here we propose
two implementation options to realize this.
WRED: Weighted random early detection (WRED) is an extension
to random early detection (RED) where a single queue has several
di�erent sets of queue dropping/marking thresholds. WRED typi-
cally supports three packet colors6: red, yellow and green, and each
color has its own dropping thresholds in a switch queue. WRED is
widely supported by commodity switching chips [4, 5].

To implement selective dropping using WRED, we mark sched-
uled and unscheduled packets with di�erent DSCP values at the
end host. At the switch, we con�gure access control list (ACL) table
to set the arriving packet’s color based on its DSCP �eld. Therefore,
scheduled and unscheduled packets can be marked with di�erent
colors in the switch pipeline. For unscheduled packets, we can set
both the high and low dropping thresholds to the desired selective
dropping threshold. For scheduled packets, we can set its high/low
dropping threshold to a very large value (e.g. total bu�er size) so
that scheduled packets will not be dropped by WRED.
RED/ECN: ThoughWRED is widely supported by switching chips,
it may not be exposed by all switch OSes to users. Some switch
OSes (e.g., Arista EOS [1]) just provide a simple RED/ECN con�g-
uration interface where a switch queue only has a single set of
dropping/marking thresholds.

Now, we show how to realize selective dropping only using
RED/ECN feature exposed to users. ECN mechanism uses the 2-bit
ECN �eld in the IP header to encode whether a packet is ECN capa-
ble or has experienced congestion. When both endpoints support
ECN, they will mark their data packets with 10 (ECN capable trans-
port, ECT(0)) or 01 (ECT(1)). Otherwise, packets will be marked
with 00 (Non-ECT). At the switch, when the bu�er occupancy is
larger than the ECN marking threshold, the arriving packet will
be marked (changed the code point to 11) if it is ECN capable,
otherwise get dropped. This mechanism has been well studied in
previous work [19, 24, 33].

Therefore, we can implement the selective dropping by reinter-
preting the RED/ECN as follows. At the sender side, we set the ECN
�elds of unscheduled packets and scheduled packets to Non-ECT
and ECT(0), respectively. At the switch, we enable ECN marking
and con�gure both the high and low RED thresholds to the se-
lective dropping threshold. In this way, any unscheduled packets
exceeding this threshold will be selectively dropped by switch. At
the receiver side, we simply ignore the ECN marks of the arriving
packets.

6Color is a metadata attached to the packet in switch processing pipeline.
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Figure 7: Aeolus software implementation architecture on
top of proactive solutions.

4.2 Host implementation
To evaluate the bene�ts of Aeolus to augment proactive solutions,
we have implemented a prototype of Aeolus with two recent proac-
tive transports, ExpressPass [14] and Homa [29]. Our implementa-
tion is based on DPDK 18.05 [2], which allows the network stack
to bypass the kernel and communicate directly with the NIC.

As shown in Figure 7, the main modi�cation of Aeolus on top
of existing proactive transports is to add an Aeolus control logic, a
�ow classi�cation module, a packet marking module and a packet
dispatch module. As our implementation does not touch the core
code of proactive transports, di�erent proactive protocols can be
“swapped out” easily while still remaining compatibility with Aeo-
lus.
Packet sending pipeline: As shown in Figure 7(a), application
starts data transmission by calling a send() function.The �ow clas-
si�cation module tracks the per-�ow state using a table. Each
�ow is identi�ed using the 5-tuple (i.e., source/destination IPs,
source/destination ports and protocol ID), and initially classi�ed
as pre-credit �ow. The �ow enters credit-induced state once it �n-
ishes its �rst-RTT packet transmission. Pre-credit �ows and credit-
induced �ows are processed by the Aeolus control logic and the
proactive control logic separately.

The Aeolus control logic checks sender bu�ers of its belonging
�ows iteratively in a round robin fashion, reading in the data, seg-
menting the data into unscheduled packets, constructing request,
probe and ACK, and forwarding these packets to the next-stage
processing module. As for the proactive control logic, it follows its
original processing logic without any modi�cation.

We note that in the design of some proactive solutions like Homa,
the receiver needs to learn about the �ow size information from the
header of successfully received unscheduled packet(s). We encode
the �ow size information in the header of probe such that the
receiver can still learn about the �ow demand even when all the
unscheduled packets get dropped.

The packet marking module marks outgoing packets. It sets
ECN �elds of unscheduled packets and scheduled packets to 00
(Non-ECT), and 10 (ECT(0)), respectively. To increase throughput,
the marked packets are sent to the TX ring bu�er of NIC in batch
via DPDK. We choose a batch size of 15 packets in our current
implementation.

Web Cache Web Data
Server [31] Follower [31] Search [9] Mining [17]

0 - 100KB 81% 53% 52% 83%
100KB - 1MB 19% 18% 18% 8%

> 1MB 0% 29% 20% 9%
Ave. �ow size 64KB 701KB 1.6MB 7.41MB

Table 2: Flow size distributions of realistic workloads.
Packet receiving pipeline: We leverage DPDK poll model driver
to periodically poll the RX Ring bu�er of NIC. Once a batch of
packets are received, the packet dispatch module will distribute
them to the corresponding control logic.

The Aeolus control logic mainly performs three operations on
receipt of a packet: (1) notify the �ow classi�cation module to
change the state of a �ow in case an ACK of a �ow is received
for the �rst time; (2) notify proactive control logic the arrival of a
new �ow when a request is received; (3) do loss detection based on
received ACKs and notify the proactive control logic to perform
loss retransmission with scheduled packets.

5 EVALUATION
We evaluate Aeolus using a combination of large-scale simulations
and testbed experiments. The key �ndings are:
• Aeolus improves thenormal-case FCTof ExpressPass [14],
with the mean FCT reduced by up to 56%.
• Aeolus improves the tail FCT of Homa [29], with the 99th
percentile FCT reduced by up to 1400⇥.
• Aeolus preserves the superior performance of NDP [18]
without requiring switch modi�cations.

5.1 Evaluation setup
Choices of baseline proactive transport: We choose three re-
cent proactive transport solutions: ExpressPass [14], Homa [29]
and NDP [18], to represent di�erent design choices of proactive
transport. ExpressPass forbids data transmissions in the �rst RTT,
and Homa and NDP blindly send unscheduled packets in the �rst
RTT.
Testbed: We built a small testbed that consists of 8 servers con-
nected to a Mellanox SN2000 switch using 10Gbps links. Our switch
supports ECN and strict priority queueing with 8 queues. Each
server is equipped with an Intel 82599EB 10GbE NIC that supports
DPDK. We enable RED/ECN at the switch to implement selective
dropping. The base RTT is around 14us. For ExpressPass [14], the
con�guration is simple as we only have a single queue to trans-
mit data packets, including scheduled packets and unscheduled
packets. In contrast, Homa [29] uses multiple priority queues to
serve unscheduled and scheduled packets separately. As a result,
con�guring per queue selective dropping at switches can no longer
protect scheduled packets from the impact of unscheduled packets.
For Homa, we con�gure per-port ECN/RED [12].
Simulator: For all the three schemes, we use the simulators pro-
vided by the authors with their recommended con�guration options.
For ExpressPass, we implemented Aeolus on top of ExpressPass’s
open source code [3] with ns-2 simulator. For Homa, we imple-
mented Aeolus on top of Homa’s open source code [6] with OM-
NeT++ simulator. Homa assumes in�nite switch bu�er in its sim-
ulations, and its simulator lacks loss recovery mechanism. Hence,
we extended Homa’s simulator to implement a timeout-based loss
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(a) MCT with 30KB message size (b) Mean MCT with di�erent messages
sizes

Figure 8: Message completion times (MCT) of 7-to-1 incast.
The message size varies from 30KB to 50KB.

(a) Web Server (b) Cache Follower

(c) Web Search (d) Data Mining

Figure 9: FCT of 0-100KB�ows in an oversubscribed fat-tree
topology. The average load of the network core is 40%.

recovery mechanism according to the description in Homa paper.
For NDP, we implemented Aeolus on top of NDP’s packet-level
htsim simulator [7].
Default con�guration: Unless stated otherwise, our evaluation
uses a default con�guration that is based on a network load of 0.4
and a per-port bu�er of 200KB at switches. By default, we set the
selective dropping threshold to be 6KB (4 packets). The MTU is set
to be 1.5KB7. For ExpressPass, we set the initial credit sending rate
to be 1/16 of link capacity and the aggressiveness factor � to be
1/16. For Homa, we use 8 priority queues at switches and set the
overcommitment degree to 6. The retransmission timeout is set to
10ms/20µs/40µs in di�erent experiments. For NDP, the threshold
of packet trimming (payload cut) is set to 8 packets (72KB).
Workload: We generate realistic workloads according to 4 produc-
tion traces including Web Server [31], Cache Follower [31], Web
Search [9] and Data Mining [17]. Their �ow size distributions are
shown in Table 2. All the distributions are highly-skewed: the most
of bytes are from few large �ows.We generate �ows using a Poisson
arrival process to achieve a speci�ed network load. For every �ow,
the sender and the receiver are randomly chosen.
Experiment/simulation setup: We conduct 7-to-1 incast exper-
iments in our testbed as follows: one client node sends requests
to other 7 servers simultaneously and each server responds with
messages of �xed size. We vary the size of the response message

7NDP paper by default uses 9KB jumbo packet. We set MTU to be 9KB for NDP.

(a) Web Server: 0-100KB (b) Cache Follower: 0-100KB

(c) Web Search: 0-100KB (d) Data Mining: 0-100KB

Figure 10: Average FCT of 0-100KB small �ows with the
varying load. The average FCTs of larger �ows (>100KB)
with both schemes are similar. Hence, we omit them for ab-
breviation.

from 30KB to 50KB, and measure the message completion times
(MCT).

In large-scale simulations, we use the same network topologies
as the ones adopted by the papers of compared schemes. For Ex-
pressPass, we simulate an oversubscribed fat-tree topology with 8
spine switches, 16 leaf switches, 32 top-of-rack (ToR) switches and
192 servers. We set network link delay to 4µs, and host delay to
1µs, which gives a maximum base RTT of 52µs. For Homa and NDP,
we simulate a two-tier tree with 8 spine switches, 8 leaf switches
and 64 servers. The base RTT is set to 4.5µs. For all the simulated
topologies, all the links have 100Gbps capacity.
Performance metric: We use �ow completion time (FCT) as the
primary performance metric. We also measure the queue length,
link utilization and goodput for analysis.

5.2 ExpressPass + Aeolus
With testbed experiments and simulations, we show that Aeolus
can help ExpressPass signi�cantly speed up small �ows by fully
utilizing spare bandwidth in the �rst RTT, while keeping the queue
occupancy small.
Testbed experiments: Figure 8 shows the message completion
times (MCT) of 7-to-1 incast scenario when message size varies
from 30KB to 50KB. The results indicate that Aeolus can assist
ExpressPass to speed up small �ows even under stressed incast
tra�c pattern: median MCT is improved by 43% with 30KB message
size (Figure 8(a)), and average MCT is improved by 19%-33% across
di�erent message sizes (Figure 8(b)).
Real workload-driven simulations: We run ns-2 simulations to
evaluate Aeolus with the four realistic workloads. Figure 9 shows
the FCT distributions of �ows of sizes between 0 and 100KB. We
can see that Aeolus signi�cantly improves FCTs of ExpressPass:
with Aeolus, nearly 60%, 80%, 28% and 70% of 0-100KB small �ows
complete within the �rst RTT across the four workloads, respec-
tively.

Figure 10 shows the improvement of Aeolus as the system load
varies (from 20% to 90% of the network capacity). We can see that
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(a) MCT with 30KB message size (b) Mean MCT with di�erent message
sizes

Figure 11: Message completion times (MCT) of a 7-to-1 in-
cast. The message size varies from 30KB to 50KB.

(a) Web Server (b) Cache Follower

(c) Web Search (d) Data Mining

Figure 12: FCT of 0-100KB �ows in a two-tier spine-leaf
topology. The average load of network core is 54%.

ExpressPass bene�ts from Aeolus with a sizable amount across
a wide range of loads. As a second observation, we �nd that as
the load increases, the room for improvement by Aeolus diminish
slightly, which is a result of less spare bandwidth under high load.
Nonetheless, we still observe a considerable improvement even at
90% load. This is partly because in practice, the bandwidth alloca-
tion of ExpressPass is not always perfectly work-conserving; some
�ows may get more credits than they demand, resulting in link
underutilization. In contrast, Aeolus can use such spare bandwidth
by injecting unscheduled packets in the �rst RTT.
5.3 Homa + Aeolus
With testbed experiments and simulations, we demonstrate that
Aeolus can help Homa eliminate large queue buildup and avoid
losses of scheduled packets, thus signi�cantly improving the tail
FCTs of small �ows.
Testbed experiments: Figure 11 shows the distribution of mes-
sage completion times (MCT) over messages of size between 30KB
and 50KB. We can see that Aeolus e�ectively cuts the tail MCT from
141ms to 18ms, and reduces the average MCT from 100s of ms to a
few ms! This is because although both Homa and Homa+Aeolus
send unscheduled packets in the �rst RTT, Aeolus only drops un-
scheduled packets and ensures that the dropped unscheduled pack-
ets can be quickly recovered from the second RTT without waiting

(a) Web Server: 0-100KB (b) Cache Follower: 0-100KB

(c) Web Search: 0-100KB (d) Data Mining: 0-100KB

Figure 13: Number of�ows su�ering from timeout. The load
varies from 0.2 to 0.9.

Web Cache Web Data
Server/µs Follower/µs Search/µs Mining/µs

Eager Homa 13.59 141.82 281.62 25.86
Homa + Aeolus 6.93 35.34 107.47 24.22

Table 3: Average FCT of all �ows under eager Homa and
Homa+Aeolus across the four workloads.

for timeouts, thus achieving predictable tail latency. In contrast,
Homa may su�er from timeouts if tail packets are dropped.
Real workload-driven simulations: We run OMNET++ simu-
lations to evaluate Aeolus with the four realistic workloads. We
use a network load of 54% because we observe that this is the
maximum sustainable network load that Homa can support (check
Figure 18 for more details). Figure 12 shows the FCT distributions
of �ows smaller than 100KB. We can see that across all workloads,
Homa+Aeolus completes all �ows within 610µs whereas the 99th-
percentile tail FCT of Homa is ⇠150ms. This is because Aeolus
avoids the losses of scheduled packets and can do fast recovery
for the dropped unscheduled packets. Although the median FCT
of Homa+Aeolus is slightly higher (e.g., 7.86µs vs 3.26µs for Web
Server), the reduction on tail FCT dramatically improves the mean
FCTs (e.g., from 403.4µs to 7.6µs for Web Server). With the simu-
lation setting introduced in §5.5, we also evaluate Homa+Aeolus
using a mix of realistic tra�c and incast tra�c and �nd that Aeolus
achieves up to 850⇥ reduction on the tail FCT.

To con�rm the intuition that the drops of scheduled packets
cause the performance gap between Homa and Aeolus, Figure 13
shows the number of �ows that experience at least one timeout un-
der di�erent levels of load. We can see that as the load increases, the
spare bandwidth drops, which increases the chance of contention
between scheduled and unscheduled packets. When contention
occurs, Homa prioritizes unscheduled packets, causing some sched-
uled packets to be queued or dropped. In contrast, by design, Aeolus
will protect the scheduled packets, so no �ow experiences timeout
even at 60% load.
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(a) Web Server (b) Cache Follower

(c) Web Search (d) Data Mining

Figure 14: FCT of 0-100KB �ows in a two-tier spine-leaf
topology. The average load of network core is 40%.

With Aeolus, any dropped unscheduled packet can be detected
by probe packets, and its retransmission is guaranteed with the
scheduled packet. Therefore, Aeolus can utilize the network band-
width in an accurate and e�cient way. To con�rm this, Table 3
shows the average FCT of all �ows under eager Homa (20µs RTO)
and Aeolus, respectively. We can see that, compared to eager Homa,
Aeolus reduces the average FCT of all �ows by 49%, 75%, 62% , 6%
across the four workloads, respectively (Note that in Data Mining
workload, the 99% of �ows are smaller than 100MB, but more than
90% of bytes are in �ows larger than 100MB. For these >100MB large
�ows, Aeolus cannot greatly reduce its FCT. That’s why Aeolus im-
proves the average FCT only by a small fraction.). We also measure
the transfer e�ciency achieved by Aeolus. As expected, Aeolus
achieves near-optimal transfer e�ciency across the four workloads,
identical to the transfer e�ciency achieved by hypothetical Homa
shown in Table 1.

5.4 NDP + Aeolus
We show that Aeolus can enable NDP to maintain its high perfor-
mance without cutting payload (CP) [13] support. The CP technique
adopted by NDP is not supported by existing commodity switching
ASICs yet, e.g., Broadcom Trident 2, Tomahawk and Tomahawk2. It
remains an open question whether CP can be realized in a readily
deployable and cost-e�ective way.

As we do not have NetFPGA card to implement CP, we only
conduct simulations for the evaluation of NDP and Aeolus. Given
we have already shown Aeolus can be implemented on commod-
ity hardware, here we focus only on showing that NDP+Aeolus
achieves similar performance as original NDP.

Figure 14 shows the FCT distributions of �ows smaller than
100KB. We can see that NDP+Aeolus achieves similar FCT as origi-
nal NDP in all percentiles. We also measure the average FCT under
varying network loads from 20% to 90% across the four workloads
(results are not presented due to space limitation), and have the
similar �nding.

CP plays an important role in the design of NDP. For NDP, Aeolus
works as an alternative to CP. With Aeolus, NDP avoids large queue

Figure 15: Avg. and max.
queue length with di�erent
thresholds.

Figure 16: Avg. link utiliza-
tion with di�erent thresh-
olds.

buildups by selectively dropping excessive unscheduled packets at
switch queues. Aeolus ensures e�ective retransmissions by leverag-
ing the lossless property of proactive congestion control. The main
advantage of Aeolus over CP is that, Aeolus is compatible with
existing commodity switches, and thus can signi�cantly reduce the
complexity to deploy NDP in production DCNs.

With the simulation setting introduced in §5.5, we also evaluate
NDP+Aeolus using a mix of realistic tra�c and bursty incast tra�c.
In such a setting with more serious congestion and more packet
drops, we �nd that NDP+Aeolus degrades the performance for
small �ows (FCT prolonged by 3x in the worst case). The reasons
are twofold. First, aggressively dropping unscheduled packets has
a larger impact on small �ows. Second, Aeolus’s probe-based loss
detection is not always as e�cient as CP for recovering packets
lost in the �rst RTT.

5.5 Aeolus Deep Dive
Parameter sensitivity: Readers may wonder how to set a proper
selective dropping threshold for Aeolus— a very small threshold
may too aggressively drop the unscheduled packets (thus fail to
fully utilize spare bandwidth), while a very large one may build
long switch queues (thus signi�cantly delay scheduled packets).
We conduct a many-to-one simulation to evaluate the parameter
sensitivity of Aeolus. There are N senders and one receiver. All the
hosts are connected to a switch using 100Gbps links. In each RTT,
all the senders transfer 200KB data to the receiver.

In Figure 15, we plot the average and maximum queue length on
the congested link with di�erent selective dropping thresholds. We
�nd that, the queue length is nearly linear to the selective dropping
threshold. Hence to avoid large switch queues, we should use a
small selective dropping threshold.

So how to choose a small threshold without sacri�cing much
throughput? To explore this, wemeasure the average link utilization
of the bottleneck link in the �rst RTT. We create di�erent tra�c
demands by adjusting the fan-in degree N. In Figure 16, we plot
the average utilization of the bottleneck link under di�erent tra�c
demands. As we can see, a small threshold of 4 packets (6KB) is
large enough to achieve high throughput under all tra�c demands.
Why not priority queueing? We compare Aeolus with an alter-
native design: isolate unscheduled packets and scheduled packets
with two priority queues. As stated in §3.2, the most serious prob-
lem of priority queueing is ambiguity: when the receiver has been
waiting for an unscheduled packet for a long time, it is hard to de-
cide whether his packets has been dropped or it still being trapped
in the network.
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Max. FCT (µs) Transfer E�ciency
ExpressPass + Aeolus 135.04 0.90

ExpressPass + Priority Queueing
(RTO = 10ms ) 10230.13 0.90

ExpressPass + Priority Queueing
(RTO = 20µs ) 158.13 0.41

Table 4: Aeolus vs Priority Queueing: problem of ambiguity.

Avg. FCT (µs) Max. FCT (µs)
ExpressPass + Aeolus 656 986

ExpressPass + Priority Queueing 8694 10866

Table 5: Aeolus vs Priority Queueing: unscheduled packets
results in the dropping of scheduled packets

(a) Slowdown-average (b) Slowdown-99%

Figure 17: FCT slowdown with varying incast ratio in a two-
tier spine-leaf topology.

To showcase this ambiguity, we implement the priority queueing
based solution in ns-2 simulator. We consider two retransmission
timeouts (RTOs): 10ms and 20µs. The large RTO is resilient to packet
trapping, but cannot e�ciently recover unscheduled packet losses.
In contrast, the small RTO incurs severe redundant transmissions.
We run the cache follower workload in the 100G fat-tree topology.
The proactive algorithm is ExpressPass. We measure the maximum
FCT and transfer e�ciency. As shown in Table 4, the large RTO
su�ers from high tail latency due to slow loss recovery, while the
small RTO causes many redundant transmissions, thus degrading
transfer e�ciency.

We also show that isolating unscheduled packets in low priority
queues does have the risk of a�ecting scheduled packets, at extreme
case. We consider a contrived 20-to-1 incast scenario where each
sender sends 400KB data to a common receiver. All servers are
directly connected to a 100G switch, where shared bu�er scheme is
adopted across di�erent priority queues. The average andmaximum
FCT under Aeolus and priority queueing are shown in Table 5. It is
easy to see that, compared with Aeolus, priority queueing results
in much longer FCTs (⇠10⇥ worse than Aeolus). The reason is that,
switch bu�er is fully occupied by unscheduled packets queued at
low priority queue. As a result, scheduled packets are rejected to
enter high priority queue due to the lack of available bu�er (drop-
tail). As the dropping of scheduled packets is rare for proactive
solutions like ExpressPass [14], a large RTO=10ms is used for the
recovery of dropped scheduled packets, which results in worse
FCTs.
Heavy incast with larger network. As a stress test, we study
the behavior of Aeolus under heavy incast by conducting N-to-1
incast simulations in a two-tier spine-leaf network (N= 32, 64, 128
and 256). The network has 4 spine switches, 9 leaf switches and
144 servers (16 under each leaf switch). Server links operate at
100 Gbps and spine-leaf links operate at 400 Gbps. All links have
0.2µs propagation delay. All switches have 0.25µs switching delay.
Each switch port has 500KB bu�er. All the �ows have 64KB data.

Figure 18: Goodput across varying network loads.

We choose senders randomly across all servers. For Homa, we use
40µs as the retransmission timeout, which is equal to the largest
queueing delay a packet could experience in the network.

Figure 17 shows the FCT slowdown8 on average and at the
99th-percentile, respectively. We mainly make three observations.
First, compared with ExpressPass, ExpressPass+Aeolus achieves
similar performance. This is expected because the main bene�t
brought by Aeolus is the ability to utilize spare bandwidth with
unscheduled packets in the �rst RTT. However, in the heavy incast
scenarios, the proportion of data bytes that can be transmitted in
the �rst RTT is minimal compared to the total bytes of all �ows.
As a result, Aeolus can hardly make further improvement. Second,
Aeolus enables Homa to achieve good performance even under
heavy incast. This is because Aeolus can avoid large queue buildup
by selectively dropping the overwhelming unscheduled packets
in the �rst RTT. As a result, scheduled packets are protected from
large queueing delay and packet loss since the second RTT. Lost
unscheduled packets are also recovered quickly using scheduled
packets. Under Homa, however, both unscheduled and scheduled
packets will su�er from severe losses due to large queue buildups.
With the ine�cient timeout-based loss recovery mechanism, Homa
will spend much longer time on completing the transmission of all
�ows. Third, compared with NDP, NDP+Aeolus achieves similar
performance. This is consistent with our previous evaluation result.
Impact on goodput. Readers may wonder whether aggressively
dropping unscheduled packets in the �rst RTT would negatively
a�ect the e�ective bandwidth utilization of each scheme. To study
this, we evaluate each scheme with increasing network loads to
identify the maximum goodput it can achieve. For this simulation,
we use the same spine-leaf topology as above. We generate net-
work loads using a mix of Web Search tra�c and incast tra�c. We
generate the incast tra�c by randomly selecting 64 senders and
one receiver, each sending 64KB data.

Figure 18 shows the goodput (normalized by the link capacity)
each scheme can achieve over varying network loads. Compared
with ExpressPass, Aeolus has no negative impact on goodput. For
Homa, Aeolus improves the goodput by 4%. This is mainly because
Aeolus eliminates the losses of scheduled packets and does fast
recovery for lost unscheduled packets. For NDP, Aeolus improves
the goodput by 2%. This is because NDP needs to reserve some
bandwidth headroom for transmitting trimmed packet headers. In

8“FCT slowdown" means a �ow’s actual FCT normalized by its ideal FCT when the
network only serves this �ow.
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contrast, Aeolus only requires 64 bytes per �ow for transmitting
the probe.

Furthermore, across these schemes, we observe that NDP achieves
the highest goodput (84%) mainly for two reasons. First, it performs
per-packet load balancing to fully utilize the bandwidth over mul-
tiple paths. Second, it leverages CP to enable fast loss recovery.
In contrast, ExpressPass uses per-�ow ECMP for load balancing,
thus only achieving 70% goodput. In addition, Homa achieves the
worst goodput (54%) due to the losses of many scheduled packets
and the use of ine�cient timeout-based loss recovery mechanism.
We note that our result with Homa is inconsistent with the result
presented in the Homa paper [29]. We suspect one possible reason
is that Homa assumes in�nite switch bu�er in their simulations.
In contrast, in our simulations we allocate 500KB bu�er for each
switch port.

6 DISCUSSION
Design tradeo�.Aeolus guarantees good tail latency by protecting
the deterministic nature of proactive schemes, but only improves
the average latency in a best e�ort manner. In certain cases, it
may also make some compromise. For example, it is possible that
Aeolus may drop unscheduled packets even when the switch has
enough bu�er space to hold all the in-�ight tra�c, due to small
selective dropping threshold (§4.1). As a result, Aeolus may delay
the completion of some small �ows due to bandwidth wastage in the
�rst RTT. However, Aeolus can consistently eliminate congestion
timeouts, even under serious congestion.
Resilience under heavy incast.Aeolus usesminimum-sized probe
packets to improve the resilience under heavy incast workloads.
For example, with a typical setting of 200KB switch bu�er, 6KB
dropping threshold, and 64B probe packet size, Aeolus can e�ec-
tively detect unscheduled packet losses even when there are 3100
(194KB/64B) new arrival �ows. To handle the extreme cases where
even the probe packet can get dropped, we may let the sender set a
timer to retransmit unscheduled packets and the probe packet if
no credit is received in a given duration.
Overhead of per-packet ACK for hardware o�loading. Per-
packet ACK can be a burden for hardware transport at high speed.
However, Aeolus minimizes such overhead by only generating per-
packet ACK for unscheduled packets, which are more likely to be
dropped. For example, with 100Gbps link, 10µs base RTT and 1.5KB
MTU, each �ow only needs 84 ACKs for unscheduled packets.
Oversubscribed topology. Some proactive schemes (e.g., NDP [18],
Homa [29] and pHost [16]) assume the network core is free of con-
gestion. However, enabling proactive solutions to work with over-
subscribed topologies is not a goal of Aeolus. For example, when
integrated with above proactive schemes, Aeolus cannot avoid con-
gestion losses of unscheduled packets in oversubscribed topologies.

7 RELATEDWORK
There are tons of DCN transport designs aiming at low latency and
high throughput. We have discussed the closely related proactive so-
lutions [14, 18, 29] extensively in the paper. Here, we only overview
some other ideas which have not been discussed elsewhere.

In contrast to proactive solutions, reactive DCN congestion con-
trol algorithms leverage advanced signals, e.g., ECN, RTT and
in-network telemetry (INT), to detect congestion. For example,
DCTCP [9], D2TCP [32] and DCQCN [36] leverage ECN as the
congestion signal. TIMELY [27] and DX [25] use delay as the sig-
nal. More recently, HPCC [26] leverages INT to obtain precise link
load information. However, most of these solutions require at least
one RTT to react to congestion and usually take multiple rounds
to converge to the ideal rates. As a result, they are ine�cient to
provide persistent low latency in high speed DCNs.

There are other DCN research e�orts such as �ow scheduling
(e.g., pFabric [10] and PIAS [11]) and multi-path load balancing (e.g.,
CONGA [8] and Hermes [34]). These designs either help to reduce
�ow completion times, or strike for higher network utilization
with multiple path. However, none of them targets at the �rst RTT
problem focused by this paper.

We note that in broader contexts other than DCN, e�orts have
also been made to enable fast �ow start with large initial rates of
transport protocols. For example, in the context of Internet, RC3 [28]
proposed to use k levels of lower network priorities to transmit a
larger number of additional packets during TCP’s slow start phase
in order to compensate its over-caution in window increase. In the
context of system area networks, SRP [23] allows senders to trans-
mit speculative packets in the �rst RTT at lower network priority
before bandwidth reservation is granted. Relative to Aeolus, both
RC3 and SRP share the similar motivation of better utilizing spare
bandwidth in the �rst RTT with prioritization. However, Aeolus
di�ers from them in the way of implementing the prioritization.
By identifying the problems of multiple priority queues as we dis-
cussed in §3.2, Aeolus proposed a novel selective dropping scheme
that avoids these downsides by using only one queue.

8 CONCLUSION
This paper presented Aeolus, a readily deployable solution focus-
ing on “pre-credit" packet transmission as a building block for all
proactive transports. At the core of Aeolus, it prioritizes scheduled
packets over unscheduled packets so that proactive transports can
fully utilize spare bandwidth while preserving their deterministic
nature. Furthermore, Aeolus introduces a novel selective dropping
scheme which allows pre-credit new �ows to burst at line-rate
when there exists spare bandwidth, but immediately drops them se-
lectively once the bandwidth is used up. In addition, Aeolus reuses
the preserved proactive transport as a means to recover dropped
�rst-RTT packets safely and e�ciently. Aeolus is compatible with
all existing proactive solutions. We have implemented an Aeolus
prototype using DPDK and commodity switch hardware, and eval-
uated it through small testbed experiments and larger simulations.
Both our implementation and evaluation results indicate that Ae-
olus is a promising substrate strengthening all existing proactive
transport solutions. This work does not raise any ethical issues.
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