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Abstract— As datacenter network bandwidth keeps growing,
proactive transport becomes attractive, where bandwidth is
proactively allocated as ‘“‘credits” to senders who then can send
“scheduled packets” at a right rate to ensure high link utiliza-
tion, low latency, and zero packet loss. Consequently, proactive
solutions such as ExpressPass, NDP, Homa, etc., have been
proposed recently. While promising, a fundamental challenge is
that proactive transport requires at least one-RTT for credits
to be computed and delivered. In this paper, we show such
one-RTT “pre-credit” phase could carry a substantial amount
of flows at high link-speeds, but none of existing proactive
solutions treats it appropriately. We present Aeolus, a solution
focusing on “pre-credit” packet transmission as a building block
for proactive transports. Aeolus contains unconventional design
principles such as scheduled-packet-first (SPF) that de-prioritizes
the first-RTT packets, instead of prioritizing them as prior
work. It further exploits the preserved, deterministic nature
of proactive transport as a means to recover lost first-RTT
packets efficiently. Aeolus is compatible with all existing proactive
solutions and readily implementable with commodity switches.
We have integrated Aeolus into ExpressPass, NDP and Homa,
and shown, via both implementation and simulations, that the
Aeolus-enhanced solutions deliver significant performance or
deployability advantages. For example, it improves the average
FCT of ExpressPass by 56%, cuts the tail FCT of Homa by
20X, while achieving similar performance as NDP without switch
modifications.

Index Terms—Data center networks, proactive transport, first
RTT, selective dropping.

I. INTRODUCTION

ITH datacenter network link speed growing rapidly
from 1/10G to 100G, more flows become “smaller”
and can be finished (in theory) within a few RTTs (round
trip time). Measurement of production workloads reveals that,
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Fig. 1. A substantial gap between existing proactive transport baselines
and the ideal performance. The setup is in §II. Aeolus provides a common
building block of proactive transport to systematically bridge the performance
gap caused by the pre-credit phase.

ideally, 60-90% of the flows can be finished just in one RTT
(8II-B). Therefore, it is crucial for transport to maintain low
latency and high throughput at every single RTT.

Traditional “try and backoff” transports (e.g., DCTCP [4],
DCQCN [5], Timely [6]) are thus ill-suited to these require-
ments, as they only react to congestion signals (e.g., ECN or
delay) “after the fact” and take multiple rounds to converge to
the right rate. While they can maintain good average perfor-
mance for long flows, it is hard to reach the right rate in each
round, which is crucial for small flows and tail performance.
Hence, a recent line of work (e.g. ExpressPass [1], NDP [2],
Homa [3], FastPass [7], pHost [8]) explores a promising
alternative, called proactive transport, in which link capacities
are proactively allocated, by the receivers or a centralized
controller, as credits to each active sender who then can send
scheduled packets at an optimal rate to ensure high bandwidth
utilization, low queueing delay, and zero packet loss.

Despite being promising, on a closer analysis, we found all
existing proactive solutions fall short of achieving the best pos-
sible performance stated above. The key culprit is that, as they
require at least one RTT to allocate credits to a new flow, the
first RTT (the “pre-credit phase”) poses a basic dilemma that
compromises the performance of these solutions (Figure 1).
If the sender sends no packet when waiting for credits
(e.g. ExpressPass [1]), the new flows will be paused by one
RTT even though the network is under-utilized (Figure 1(a)).
If it bursts packets (e.g. Homa [3]), called unscheduled
packets, at a high rate, it can cause sporadic traffic spikes,
non-trivial queueing delay, and eventually packet losses of
scheduled packets (Figure 1(b)). While there exists a potential
solution that relies on special hardware support from switches
to mitigate the consequence of packet losses (e.g. NDP [2]),
it remains an open question whether the proactive transport’s
potential can be realized in a readily deployable way.

To address the problem, we observe that existing proactive
transports can benefit from an idealized pre-credit solution that
meets two seemingly contradicting principles:
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e Fully utilizing spare bandwidth: new flows (with pre-
credit unscheduled packets) should burst in the first RTT
and strive to complete if they can.

o Scheduled packet first (SPF): scheduled packets should

proceed as if no unscheduled packets are present.

As shown in Figure 1, this idealized pre-credit solution
greatly improves the average FCT for ExpressPass and tail
FCT for Homa, albeit for different reasons (see §II-C for
details).

The insight behind the idealized pre-credit solution is that
proactive transport is very susceptible to any delay or loss
of scheduled packets. A slight delay of scheduled packets
can cause temporary traffic spikes at downstream switches,
which can break the delicate bandwidth allocation and affect
more flows in a cascading style, eventually creating a per-
fect storm (§1I-D). Moreover, these uncertainties cripple the
proactive transport’s unique performance predictability. In our
experiment, we found that dropping one scheduled packet
can increase flow completion time by up to 100x due to
the retransmission timeout. These problems can be further
exacerbated by the bursts of many short flows comprising
mostly of unscheduled packets.

To summarize, the deterministic nature of proactive trans-
port means any drop or delay of scheduled packets could
inflict a disproportional damage. As a solution, the idealized
pre-credit scheme can effectively avoid the pitfalls in recent
proactive solutions (e.g. [2], [3], [8]) by safeguarding the
scheduled packets and de-prioritizing the unscheduled packets,
as opposed to the other way around.

The key contribution of this work is to make the above
idealized pre-credit solution practical. We present Aeolus,’
a readily deployable building block for proactive transport
that meets the above two principles of scheduled packet first
and fully utilizing spare bandwidth with unscheduled packets
simultaneously. With Aeolus, the performance of small flows
can be significantly improved at low network load due to the
full utilization of spare bandwidth in the first RTT. In the
meanwhile, by protecting the deterministic nature of proactive
schemes, Aeolus avoids the dropping of scheduled packets
even at high network load and thus guarantees good tail
latency.

Aeolus realizes its design goal by proposing a novel selec-
tive dropping mechanism (§I1I-B) which allows pre-credit new
flows to burst at line-rate when there exists spare bandwidth
left over by scheduled packets, but immediately drops them
selectively once the bandwidth is used up. In this way, Aeo-
lus effectively utilizes available bandwidth with unscheduled
packets while safeguarding the scheduled packets, thus achiev-
ing the above two principles simultaneously. In particular,
we show that our selective dropping is readily implemented
with only one queue at commodity switches by using the
Active Queue Management (AQM) feature (§IV-A).

Furthermore, it is worthwhile to note that since we have
protected the scheduled packets, as a reward, our loss recovery
of unscheduled packets can be designed much simpler yet
efficient. The idea is to reuse the preserved proactive transport
as a reliable means to recover dropped pre-credit packets—any
dropped unscheduled packet will become a scheduled packet
in the next round, whose delivery is guaranteed. Therefore,
we just need to locate packet losses in the first RTT and then
retransmit them once using scheduled packets (§III-C).

IThe earlier idea of Aeolus was presented in [9], [10].
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Aeolus is architecturally compatible with all existing proac-
tive solutions. We implemented an Aeolus prototype using
DPDK [11] and commodity switch hardware (§IV-B), and
integrated it with the latest proactive solutions such as Express-
Pass [1], Homa [3], and NDP [2]. We further built a small
testbed with one Mellanox SN2000 switch and eight servers
at 10Gbps (§V-A), together with larger-scale trace-driven sim-
ulations at 100Gbps, to evaluate the performance of Aeolus.
We find that:

e Aeolus + ExpressPass reduces the FCT by up to 33%
on average at 10G testbed experiments, while achieving
56% improvement in large-scale 100G simulations. This is
because Aeolus fully utilizes the spare bandwidth with pre-
credit unscheduled packets in the first RTT which has not
been used in ExpressPass.

e Aeolus + Homa reduces the tail FCT of small flows
by 20x, from 100s of ms to a few ms in 10G testbed
experiments, while achieving 190x improvement in simu-
lations. This is because Aeolus effectively eliminates losses
of scheduled packets caused by the burst of unscheduled
packets, by enforcing the scheduled packet first principle.

e Aeolus + NDP achieves similar performance as NDP,
but without requiring switch modifications. This is because
similar to the cutting payload technique [12] adopted by
NDP, Aeolus can eliminate large queue buildup by selec-
tively dropping excessive unscheduled packets at the switch,
while ensuring fast loss recovery by reusing the preserved
deterministic nature of proactive transport.

II. BACKGROUND AND MOTIVATION

A. Proactive Datacenter Transport

Datacenter congestion control traditionally (e.g. [4]-[6])
uses a “try and backoff” approach and is thus largely reactive
to congestion. To meet increasing performance requirements,
many recent works are based on proactive transport, which
operates in a “request and allocation” style. The key concep-
tual idea behind proactive transport is to explicitly allocate
the bandwidth of bottleneck link(s) among active flows and
proactively prevent congestion. As a result, the switch will
have ultra-low buffer occupancy and (near) zero packet loss.
Central to proactive transport’s superior performance is the
perfect credit allocation to active flows, so any new sender
needs one RTT, which we call pre-credit phase, to inform the
receiver/controller to assign the credits.

There have been several implementations of the concept
of proactive transport. Fastpass [7] employs a centralized
arbiter to enforce a tight control over packet transmission
time and path. PDQ [13] and TFC [14] leverage switches to
explicitly allocate link bandwidth among the passing flows.
ExpressPass [1], pHost [8], NDP [2] and Homa [3] use
receiver-driven credit-based approaches to explicitly schedule
the arrival of data packets destined for different receivers.

B. The Pre-Credit Phase (1st RTT) Matters

The rapid growth of DCN link speeds (from 1/10G to 100G)
has fundamentally changed the flow characteristics, in partic-
ular, an explosion number of the flows can complete in the
first RTT. Figure 2 shows the fraction of flows (and bytes)
could have been finished within the first RTT (pre-credit phase)
under different link speeds. Flows are generated according
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Fig. 2. A substantial fraction of flows (and bytes) could have been finished
within the first RTT (pre-credit phase), and this fraction grows rapidly as
link speed increases. (For calculation simplicity, we assume the level of flow
multiplexing is 1.)
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Fig. 3. FCT of 0-100KB flows under the original ExpressPass and the
hypothetical ExpressPass with idealized pre-credit solution (fully utilizes the
spare bandwidth in the first RTT).

to four realistic workloads including Web Server [15], Cache
Follower [15] Web Search [4] and Data Mining [16].

For Figure 2(a), we calculate FCTs of flows by simply
dividing flow size by the given link speed. For Figure 2(b),
we calculate the expected average flow size of a given work-
load (denoted as A), and the number of bytes a given link
speed can transmit in one RTT (denoted as B). We simply
use B/A as the fraction of bytes could have been finished
within the first RTT. Although admittedly, this methodology
is greatly idealized, it suggests a clear trend that the rise of
high-speed DCNs have dramatically shifted the distributions
of flow completion time, with many flows, in theory, being
able to complete in the first RTT.

In the light of existing proactive transport designs, the fact
that more flows can complete in the first RTT has several
important implications:

o Many flows will benefit from sending data immediately
after they arrive, as opposed to waiting for credits (as
in [1], [7]). This coincides with the ethos of recent proactive
transport designs [2], [3], [8].

o There will be more spare bandwidth. This creates more
potential benefits and motivation to send (unscheduled)
packets in a speculative fashion to take advantage of the
spare capacity.

e More packets will be first-RTT packets. This means more
frequent contention between unscheduled packets (sent in
the pre-credit phase) and scheduled packets (sent with cred-
its in all subsequent RTTs), which potentially undermines
the gains of unscheduled packets.

In short, this short analysis indicates existing proactive trans-
port designs demand an effective pre-credit solution to fully
utilize spare bandwidth in the first RTT as the link speed
significantly increases.

C. Performance Issues of Exiting Solutions

Through an empirical analysis on the representative proac-
tive transport solutions, we demonstrate a key tradeoff in how
they handle the first RTT (i.e., the pre-credit phase).
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Fig. 4. FCT of 0-100KB flows under the original Homa and the hypothetical
Homa with idealized pre-credit solution (no interference between scheduled
and unscheduled packets).

Why not wasting the pre-credit phase? On the one
hand, if the sender holds during the pre-credit phase, it can
deal a heavy blow on short messages, which could have been
completed in the first RTT. To concretely show its impact
on performance, we chose ExpressPass [1], the most recent
proactive transport proposal that sends only scheduled packets
after the pre-credit phase (although it uses probe packets, but
they do not carry actual data). We ran an ns-2 simulation
with a fat-tree topology of 8 spine switches, 16 leaf switches,
32 top-of-rack (ToR) switches and 192 servers connected via
100Gbps links (the same topology as used in ExpressPass [1]).
Flows are generated according to two realistic workloads,
including Cache Follower [15] and Web Server [15].

In addition, to show the potential performance benefit of
not hold in the first RTT, we considered a hypothetical
ExpressPass, which leverages an idealized pre-credit solution
to send just enough data to fully utilize the spare bandwidth
in the first RTT (i.e. with hindsight knowledge), and follows
ExpressPass after the first RTT.

Figure 3 shows the FCT of small flows (0-100KB) under the
original ExpressPass and the hypothetical ExpressPass. Across
the two workloads, we can see that 57 — 80% of small flows
take one extra RTT to complete in ExpressPass than necessary,
i.e. an almost 3x inflation (from 0.5 to 1.5RTT)!

Why not bursting in the pre-credit phase? On the
other hand, if each new sender sends data speculatively before
credits are allocated, it could increase the network load unpre-
dictably and break the delicate credit allocation, crippling the
desirable properties of proactive transport. To demonstrate this
problem, we chose Homa [3], a recent proactive transport vari-
ant that lets new flows blindly transmit unscheduled packets
in the first RTT. We ran a simulation with Homa’s OMNet++
simulator [17] with a two-tier tree topology of 8 spine
switches, 8 leaf switches and 64 servers (8 servers per leaf
switch) connected by 100Gbps links (the same topology as
used in Homa [3]). The retransmission timeout of Homa is
set to be 10ms. Each switch has a per-port buffer of 200KB.
Flows are generated according to Figure 3. To understand the
impact of the interference between scheduled and unscheduled
packets, we consider a hypothetical Homa, which knows the
exact amount of spare bandwidth on each link in the first
RTT, with hindsight knowledge. This way, the hypothetical
Homa ensures the scheduled packets will always have enough
bandwidth to transmit and will not be queued or dropped.

Figure 4 compares the FCT distribution of the original
Homa and the hypothetical Homa with the idealized first
RTT. We can see that, although most flows complete very
quickly (< 30us), the tail FCT can be excessively bad, with
99.9th percentile exceeding 50 milliseconds in both workloads.
We found that the tails are due to buffer buildups and sub-
sequent packet drops caused by senders bursting too many
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unscheduled packets in the first RTT. Worse still, as scheduled
packets are no longer lossless, the retransmitted packets may
also get lost. In contrast, the tail FCTs of the hypothetical
Homa are dramatically improved—99.9th percentiles are less
than 50 us, a nearly 1000x reduction.

Readers may wonder, can Homa significantly reduce its tail
FCT by adopting a much more aggressive loss recovery? To
study this, we vary the retransmission timeout from 50us to
Ims and measure the corresponding results. The simulation
results with Cache Follower workload are summarized in
Figure 5 (we omit similar results under other workloads for
space).

As we can see, while Homa does achieve a much better tail
FCT for small flows with a smaller retransmission timeout
(e.g., 5S0us), the cost is also expensive—a smaller timeout
results in lower transfer efficiency? (~10% downgrade). This
is mainly because an aggressive loss recovery will easily
trigger pre-mature packet retransmission. Then many pack-
ets are duplicately transmitted several times, wasting scarce
bandwidth that could have been used productively. As a result,
the transfer efficiency becomes lower, which will prolong the
completion of the majority of flows.

In conclusion, due to the breaking of the delicate credit
allocation for scheduled packets, Homa faces a dilemma in
handling the delayed/dropped scheduled packets.

D. Summary: Protect Scheduled Packets?

The above microbenchmark shows that neither approaches
to proactive transport is ideal—wasting the first RTT leads to
longer-than-necessary FCTs in normal cases (Figure 3), while
bursting with unscheduled packets leads to excessively long
tail FCTs (Figure 4) or worse transfer efficiency (Figure 5).
Meanwhile, it indicates that both solutions can greatly benefit
from an ideal solution to the first RTT (i.e. pre-credit phase).
In particular, such an idealized first-RTT solution should
achieve two seemingly conflicting objectives: (1) fully utilize
the spare bandwidth with unscheduled packets, and (2) not
interfere with scheduled packets.

Before diving into our design, we pause briefly and put these
two goals into the perspective of existing solutions (Homa,
pHost, NDP) that send unscheduled packets in the pre-credit
phase. While they all aim to fully utilize the bandwidth in the
first RTT with unscheduled packets, they fundamentally differ
from us in how unscheduled should share bandwidth with
scheduled packets. Homa and pHost prioritize unscheduled
packets over scheduled ones, while NDP does not discriminate
and let them share bandwidth fairly. Thus, all of them might
delay (or cut the payload of) scheduled packets, potentially
leading to the tail latency shown in Figure 4 or the downgrade
of transfer efficiency shown in Figure 5.

To see a concrete example, let us consider Figure 6. Each
link is fully scheduled to transmit scheduled packets when a

Defined as total bytes received over total bytes sent.
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flow of unscheduled packets arrives. Because the scheduled
flows have equal or lower priority, flow 1 will be delayed,
which then delays flow 2 on the next link, and then flow 3,
and so on. Note such cascading delaying of scheduled flows
can even propagate to switches where unscheduled packets
are not present. Even worse, such delaying can increase the
chance of packet losses in proactive transport as the queues
can no longer absorb occasional bursts.

In short, the cost of delaying/dropping scheduled packets
suggests one should revisit the tenet of prioritizing unsched-
uled packets, even though they are from short flows.

III. AEOLUS

Aeolus aims to achieve three design goals simultaneously:
(1) new flows fully utilize spare bandwidth and strive to
complete if they can, avoiding longer-than-necessary FCTs;
(2) safeguarding the scheduled packets to preserve the deter-
ministic nature of proactive transport; and (3) to make it
easy to deploy in production datacenters, i.e., Aeolus must
be implementable with commodity switches.

Figure 7 overviews Aeolus, which mainly contains 3 com-
ponents: rate control, selective dropping and loss recovery.

e Rate control (§III-A): Aeolus adopts a minimal rate
control at the end hosts: all flows start at line-rate at the pre-
credit stage and then adjust their sending rates according to
received credits later on.

e Selective dropping (§III-B): The key for Aeolus to
safeguard scheduled packets is to enforce the scheduled
packet first (SPF) principle in the network. To do that,
Aeolus introduces a novel selective dropping mechanism
at the switch, which selectively drops unscheduled packets
when the bandwidth is just used up, without affecting sched-
uled packets. With such a scheme, Aeolus can effectively
utilize leftover bandwidth for unscheduled packets without
crippling the desirable properties of proactive transport.
In addition, our selective dropping mechanism is readily
deployable using commodity switches (§1V).

e Loss recovery (§III-C): Given Aeolus has safeguarded
the scheduled packets, loss recovery is needed only for lost
unscheduled packets. For recovery, we exploit the well-
protected proactive transmission as a safe and efficient
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means for loss re-transmission — we come up with a loss
detection mechanism that can accurately locate unscheduled
packet losses in the pre-credit phase, and retransmit them
as credit-induced scheduled packets only once.

A. Rate Control

Ideally, the flow’s sending rate in the pre-credit phase
should be determined by the spare bandwidth left by scheduled
packets, which keeps varying across time and space. Since it is
almost impossible to calculate such dynamic spare bandwidth,
we leave it to the switch to implement the desired bandwidth
allocation (i.e., SPF in §III-B) between scheduled packets and
unscheduled packets. As a result, the need for rate control
at the end hosts becomes minimal. In particular, we do
not require sophisticated rate control to prevent either queue
buildups or spurious packet drops due to traffic bursts. This is
because queue buildup can be eliminated by selective dropping
(§II1-B) while any packet loss in the pre-credit stage can
also be recovered shortly in the upcoming credit-based stage
through scheduled packets (§III-C).

With the above thought, our minimal rate control mecha-
nism is designed to work simply as follows:

e Pre-credit line-rate burst: A flow sender enters the pre-
credit state on its initiation and sends a bandwidth-delay
product BDP) worth of unscheduled packets at line-rate.
We use such an aggressive rate to fully utilize any spare
bandwidth when it presents in the network.

e Credit-based rate control: Along with the unscheduled
packet bursting, the sender also sends a request to the
receiver or central arbitrator to seek credits. Once the credit
returns, it will exit the pre-credit state immediately even it
has not yet sent out all unscheduled packets. After that, the
sender enters the credit-induced state and transmits sched-
uled packets according to the assigned credits. We design
Aeolus to be compatible with all existing credit-based rate
control algorithms [2], [7], [8].

B. Selective Dropping

As Aeolus imposes nearly no rate control on unscheduled
packets at the end host, it should safeguard scheduled packets
in the network. To ensure unscheduled packets only utilize
the spare bandwidth leftover by scheduled packets, Aeolus
enforces SPF by prioritizing scheduled packets over unsched-
uled packets at the switch. A conventional way to realize this
is through priority queueing [18]-[20]. However, we identify
a few problems of directly using priority queues in our design
of Aeolus. Instead, we implement a novel selective dropping
scheme by re-interpreting RED/ECN feature of commodity
switches in an unconventional way.

Why not priority queueing? We choose not to use
priority queueing for three reasons. First, it creates ambiguity:
when the receiver has been waiting for an unscheduled packet
for a long time, it is hard to decide whether this packet
has been dropped or is still being trapped in the network.
This is because, with priority queueing, subsequent scheduled
packets in the high priority may arrive earlier than unscheduled
packets in the low priority. Such ambiguity introduces a similar
dilemma faced by Homa (as discussed in §II-C). If we use
a conservative loss recovery approach (e.g., a large RTO),
we may prolong tail latency for lost packets. If we use

an aggressive approach (e.g., a small RTO), we may incur
unnecessary retransmissions for trapped packets, downgrading
the transfer efficiency. We showcase this problem numerically
in §V-E. Second, unscheduled packets in the low priority may
still occupy considerable buffer that risks affecting scheduled
packets (showcase in §V-E), due to the reason that proac-
tive solutions require certain buffer space to accommodate
imperfect network conditions such as transient queue buildups
caused by RTT wvariations [1]. Third, commodity switches
have a smaller number of queues (typically 8), which may
be used for other purposes such as isolating traffic of different
services [21]. We do not want to consume additional queue
resources by presenting Aeolus.

Selective dropping: We seek to implement SPF while
avoiding the downsides of priority queueing. To avoid ambi-
guity and save queue resources, we prefer a mechanism that
uses only one queue and keeps in-order packet transmissions.
Furthermore, to reserve sufficient buffer headroom to hold
scheduled packets, we should limit the buffer space used by
unscheduled packets.

According to this insight, we transmit all the data packets in
a FIFO queue (unless special requirement of the transport) and
enforce a selective dropping mechanism at the switch: when
an unscheduled packet arrives, the switch drops it if the buffer
occupancy exceeds a very small threshold (e.g., 2-8KB), but
such dropping does not apply to scheduled packets. In this
way, Aeolus achieves multiple benefits simultaneously—it
avoids ambiguity with just one queue in-order transmission,
prioritizes scheduled packets through proactively dropping
unscheduled packets once queue builds up, while still allowing
unscheduled packets to fully utilize any leftover bandwidth
with minimal buffer occupancy. One contribution of this
paper is that we show such selective dropping is effective
yet very easy to implement using the Active Queue Man-
agement (AQM) feature at commodity switches. In §IV-A,
we introduce two implementation options using Weighted Ran-
dom Early Detection (WRED) and RED/ECN, respectively.
In our testbed experiments, we adopt RED/ECN to realize the
proposed selective dropping.

C. Loss Recovery

In Aeolus, scheduled packets are less likely to be dropped
as we well protect them. However, unscheduled packets can be
dropped under selective dropping. Hence, a fast loss recovery
of unscheduled packets is needed. Given we have safeguarded
scheduled packets, our idea is to retransmit lost unscheduled
packets using subsequent scheduled packets, whose deliveries
are guaranteed by the property of proactive transport. There-
fore, loss recovery simply reduces to loss detection in Aeolus.

Loss detection: Aecolus enables per packet ACK at the
receiver to quickly notify the sender of arrival unscheduled
packets. We use selective ACK rather than cumulative ACK
for loss detection in the middle, and leverage a simple probing
to detect tail losses of unscheduled packets. Specifically, the
Aeolus sender transmits a probe packet right after the last
unscheduled packet. This probe packet carries the sequence
number of the last unscheduled packet, and is of minimum
Ethernet packet size, e.g., 64 bytes. When the receiver receives
the probe packet, it returns an ACK carrying the sequence
number of the probe packet. Once the sender receives such
a probe ACK, it can immediately infer all the losses of
unscheduled packets, including the last one. Finally, it is
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worthwhile to note that to guarantee the delivery of the probe
packet and all ACKs, we treat them as scheduled in the
network.

Retransmission: As introduced above, Aeolus retrans-
mits lost unscheduled packets using subsequent scheduled
packets. Upon receiving credits, the sender can retransmit
old packets or transmit new packets. Specifically, the sender
has three types of packets to transmit: sent but unacknowl-
edged unscheduled packets, loss-detected unscheduled pack-
ets, and unsent scheduled packets. We prioritize them in the
order of loss-detected unscheduled packets, unsent scheduled
packets, and sent but unacknowledged unscheduled packets,
respectively. We give the highest priority to loss-detected
unscheduled packets because we want to fill the gap as
soon as possible to minimize the memory footprint of rese-
quence buffer. We prioritize unsent scheduled packets over sent
but unacknowledged unscheduled packets to avoid redundant
retransmissions.

D. Why Does This Work?

The key of Aeolus is its simple yet effective selective drop-
ping mechanism, which not only delivers good performance
but also significantly simplifies both rate control and loss
recovery designs. With selective dropping, new flows can start
at line-rate to fully utilize spare bandwidth without affecting
scheduled packets. For pre-credit unscheduled packets, the
cooperation of line-rate start and selective dropping maximizes
their potential benefits (e.g., utilize the spare bandwidth) and
minimizes their side effects (e.g., affect scheduled packets)
simultaneously. Furthermore, by selective dropping, Aeolus
only drops unscheduled packets. Therefore, loss recovery
becomes relatively simple because packet losses only happen
in the pre-credit stage (or first batch) and the deliveries of
subsequent scheduled packets are guaranteed. We just need
to locate the losses in the first batch and then efficiently
retransmit them only once using scheduled packets. We do not
need sophisticated schemes to handle many challenging corner
cases, e.g., packet loss of retransmission packets. Compared to
TCP variants that have complex loss recovery mechanisms for
different scenarios, Aeolus’s loss recovery is extremely simple
but more efficient.

E. How Does This Work?

Integrating Aeolus with existing proactive mechanisms is
logically simple—we only need to add a separate control loop
for transmitting unscheduled packets in the first RTT, which
runs in parallel with the original control loop that schedules
the transmission of scheduled packets.

It is true that existing proactive mechanisms do not share
much similarity among each other. However, their behaviours
in the first RTT are identical, i.e., either forbid data transmis-
sion or transmit a fixed bytes of unscheduled packet. The main
modification needed by Aeolus to enable data transmission in
the first RTT, and assign lower network priority to unscheduled
packets. We believe such a modification is not significant for
existing proactive mechanisms.

IV. IMPLEMENTATION

A. Switch Implementation

The Aeolus switch selectively drops unscheduled packets
while preserving scheduled packets in one switch queue. Here
we propose two implementation options to realize this.

IEEE/ACM TRANSACTIONS ON NETWORKING

WRED: Weighted random early detection (WRED) is an
extension to random early detection (RED) where a single
queue has several different sets of queue dropping/marking
thresholds. WRED typically supports three packet colors
(which is a metadata attached to the packet in switch process-
ing pipeline): red, yellow and green, and each color has its
own dropping thresholds in a switch queue. WRED is widely
supported by commodity switching chips [22], [23].

To implement selective dropping using WRED, we mark
scheduled and unscheduled packets with different DSCP val-
ues at the end host. At the switch, we configure access
control list (ACL) table to set the arriving packet’s color based
on its DSCP field. Therefore, scheduled and unscheduled
packets can be marked with different colors in the switch
pipeline. For unscheduled packets, we can set both the high
and low dropping thresholds to the desired selective dropping
threshold. For scheduled packets, we can set its high/low
dropping threshold to a very large value (e.g. total buffer size)
so that scheduled packets will not be dropped by WRED.

RED/ECN: Though WRED is widely supported by switch-
ing chips, it may not be exposed by all switch OSes to
users. Some switch OSes (e.g., Arista EOS [24]) just provide
a simple RED/ECN configuration interface where a switch
queue only has a single set of dropping/marking thresholds.

Now, we show how to realize selective dropping only using
RED/ECN feature exposed to users. ECN mechanism uses the
2-bit ECN field in the IP header to encode whether a packet is
ECN capable or has experienced congestion. When both end-
points support ECN, they will mark their data packets with 10
(ECN capable transport, ECT(0)) or 01 (ECT(1)). Otherwise,
packets will be marked with 00 (Non-ECT). At the switch,
when the buffer occupancy is larger than the ECN mark-
ing threshold, the arriving packet will be marked (changed
the code point to 11) if it is ECN capable, otherwise get
dropped. This mechanism has been well studied in previous
work [25], [26].

Therefore, we can implement the selective dropping by
reinterpreting the RED/ECN as follows. At the sender side,
we set the ECN fields of unscheduled packets and scheduled
packets to Non-ECT and ECT(0), respectively. At the switch,
we enable ECN marking and configure both the high and low
RED thresholds to the selective dropping threshold. In this
way, any unscheduled packets exceeding this threshold will be
selectively dropped by switch. At the receiver side, we simply
ignore the ECN marks of the arriving packets.

B. Host Implementation

To evaluate the benefits of Aeolus to augment proactive
solutions, we have implemented a prototype of Aeolus with
two recent proactive transports, ExpressPass [1] and Homa [3].
Our implementation is based on DPDK 18.05 [11], which
allows the network stack to bypass the kernel and commu-
nicate directly with the NIC.

As shown in Figure 8, the main modification of Aeolus on
top of existing proactive transports is to add an Aeolus control
logic, a flow classification module, a packet marking module
and a packet dispatch module. As our implementation does not
touch the core code of proactive transports, different proactive
protocols can be “swapped out” easily while still remaining
compatibility with Aeolus.

Packet sending pipeline: As shown in Figure 8(a), appli-
cation starts data transmission by calling a send() function.
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FLOW SIZE DISTRIBUTIONS OF REALISTIC WORKLOADS
Web Cache Web Data
Server [15] | Follower [15] | Search [4] | Mining [16]
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100KB-1MB 19% 18% 18% 8%
> 1MB 0% 29% 20% 9%
Average size 64KB 701KB 1.6MB 7.41MB
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The flow classification module tracks the per-flow state
using a table. Each flow is identified using the 5-tuple
(i.e., source/destination IPs, source/destination ports and pro-
tocol ID), and initially classified as pre-credit flow. The flow
enters credit-induced state once it finishes its first-RTT packet
transmission. Pre-credit flows and credit-induced flows are
processed by the Aeolus control logic and the proactive control
logic separately.

The Aeolus control logic checks sender buffers of its
belonging flows iteratively in a round robin fashion, reading
in the data, segmenting the data into unscheduled packets,
constructing request, probe and ACK, and forwarding these
packets to the next-stage processing module. As for the
proactive control logic, it follows its original processing logic
without any modification.

We note that in the design of some proactive solutions like
Homa, the receiver needs to learn about the flow size infor-
mation from the header of successfully received unscheduled
packet(s). We encode the flow size information in the header
of probe such that the receiver can still learn about the flow
demand even when all the unscheduled packets get dropped.

The packet marking module marks outgoing packets. It sets
ECN fields of unscheduled packets and scheduled packets to
00 (Non-ECT), and 10 (ECT(0)), respectively. To increase
throughput, the marked packets are sent to the TX ring
buffer of NIC in batch via DPDK. We choose a batch size
of 15 packets in our current implementation.

Packet receiving pipeline: We leverage DPDK poll model
driver to periodically poll the RX Ring buffer of NIC. Once a
batch of packets are received, the packet dispatch module will
distribute them to the corresponding control logic.

The Aeolus control logic mainly performs three operations
on receipt of a packet: (1) notify the flow classification module
to change the state of a flow in case an ACK of a flow is
received for the first time; (2) notify proactive control logic the
arrival of a new flow when a request is received; (3) do loss
detection based on received ACKs and notify the proactive

control logic to perform loss retransmission with scheduled
packets.

State transition: Figure 9 depicts the state transition
of sender and receiver. Aeolus sender will progress to
state. SENDER_PRE_CREDIT after it sends a request to
the receiver. The sender will remain in this state, transmit-
ting unscheduled packets and probe until it receives credit
from the receiver. After transiting into state SENDER_
CREDIT_INDUCED, the sender will focus on the task to
transmit scheduled packet(s) on the receipt of credit until all
the data are received by the receiver.

Aeolus receiver will enter state RECEIVER_LISTENING
when the application layer issues an “active open”
operation. The receiver further progresses into state
RECEIVER_CREDIT_SENDING after it receives a request
or an unscheduled packet or a probe. The receiver will allocate
credit to the sender to pull the remaining data to be received.
A receiver will go back to state RECEIVER_LISTENING
when all the data of this flow/message are received.

V. EVALUATION

We evaluate Aeolus using a combination of large-scale
simulations and testbed experiments. The key findings are:
e Aeolus improves the normal-case FCT of Express-
Pass [1], with the mean FCT reduced by up to 56%.

e Aeolus improves the tail FCT of Homa [3], with the 99th
percentile FCT reduced by up to 190x.

o Aeolus preserves the superior performance of NDP [2]
without requiring switch modifications.

A. Evaluation Setup

Choices of baseline proactive transport: We choose three
recent proactive transport solutions: ExpressPass [1], Homa [3]
and NDP [2], to represent different design choices of proactive
transport. ExpressPass forbids data transmissions in the first
RTT, and Homa and NDP blindly send unscheduled packets
in the first RTT.

Testbed: We built a small testbed that consists of 8 servers
connected to a Mellanox SN2000 switch using 10Gbps
links. Our switch supports ECN and strict priority queueing
with 8 queues. Each server is equipped with an Intel 82599EB
10GbE NIC that supports DPDK. We enable RED/ECN at
the switch to implement selective dropping. The base RTT is
around 14us. For ExpressPass [1], the configuration is simple
as we only have a single queue to transmit data packets, includ-
ing scheduled packets and unscheduled packets. In contrast,
Homa [3] uses multiple priority queues to serve unscheduled
and scheduled packets separately. As a result, configuring per
queue selective dropping at switches can no longer protect
scheduled packets from the impact of unscheduled packets.
For Homa, we configure per-port ECN/RED [21] (see more
detail in §VI).
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Simulator: For all the three schemes, we use the simulators
provided by the authors with their recommended configuration
options. For ExpressPass, we implemented Aeolus on top
of ExpressPass’s open source code [27] with ns-2 simulator.
For Homa, we implemented Aeolus on top of Homa’s open
source code [17] with OMNeT++ simulator. Homa assumes
infinite switch buffer in its simulations, and its simulator
lacks loss recovery mechanism. Hence, we extended Homa’s
simulator to implement a timeout-based loss recovery mech-
anism according to the description in Homa paper. For NDP,
we implemented Aeolus on top of NDP’s packet-level htsim
simulator [28].

Default configuration: Unless stated otherwise, our eval-
uation uses a default configuration that is based on a network
load of 0.4 and a per-port buffer of 200KB at switches.
By default, we set the selective dropping threshold to be 6KB
(4 packets). The MTU is set to be 1.5KB (as NDP [2] by
default uses 9KB jumbo packet, we set MTU to be 9KB for
NDP). For ExpressPass, we set the initial credit sending rate
to be 1/16 of link capacity and the aggressiveness factor w
to be 1/16. For Homa, we use 8 priority queues at switches
and set the overcommitment degree to 6. The retransmission
timeout is set to 1ms/100us in different experiments. For
NDP, the threshold of packet trimming (payload cut) is set
to 8 packets (72KB).

Workload: We generate realistic workloads according
to 4 production traces including Web Server [15], Cache Fol-
lower [15], Web Search [4] and Data Mining [16]. Their flow
size distributions are shown in Table 1. All the distributions
are highly-skewed: the most of bytes are from few large flows.
We generate flows using a Poisson arrival process to achieve
a specified network load. For every flow, the sender and the
receiver are randomly chosen.

Experiment/simulation setup: We conduct 7-to-1 incast
experiments in our testbed as follows: one client node sends
requests to other 7 servers simultaneously and each server
responds with messages of fixed size. We vary the size of
the response message from 30KB to 50KB, and measure the
message completion times (MCT).

In large-scale simulations, we use the same network topolo-
gies as the ones adopted by the papers of compared schemes.
For ExpressPass, we simulate an oversubscribed fat-tree topol-
ogy with 8 spine switches, 16 leaf switches, 32 top-of-rack
(ToR) switches and 192 servers. We set network link delay
to 4us, and host delay to 1us, which gives a maximum base
RTT of 52us. For Homa and NDP, we simulate a two-tier tree
with 8 spine switches, 8 leaf switches and 64 servers. The
base RTT is set to 4.5us. For all the simulated topologies, all
the links have 100Gbps capacity.

B. ExpressPass + Aeolus

With testbed experiments and simulations, we show that
Aeolus can help ExpressPass significantly speed up small
flows by fully utilizing spare bandwidth in the first RTT, while
keeping the queue occupancy small.

Testbed experiments: Figure 10 shows the message com-
pletion times (MCT) of 7-to-1 incast scenario when message
size varies from 30KB to 50KB. The results indicate that
Aeolus can assist ExpressPass to speed up small flows even
under stressed incast traffic pattern: median MCT is improved
by 43% with 30KB message size (Figure 10(a)), and average
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MCT is improved by 19%-33% across different message sizes
(Figure 10(b)).

Real workload-driven simulations: We run ns-2 simu-
lations to evaluate Aeolus with the four realistic workloads.
Figure 11 shows the FCT distributions of flows of sizes
between 0 and 100KB. We can see that Aeolus significantly
improves FCTs of ExpressPass: with Aeolus, nearly 60%,
80%, 28% and 70% of 0-100KB small flows complete within
the first RTT across the four workloads, respectively.

Figure 12 shows the improvement of Aeolus as the system
load varies (from 20% to 90% of the network capacity).
We can see that ExpressPass benefits from Aeolus with a
sizable amount across a wide range of loads. As a second
observation, we find that as the load increases, the room for
improvement by Aeolus diminish slightly, which is a result of
less spare bandwidth under high load. Nonetheless, we still
observe a considerable improvement even at 90% load. This
is partly because in practice, the bandwidth allocation of
ExpressPass is not always perfectly work-conserving; some
flows may get more credits than they demand, resulting in
link underutilization. In contrast, Aeolus can use such spare
bandwidth by injecting unscheduled packets in the first RTT.

Performance metric: We use flow completion time (FCT)
as the primary performance metric. We also measure the queue
length, link utilization and goodput for analysis.

Figure 13 shows the FCT slowdown across all flows on
average and at the 99th-percentile, respectively. Here, FCT
slowdown means a flow’s actual FCT normalized by its ideal
FCT when the network only serves this flow. Flows are
generated according to Web Search workload. As we can see,
while Aeolus improves the FCT of all flows, the improvement
decreases as flow size increases. The results are expected since
a better utilization of bandwidth in the first RTT has little
impact on the FCT of large flows.
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C. Homa + Aeolus

With testbed experiments and simulations, we demonstrate
that Aeolus can help Homa eliminate large queue buildup and
avoid losses of scheduled packets, thus significantly improving
the tail FCTs of small flows.

Testbed experiments: Figure 14 shows the distribution
of message completion times (MCT) over messages of size
between 30KB and 50KB. We can see that Aeolus effectively
cuts the tail MCT from 14Ims to 18ms, and reduces the
average MCT from 100s of ms to a few ms! This is because
although both Homa and Homa+Aeolus send unscheduled
packets in the first RTT, Aeolus only drops unscheduled
packets and ensures that the dropped unscheduled packets can
be quickly recovered from the second RTT without waiting for
timeouts, thus achieving predictable tail latency. In contrast,
Homa may suffer from timeouts if tail packets are dropped.

Real workload-driven simulations: We run OMNET++
simulations to evaluate Aeolus with the four realistic work-
loads. The timeout value is set to be 1ms. The network
load is 40%. Figure 15 shows the FCT distributions of flows
smaller than 100KB. We can see that across all workloads,
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Fig. 15. FCT of 0-100KB flows in a two-tier spine-leaf topology. The average
load of network core is 40%.

TABLE II

TAIlL FCT ofF 0-100KB FLows UNDER HOMA AND HOMA-+AEOLUS
ACROSS THE FOUR WORKLOADS

Web Cache Web Data
Server/us | Follower/us | Search/us | Mining/us
Homa 4043.50 4051.69 4228.9 1802.65
Homa + Aeolus 30.30 23.05 22.09 13.93
TABLE III

MEDIAN FCT oF 0-100KB FLOwS UNDER HOMA AND HOMA+AEOLUS
ACROSS THE FOUR WORKLOADS

Web Cache Web Data
Server/us | Follower/us | Search/us | Mining/us
Homa 2.88 2.54 5.53 2.56
Homa + Aeolus 7.52 7.05 9.69 7.13
TABLE IV

AVERAGE FCT OF 0-100KB FLOWS UNDER HOMA AND HOMA+AEOLUS
ACROSS THE FOUR WORKLOADS

Web Cache Web Data

Server/us | Follower/us | Search/us | Mining/us
Homa 7.86 29.64 239.67 14.75
Homa + Aeolus 6.97 6.24 9.49 5.84

Homa+Aeolus completes all flows within 31us whereas the
99th-percentile tail FCT of Homa is ~4ms. This is because
Aeolus avoids the losses of scheduled packets and can do fast
recovery for the dropped unscheduled packets.

Table II, Table III and Table IV summarize the tail, median
and average FCTs of flows smaller than 100KB, respectively.
Although the median FCT of Homa+Aeolus is slightly higher,
Aeolus significantly improves the tail FCT and thus improves
the average FCTs.

To confirm the intuition that the drops of scheduled pack-
ets cause the performance gap between Homa and Aeolus,
Figure 16 shows the number of flows that experience at least
one timeout under different levels of load. We can see that as
the load increases, the spare bandwidth drops, which increases
the chance of contention between scheduled and unscheduled
packets. When contention occurs, Homa prioritizes unsched-
uled packets, causing some scheduled packets to be queued
or dropped. In contrast, by design, Aeolus will protect the
scheduled packets, so no flow experiences timeout even at
60% load.
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Fig. 16.  Number of flows suffering from timeout. The load varies from 0.2
to 0.6.

TABLE V

AVERAGE FCT OF ALL FLOWS UNDER EAGER HOMA AND
HOMA-+AEOLUS ACROSS THE FOUR WORKLOADS

Web Cache Web Data
Server/us | Follower/us | Search/us | Mining/us
Eager Homa 27.66 369.82 421.10 1885.15
Homa + Aeolus 17.55 72.69 278.52 1637.11

With Aeolus, any dropped unscheduled packet can be
detected by probe packets, and its retransmission is guaranteed
with the scheduled packet. Therefore, Aeolus can utilize the
network bandwidth in an accurate and efficient way. To con-
firm this, Table V shows the average FCT of all flows under
eager Homa (20us timeout) and Aeolus, respectively. We can
see that, compared to eager Homa, Aeolus reduces the average
FCT of all flows by 36.55% 80.34% 33.86% 13.16% across
the four workloads, respectively (Note that in Data Mining
workload, the 99% of flows are smaller than 100MB, but
more than 90% of bytes are in flows larger than 100MB. For
these >100MB large flows, Aeolus cannot greatly reduce its
FCT. That’s why Aeolus improves the average FCT only by
a smaller fraction.).

D. NDP + Aeolus

We show that Aeolus can enable NDP to maintain its high
performance without cutting payload (CP) [12] support. The
CP technique adopted by NDP is not supported by existing
commodity switching ASICs yet, e.g., Broadcom Trident 2,
Tomahawk and Tomahawk2. It remains an open question
whether CP can be realized in a readily deployable and cost-
effective way.

As we do not have NetFPGA card to implement CP, we only
conduct simulations for the evaluation of NDP and Aeolus.
Given we have already shown Aeolus can be implemented
on commodity hardware, here we focus only on showing that
NDP+-Aeolus achieves similar performance as original NDP.

Figure 17 shows the FCT distributions of flows smaller than
100KB. We can see that NDP+Aeolus achieves similar FCT as
original NDP in all percentiles. We also measure the average
FCT under varying network loads from 20% to 90% across
the four workloads (results are not presented due to space
limitation), and have the similar finding.

CP plays an important role in the design of NDP. For NDP,
Aeolus works as an alternative to CP. With Aeolus, NDP
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avoids large queue buildups by selectively dropping exces-
sive unscheduled packets at switch queues. Aeolus ensures
effective retransmissions by leveraging the lossless property of
proactive congestion control. The main advantage of Aeolus
over CP is that, Aeolus is compatible with existing commodity
switches, and thus can significantly reduce the complexity to
deploy NDP in production DCNs.

With the simulation setting introduced in §V — E, we also
evaluate NDP+Aeolus using a mix of realistic traffic and
bursty incast traffic. In such a setting with more serious
congestion and more packet drops, we find that NDP+Aeolus
degrades the performance for small flows (FCT prolonged
by 3x in the worst case). The reasons are twofold. First,
aggressively dropping unscheduled packets has a larger impact
on small flows. Second, Aeolus’s probe-based loss detection
is not always as efficient as CP for recovering packets lost in
the first RTT.

E. Aeolus Deep Dive

Parameter sensitivity: Readers may wonder how to set a
proper selective dropping threshold for Aeolus— a very small
threshold may too aggressively drop the unscheduled packets
(thus fail to fully utilize spare bandwidth), while a very large
one may build long switch queues (thus significantly delay
scheduled packets). We conduct a many-to-one simulation to
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In Figure 18, we plot the average and maximum queue
length on the congested link with different selective dropping
thresholds. We find that, the queue length is nearly linear to
the selective dropping threshold. Hence to avoid large switch
queues, we should use a small selective dropping threshold.

So how to choose a small threshold without sacrificing much
throughput? To explore this, we measure the average link
utilization of the bottleneck link in the first RTT. We create
different traffic demands by adjusting the fan-in degree N.
In Figure 19, we plot the average utilization of the bottleneck
link under different traffic demands. As we can see, a small
threshold of 4 packets (6KB) is large enough to achieve high
throughput under all traffic demands.

Why not priority queueing? We compare Aeolus with an
alternative design: isolate unscheduled packets and scheduled
packets with two priority queues. As stated in §/7/1 — B, the
most serious problem of priority queueing is ambiguity: when
the receiver has been waiting for an unscheduled packet for a
long time, it is hard to decide whether his packets has been
dropped or it still being trapped in the network.

To showcase this ambiguity, we implement the priority
queueing based solution in ns-2 simulator. We consider two
retransmission timeouts (RTOs): 10ms and 20us. The large
RTO is resilient to packet trapping, but cannot efficiently
recover unscheduled packet losses. In contrast, the small
RTO incurs severe redundant transmissions. We run the cache
follower workload in the 100G fat-tree topology. The proactive
algorithm is ExpressPass. We measure the maximum FCT
and transfer efficiency. As shown in Table VI, the large RTO
suffers from high tail latency due to slow loss recovery, while
the small RTO causes many redundant transmissions, thus
degrading transfer efficiency.

We also show that isolating unscheduled packets in low
priority queues does have the risk of affecting scheduled
packets, at extreme case. We consider a contrived 20-to-1
incast scenario where each sender sends 400KB data to a
common receiver. All servers are directly connected to a 100G
switch, where shared buffer scheme is adopted across different
priority queues. The average and maximum FCT under Aeolus
and priority queueing are shown in Table VII. It is easy to see
that, compared with Aeolus, priority queueing results in much
longer FCTs (~10x worse than Aeolus). The reason is that,
switch buffer is fully occupied by unscheduled packets queued

at low priority queue. As a result, scheduled packets are
rejected to enter high priority queue due to the lack of available
buffer (drop-tail). As the dropping of scheduled packets is rare
for proactive solutions like ExpressPass [1], a large RTO =
10ms is used for the recovery of dropped scheduled packets,
which results in worse FCTs.

Heavy incast with larger network: As a stress test,
we study the behaviour of Aeolus under heavy incast by
conducting N-to-1 incast simulations in a two-tier spine-leaf
network (N = 32, 64, 128 and 256). The network has 4 spine
switches, 9 leaf switches and 144 servers (16 under each leaf
switch). Server links operate at 100 Gbps and spine-leaf links
operate at 400 Gbps. All links have 0.2us propagation delay.
All switches have 0.25us switching delay. Each switch port
has 500KB buffer. All the flows have 64KB data. We choose
senders randomly across all servers. For Homa, we use 40us
as the retransmission timeout, which is equal to the largest
queueing delay a packet could experience in the network.

Figure 20 shows the FCT slowdown on average and at the
99th-percentile, respectively. We mainly make three observa-
tions. First, compared with ExpressPass, ExpressPass+Aeolus
achieves similar performance. This is expected because the
main benefit brought by Aeolus is the ability to utilize spare
bandwidth with unscheduled packets in the first RTT. However,
in the heavy incast scenarios, the proportion of data bytes
that can be transmitted in the first RTT is minimal compared
to the total bytes of all flows. As a result, Aeolus can
hardly make further improvement. Second, Aeolus enables
Homa to achieve good performance even under heavy incast.
This is because Aeolus can avoid large queue buildup by
selectively dropping the overwhelming unscheduled packets in
the first RTT. As a result, scheduled packets are protected from
large queueing delay and packet loss since the second RTT.
Lost unscheduled packets are also recovered quickly using
scheduled packets. Under Homa, however, both unscheduled
and scheduled packets will suffer from severe losses due to
large queue buildups. With the inefficient timeout-based loss
recovery mechanism, Homa will spend much longer time on
completing the transmission of all flows. Third, compared
with NDP, NDP+Aeolus achieves similar performance. This
is consistent with our previous evaluation result.
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Impact on goodput: Readers may wonder whether aggres-
sively dropping unscheduled packets in the first RTT would
negatively affect the effective bandwidth utilization of each
scheme. To study this, we evaluate each scheme with increas-
ing network loads to identify the maximum goodput it can
achieve. For this simulation, we use the same spine-leaf
topology as above. We generate network loads using a mix of
Web Search traffic and incast traffic. We generate the incast
traffic by randomly selecting 64 senders and one receiver, each
sending 64KB data.

Figure 21 shows the goodput (normalized by the link
capacity) each scheme can achieve over varying network loads.
Compared with ExpressPass, Aeolus has no negative impact
on goodput. For Homa, Aeolus improves the goodput by
4%. This is mainly because Aeolus eliminates the losses of
scheduled packets and does fast recovery for lost unscheduled
packets. For NDP, Aeolus improves the goodput by 2%. This
is because NDP needs to reserve some bandwidth headroom
for transmitting trimmed packet headers. In contrast, Aeolus
only requires 64 bytes per flow for transmitting the probe.

Furthermore, across these schemes, we observe that NDP
achieves the highest goodput (84%) mainly for two reasons.
First, it performs per-packet load balancing to fully utilize
the bandwidth over multiple paths. Second, it leverages CP
to enable fast loss recovery. In contrast, ExpressPass uses
per-flow ECMP for load balancing, thus only achieving 70%
goodput. In addition, Homa achieves the worst goodput (54%)
due to the losses of many scheduled packets and the use of
inefficient timeout-based loss recovery mechanism. We note
that our result with Homa is inconsistent with the result
presented in the Homa paper [3]. We suspect one possible
reason is that Homa assumes infinite switch buffer in their
simulations. In contrast, in our simulations we allocate SO0KB
buffer for each switch port.

Benefit of the probe mechanism: To study the perfor-
mance gain provided by the probe mechanism, we compare
the flow performance under two schemes“Aeolus with probe
mechanism” and “Aeolus w/o probe mechanism”. In this
simulation, we use the same spine-leaf topology as above.
Flows are generated according to Web Search workload. The
network load is 0.4.

Figure 22 shows the average and the 99-th percentile FCT
slowdown under both schemes. As we can see, both schemes
achieve very similar performance. The reason is as follows.
In the first RTT, both schemes will successfully transmit the
same bytes of unscheduled packets as the dropping threshold is
the same. Since the second RTT, both schemes will utilize the
granted credits to transmit scheduled packets or retransmit lost
unscheduled packets. The main benefit of probe mechanism is
the fast detection of tail loss in the first RTT. For scheme
“Aeolus with probe mechanism”, lost unscheduled packets at
the tail can be quickly detected, and credits will be used to
retransmitted these packets with highest priority. For “Aeolus

IEEE/ACM TRANSACTIONS ON NETWORKING

w/o probe mechanism”, while lost unscheduled packets at
the tail cannot be detected before timeout, the credits will
be used either to transmit unsent new data or to retransmit
unacknowledged unscheduled packets (in the case there is no
new data to send). So there is no wastage of credit even if
lost unscheduled packets are not quickly detected. Since both
schemes can fully utilize the granted credits, their performance
should be similar.

We want to point out that, while FCT is similar under
both schemes, application layer will see a very different
performance. In the next, we use a toy experiment to demon-
strate how the out-of-order data delivery under “Aeolus w/o
probe mechanism” hurts the application performance. Trans-
action is a function widely supported by modern databases.
A transaction usually contains a set of database operations
that must be executed in batch in an atomic way. In our
experiment, we have two servers connected to a 10G switch
with one server working as client node and the other working
as server node. The client node sends a transaction, which
contains 20 operations, to the server node to execute on its
database. For simplicity, we directly drop the last unscheduled
packet at the client node to create tail loss. Compared with
“Aeolus with probe mechanism”, “Aeolus w/o probe mecha-
nism” prolongs the transaction execution time by 16.9% (from
20.1ms to 23.5ms).

The reason is as follows. For “Aeolus with probe mecha-
nism”, the lost unscheduled packets will be quickly detected
at the sender side and get retransmitted soon. As a result, the
receiver will observe a good in-order delivery of packets, and
thus the first few database operations will be received and
executed soon. For “Aeolus w/o probe mechanism”, however,
as the lost unscheduled packets cannot be quickly detected,
the sender will transmit the scheduled packets with larger
sequence number at first on the receipt of credits. The lost
unscheduled packets (whose payload carries the first few
database operations) will be retransmitted at last when no
unsent new data can be transmitted using credit. As a result,
the transaction cannot be executed until all the data are
received. This will significantly prolong the execution time
of the transaction.

VI. DISCUSSION

Design tradeoff: Aeolus guarantees good tail latency by
protecting the deterministic nature of proactive schemes, but
only improves the average latency in a best effort manner.
In certain cases, it may also make some compromise. For
example, it is possible that Aeolus may drop unscheduled
packets even when the switch has enough buffer space to hold
all the in-flight traffic, due to small selective dropping thresh-
old (§IV-A). As a result, Aeolus may delay the completion
of some small flows due to bandwidth wastage in the first
RTT. However, Aeolus can consistently eliminate congestion
timeouts, even under serious congestion.

Resilience under heavy incast: Aeolus uses minimum-
sized probe packets to improve the resilience under heavy
incast workloads. For example, with a typical setting of 200KB
switch buffer, 6KB dropping threshold, and 64B probe packet
size, Aeolus can effectively detect unscheduled packet losses
even when there are 3100 (194KB/64B) new arrival flows.
To handle the extreme cases where even the probe packet can
get dropped, we may let the sender set a timer to retransmit
unscheduled packets and the probe packet if no credit is
received in a given duration.
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Overhead of per-packet ACK for hardware offloading:
Per-packet ACK can be a burden for hardware transport at
high speed. However, Aeolus minimizes such overhead by
only generating per-packet ACK for unscheduled packets,
which are more likely to be dropped. For example, with
100Gbps link, 10us base RTT and 1.5KB MTU, each flow
only needs 84 ACKs for unscheduled packets.

Oversubscribed topology: Some proactive schemes
(e.g., NDP [2], Homa [3] and pHost [8]) assume the net-
work core is free of congestion. However, enabling proactive
solutions to work with oversubscribed topologies is not a
goal of Aeolus. For example, when integrated with above
proactive schemes, Aeolus cannot avoid congestion losses of
unscheduled packets in oversubscribed topologies.

Multi-queue scenario: Some proactive mechanisms,
e.g., Homa [3], use multiple priority queues to serve unsched-
uled and scheduled packets separately. As a result, configuring
per queue selective dropping at switches can no longer protect
scheduled packets from the impact of unscheduled packets.?

To handle the above problem, we adopt per-port selective
dropping mechanism, which observes the sum of queue buffer
occupancy belonging to the same port. For each switch port,
once the buffer occupancy reaches the dropping threshold K,
the incoming unscheduled packets will get dropped. As a
result, as long as the queued bytes of scheduled packets reach
K, unscheduled packets can no longer consume the bandwidth
allocated to scheduled packets, even if unscheduled packets
are served with queues of higher priority. Note that per port
selective dropping mechanism can also be implemented with
commodity switches by configuring per-port ECN.

Extending Aeolus for other transport protocols: It is
possible to extend Aeolus to augment other transports. For
example, with Aeolus, TCP can start with a large initial win-
dow to fully utilize the available bandwidth instead of starting
with a small initial window and then iteratively increasing.
Aeolus’s selective dropping mechanism can effectively mini-
mize the impact of initial burst in the first RTT. But unlike
proactive transports, TCP does not send scheduled packets
whose deliveries are guaranteed. As a result, loss could happen
to all packets and a more general loss recovery mechanism is
needed.

The idea of Aeolus can also be applied to RDMA transports
(e.g, DCQCN [5]) to enable them operate without PFC. In the
design of DCQCN, a flow starts at full line rate on its
arrival and PFC is leveraged to prevent packet loss caused
by initial traffic burst. However, PFC is known to have many
problems [5], [29]-[31], such as head-of-the-line blocking,
congestion spreading and deadlock. Aeolus’s selective drop-
ping mechanism can be used to replace PFC for handling the
overwhelming traffic burst at the beginning. Without PFC,
the network is no longer lossless, so a more efficient loss
recovery mechanism (e.g., the one proposed by IRN [32]) will
be needed for handling packet losses.

Impact on bandwidth sharing among flows: By design,
Aeolus will not significantly affect the bandwidth sharing
among flows, for three reasons. First, Aeolus does not change
the bandwidth allocation mechanism of original proactive
transport. Second, at endhost, the sending of unscheduled
packets in the first RTT will not delay the transmission of
scheduled packets, as scheduled packets are sent since second

3In Homa, unscheduled packets are served in the queues of higher priority.

RTT. Third, in the network, Aeolus’s selective dropping mech-
anism guarantees that the bandwidth allocated to scheduled
packets will not be occupied by unscheduled packets.

VII. RELATED WORK

There are tons of DCN transport designs aiming at low
latency and high throughput. We have discussed the closely
related proactive solutions [1]-[3] extensively in the paper.
Here, we review some other ideas which have not been
discussed elsewhere.

In contrast to the proactive solutions, reactive DCN con-
gestion control algorithms leverage signals such as ECN,
RTT, and in-network telemetry (INT) to detect congestions.
For example, DCTCP [4], MCP [33], BCC [34], [35] and
DCQCN [5] use ECN as the congestion signal, TIMELY [6]
uses RTT as the signal, whereas Gemini [36], [37] use a mix
of both ECN and RTT as the signal. More recently, HPCC [38]
leverages INT to obtain precise link load information. How-
ever, most of these solutions require at least one RTT to react
to congestion and usually take multiple rounds to converge
to the ideal rates. As a result, they are inefficient to provide
persistent low latency in high speed DCNs.

There are other DCN research efforts such as flow
scheduling (e.g., pFabric [19], PIAS [39], [40] and
TCN [41]), mixflow scheduling [42], coflow scheduling
(e.g., Aalo [43], CODA [44] and Stream [45]), multi-path
load balancing (e.g., CONGA [46] and Hermes [47]) and
works that combine a set of ideas (e.g., PASE [48] employs
distributed arbitration, in-network prioritization and TCP-like
end-host transport together). These designs either help to
reduce flow/coflow completion times, or strike for higher
network utilization with multiple path. However, none of them
targets at the first RTT problem focused by this paper.

We note that in broader contexts other than DCN, efforts
have also been made to enable fast flow start with large initial
rates of transport protocols. For example, in the context of
Internet, RC3 [20] proposed to use k levels of lower network
priorities to transmit a larger number of additional packets
during TCP’s slow start phase in order to compensate its over-
caution in window increase. However, it requires a large re-
sequence buffer, which may not be affordable for transport
in NIC hardware. In addition, the tail content of flow may
keep changing if application continuously copies data into
transport send buffer, making the design over-complicated.
In the context of system area networks, SRP [49] allows
senders to transmit speculative packets in the first RTT at lower
network priority before bandwidth reservation is granted.
Relative to Aeolus, both RC3 and SRP share the similar
motivation of better utilizing spare bandwidth in the first RTT
with prioritization. However, Aeolus differs from them in the
way of implementing the prioritization. By identifying the
problems of multiple priority queues as we discussed in §III-
B, Aecolus proposed a novel selective dropping scheme that
avoids these downsides by using only one queue.

VIII. CONCLUSION

This paper presented Aeolus, a readily deployable solution
focusing on “pre-credit” packet transmission as a building
block for all proactive transports. At the core of Aeolus,
it prioritizes scheduled packets over unscheduled packets so
that proactive transports can fully utilize spare bandwidth
while preserving their deterministic nature. Furthermore, Aeo-
lus introduces a novel selective dropping scheme which allows
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pre-credit new flows to burst at line-rate when there exists
spare bandwidth, but immediately drops them selectively once
the bandwidth is used up. In addition, Aeolus reuses the
preserved proactive transport as a means to recover dropped
first-RTT packets safely and efficiently. Aeolus is compatible
with all existing proactive solutions. We have implemented
an Aeolus prototype using DPDK and commodity switch
hardware, and evaluated it through small testbed experiments
and larger simulations. Both our implementation and eval-
uation results indicate that Aeolus is a promising substrate
strengthening all existing proactive transport solutions.
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