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Abstract
Remote Direct Memory Access (RDMA) has become a cornerstone

technology in modern datacenter networks due to its high through-

put and extremely low latency. However, recent works have re-

vealed that congestion arises in the "last mile" of the RDMA I/O

path—–between DRAM and CPU registers–—due to inefficiencies

in the memory hierarchy, where severe cache misses and mem-

ory bandwidth contention degrade performance. We identify the

root cause of this I/O congestion as the speed mismatch between

network ingress and CPU processing, which leads to data accumu-

lation and, eventually, last-level cache overflow. To address this,

we propose CARC, a credit-based rate control mechanism that dy-

namically aligns network ingress speed with CPU processing speed.

Our preliminary evaluation on eRPC over RDMA, a widely used

RPC framework, demonstrates that CARC effectively mitigates

I/O congestion, reducing flow completion time by up to 1.40× and

improving throughput by up to 1.35× compared to prior work.

CCS Concepts
• Software and its engineering→ Operating systems; • Net-
works→ Transport protocols; Data center networks.
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1 Introduction
Datacenter networks are undergoing a revolution in the post-Moore

era [12, 17]. While link throughput continues to scale to 100/200/

400Gbps, CPU processing power is growing at a significantly slower
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pace, leading to a bottleneck transition from in-network process-

ing (i.e., between switches and NICs) to the host I/O path (i.e.,

between NICs and CPUs) [7, 8, 13, 20, 37, 45]. To address this im-

balance, researchers have explored various approaches, including

NIC offloading [6, 31, 32, 34, 40] and efficient packet processing

techniques [5, 18, 25, 38, 39], to alleviate the computational burden

on CPUs.

Among these techniques, RDMA has emerged as the most widely

adopted solution for distributed systems, offering a fully offloaded

network stack and a high-performance I/O library [11, 24, 26, 27,

35, 49]. In the RDMA I/O path, received network packets are di-

rectly transferred to the application’s memory space, bypassing

the CPU. Thus, RDMA is commonly believed to ensure line-rate

performance. However, recent studies [14, 15, 43, 46, 47, 51] reveal

that severe congestion occurs in the "last mile" of the RDMA I/O

path—between the DRAM and CPU registers—due to the ineffi-

cient memory hierarchy where severe cache misses and memory

bandwidth contention occur. This leads to significant performance

degradation, a phenomenon referred to as I/O congestion.

HostCC [1] is the first approach to mitigate this issue by ex-

tending congestion control protocols with an intra-host congestion

signal—the Integrated I/O (IIO) buffer occupancy. Specifically, when

the memory controller becomes congested, it backpressures the IIO

buffer, leading to high occupancy. By monitoring IIO occupancy,

HostCC detects I/O congestion and propagates congestion signals

to the network, reducing queueing delays in the "last mile" and

lowering tail latency. However, as discussed in §2, HostCC fails

to eliminate I/O congestion entirely, as inefficiencies in the mem-

ory hierarchy persist. This is evidenced by a high cache miss rate,

indicating that memory access remains a critical bottleneck.

In this paper, we ask: What is the root cause of I/O congestion,
and how can it be addressed? To answer this, we analyze the micro-

behaviors of the memory hierarchy during the entire I/O congestion

process, and identify that the speed mismatch between network

ingress and CPU processing is the root cause of I/O congestion.

This mismatch causes I/O data to be frequently flushed to DRAM

before the CPU can process it, leading to inevitable cache misses

and reducing memory hierarchy efficiency. Furthermore, our ob-

servations reveal that narrowing this speed gap slows down the

flush process, and timely speed coordination ensures that the un-

processed data never exceeds the Last-Level Cache (LLC), providing

an opportunity to eliminate I/O congestion.

https://doi.org/10.1145/3735358.3735376
https://doi.org/10.1145/3735358.3735376
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Inspired by this observation, we propose CARC
1
, which lever-

ages a credit-based rate control mechanism to dynamically align

network ingress speed with CPU processing speed in the same

rhythm of change. To account for control inaccuracies caused by

variable round-trip times (RTT) and unpredictable application mem-

ory accesses, we further introduce loosened credits to provide addi-

tional tolerance. Our preliminary evaluation on eRPC over RDMA,

a widely used RPC framework, demonstrates that CARC effectively

reduces cache misses and mitigates I/O congestion, leading to up to

1.40× lower flow completion time (FCT) and 1.35× higher through-

put compared to HostCC. We summarize our contributions are:

• We model the root causes of I/O congestion and validate our

analysis through comprehensive experiments (§3).

• We design and implement CARC, a rate control system that coor-

dinates the receiver’s network ingress speed with CPU processing

speed to address I/O congestion (§4).

• Microbenchmark experiments demonstrate that CARC effectively

reduces I/O congestion while introducing negligible computa-

tional overhead (§5).

2 Background and Motivation
We begin with a brief introduction to the RDMA I/O path, fo-

cusing on why I/O congestion happens and its impact on perfor-

mance degradation. Then, we revisit the state-of-the-art solution,

HostCC [1], to highlight its limitations and explore potential opti-

mization opportunities.

RDMA I/O Path. Remote Direct Memory Access (RDMA) is a tech-

nology that enables direct memory access initiated by a remote end-

point over a network. The foundation of RDMA is the RDMA Net-

work Interface Card (RNIC), which integrates a full network stack

and manages local registered memory to handle remote memory

access requests (i.e., RDMA verbs) without involving the host CPU.

By bypassing the CPU, RDMA can achieve line-rate throughput and

ultra-low latency communication, making it a cornerstone technol-

ogy in modern datacenter applications [11, 16, 24, 25, 27, 35, 48–50].

As illustrated in Figure 1, an RDMA packet received by the RNIC

undergoes the following steps in the I/O path:

1○ The RNIC receives packets from the network, processes the

transport protocol to ensure reliable and ordered delivery, re-

assembles them into application data, and stores them in the

RX buffer.

2○ The RNIC fetches a Work Queue Element (WQE) from the WQE

cache or parses the incoming packet header to obtain the meta-

data. This metadata describes the RDMA operation, including

the verb type (e.g., read, write, send, receive), target memory ad-

dress, and data length. WQEs are pre-initialized during RDMA

connection setup.

3○ Based on the metadata, the RNIC initiates local Direct Memory

Access (DMA) operations through its DMA engine, encapsulat-

ing them as PCIe transactions. The application data is then writ-

ten to the destination memory address and temporarily buffered

1
CARC is short for Cache-Aware Rate Control.
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Figure 1: The RDMA I/O path in the receiver with DDIO
acceleration.
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Figure 2: Limitations of HostCC under varying connection
numbers, where the flow size is 7.9MB.

in the Last-Level Cache (LLC) via Data Direct I/O (DDIO) accel-

eration
2
[10, 29].

4○ The application asynchronously retrieves data from the LLC

and processes it based on user-defined logic. The completion of

data arrival is signaled via Completion Queue Elements (CQEs),

which the RNIC generates upon completing the DMA operation.

5○ After processing the received data, the application replenishes

WQEs in the Receive Queue (RQ) if needed.

I/O Congestion. Recent studies have shown that the above I/O

path may suffer from severe cache evictions due to the limited cache

capacity [1, 14, 15, 33, 43, 46, 47, 51], leading to low efficiency in the

memory hierarchy and queueing in RQs. Specifically, data stored in

the RQ fills up LLC in the order of arrival (Step 3). Once all cache

lines are occupied, newly received data will evict the earliest cached

entries to make room. More critically, cache evictions can occur

across different RQs when the memory addresses of buffers in sep-

arate queues map to the same cache set. These evictions introduce

significant performance degradation:

• Heavier CPU Burden. When an application accesses evicted data

from DRAM (e.g., for RPC processing), cache misses occur, leading

to additional memory access overhead. This increases CPU cycles

2
DDIO, first introduced in Intel Xeon E5 processors, enables network data to be written

directly to the LLC, bypassing the longer-latency DRAM access. Similar optimizations

have been adopted in AMD architectures [4] and further explored in research [19, 44].
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and hinders the expected packet processing rate. Furthermore, since

the application is responsible for replenishingWQEs in the RQ (Step

5), a slower replenishment rate delays subsequent DMA operations,

ultimately causing backpressure on network ingress (e.g., through

Priority Flow Control (PFC) [22]).

• Excessive Memory Bandwidth Consumption: Evicted data must

be reloaded from DRAM, effectively doubling memory bandwidth

consumption. Once memory bandwidth is saturated, the processing

rate of DMA operations degrades, further exacerbating backpres-

sure on network ingress.

In this paper, we refer to such processing rate degradation caused

by cache evictions as I/O Congestion, and we will deeply analyze

this phenomenon in the following sections.

HostCCand Its Limitations. To address I/O congestion, HostCC [1]

extends traditional congestion control protocols, such as DCTCP [3],

by incorporating I/O congestion signals. Specifically, HostCC moni-

tors the occupancy of the Integrated I/O (IIO) buffer, which reflects

the volume of in-flight data in the I/O path. When the buffer occu-

pancy exceeds a predefined threshold, HostCC generates a conges-

tion signal and propagates it via the network protocol, throttling

the network ingress rate to mitigate CPU workload and memory

bandwidth consumption.

However, HostCC operates in a reactive manner, meaning it

intervenes only after I/O congestion has already occurred. This

results in an inherent delay, during which the IIO buffer accumu-

lates excessive data before the rate control mechanism takes effect.

Consequently, cache misses become inevitable as illustrated in our

experiments of delopying HostCC to eRPC [25] (Figure 2). Exper-

iments show that as the degree of I/O congestion increases—e.g.,

by increasing the number of concurrent RDMA connections—the

per core throughputs of eRPC and HostCC-enhanced configuration

(HostCC+eRPC) both suffer from 1.62× and 1.52× performance

degradation, respectively. The performance improvement provided

by HostCC is limited and diminishes as congestion intensifies, even-

tually yielding no speedup under severe congestion.

These findings highlight the need for a deeper investigation into

cache behavior in the RDMA I/O path, which motivates us to model

I/O congestion more precisely and explore proactive optimization

strategies to address it.

3 Modeling I/O Congestion
In this section, we dive into the root reasons of cache misses in

network I/O with modeling (§3.1), and conduct experiments to

validate our analysis (§3.2).

3.1 Producer-Consumer Speed Mismatch
Dive into Cache Behavior. Figure 3 illustrates a simplified case

of cache replacement in network I/O, where the receiver reuses

8 buffers in RQ to receive messages sequentially and our cache

policy is basic LRU. Assume DDIO cache
3
(marked as dark) can

accommodate 2 buffers, while non-DDIO cache can accommodate

3 buffers for brevity. In step 1, incast messages are DMAed to pre-

posted buffers, duringwhichDDIO cache is flushed and finally holds

3
DDIO cache is part of LLC, typically two ways of LLC.
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6 7

1 RNIC DMA 8 msgs to DDIO cache 
• evicted #0-#5 in DDIO cache 

APP reads #0-#3 from DRAM
• evicted #6 in DDIO cache
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RNIC DMA 4 new msgs to #0-#3
• no eviction

3
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4
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Figure 3: A simplified cache replacement in I/O path.
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Figure 4: State transition diagram of I/O congestion.

buffers #6-#7. In step 2, application begins processing messages

and cache misses happen. Meanwhile, the retrieval of evicted data

would cause another eviction to part of useful data (i.e., #6). In step

3, newly incast messages (marked as blue) are written to the posted

buffers (i.e., #0-#3) without eviction since buffers are in LLC. In step

4, application continues reading remaining messages of last round

(i.e., #4-#7), which triggers cache misses and flushes the LLC again.

In this procedure, the reason of cache misses is the eviction of

useful data (i.e., the data has not be processed by application). The

types of data evictions are as follows:

• RNIC eviction: When RNIC receives a message while the destina-

tion address is not in LLC and the DDIO cache is full, old data will

be evicted from DDIO cache to make space for new payload. Step 1

is an example of this case.

• CPU eviction: When CPU reads a message while the message

buffer is not in LLC, CPU will evict data and fetch needed buffer

from DRAM. Step 2 and 4 are examples of this case.

Root Reason: Speed Mismatch. The I/O path can be viewed

as a producer-consumer model. We observe that both types of

evictions are attributed to speedmismatch between network ingress

(denoted as producer) 𝑣1 and CPU processing (denoted as consumer)

𝑣2. Mismatch of speeds leads to unconsumed data accumulation. In
step 1, when (𝑣1−𝑣2) ×𝑡 ≥ 𝐷𝐷𝐼𝑂_𝑆𝐼𝑍𝐸, unconsumed data exceeds

DDIO cache, thus evictions happen and useful data are flushed to

DRAM. Such mismatch and flushes continues until RQs are filled

up (i.e., all available WQEs have been exhausted, (𝑣1 − 𝑣2) × 𝑡 =

𝑅𝑄𝑠_𝑆𝐼𝑍𝐸 4
), then the producer and consumer speeds will achieve

a balance (Step 3) as the producer speed is bound by availableWQEs.

However, such match will not mitigate cache misses, as the queued
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Figure 5: eRPC throughput (thpt) and cache misses rate when changing CPU processing rate or network ingress rate. Bar is the
thpt and line is the cache misses rate. Dotted bars in (a) denotes theoretical thpt degradation.

unconsumed data size (i.e., 𝑅𝑄𝑠_𝑆𝐼𝑍𝐸) is larger than LLC size
4
and

will not reduce. The read of head unconsumed data always lead to

eviction of tail unconsumed data (Step 2 and 4).

We represent the data accumulation degree with four states in

Figure 4. S1 means the unconsumed data size is less than DDIO

cache size, where no cache misses happen; S2 represents the un-

consumed data size is larger than DDIO size but less than LLC size,

in which case, though cache misses happen due to RNIC eviction

in the beginning, after all buffers are read from LLC, cache misses

stop; S3 and S4 means the unconsumed data size is larger than LLC

size but limited by RQs’ size
4
, cache misses is 100% as the example

in Figure 3 shows. In S4 state, the speed match is achived by net-

work rate control (e.g., PFC, DCQCN, Receive not Ready(RnR) in

RoCE), which is delayed and conservative as they rely on signal or

timeout setting [22, 54]. Thus, producer’s average speed is far below

consumer speed as there exsits a latency between buffer post and

new message arrives, which give opportunities for CPU to consume

massive messages before new messages arrive. In this case, S4 can

transfer back to S1, S2 or S3, decided by 𝑣2 and stop time of sender

(i.e., timeout value or network RTT). Noticed that, though above

analysis is based on usages of WQEs (i.e., using double-sided verbs),

it can be seamlessly extended to signle-sided verbs by redefining

the RQs’size as the total buffer space registered by receivers.

Modeling I/O Congestion. The state transition diagram helps to

bridge the producer-consumer speeds (𝑣1 and 𝑣2) and performance

metric—cache miss rate. Specifically, cache miss rate is decided by

the mismatch gap (𝑣1 − 𝑣2). A smaller gap leads to more time spent

in earlier states (S1 and S2), resulting in fewer cache misses and

higher performance in RDMA I/O—A shorter duration in S1 and
S2 indicates more severe I/O congestion. Thus, the mismatch

gap is a good indicator to model the degree of I/O congestion. The

reason we do not use cache miss rate as an indicator is that such

metric is too sensitive to the cache policy, pre-fetching, application

access pattern, etc., whichmakes it difficult to reflect the root reason

of I/O congestion.

Note that modern CPUs adopt complex cache policies, including

optimized eviction algorithms [23, 42] and prefetching techniques.

However, our experiments in §3.2 and §5 show that these optimiza-

tions gain minimal improvement on addressing I/O congestion.

4
In our context, RQs’ size means the total buffer space pointed by WQEs of all RQs. For

example, if 16 RQs each have 4096 entries, and the buffer size is fixed at 1500 bytes,

the total RQs’ size is calculated as: RQs’ size = 16 × 4096 × 1500𝐵 = 94𝑀𝐵.

3.2 Validation of I/O Congestion Model
In this section, we validate our I/O congestion model by controlling

the speed mismatch gap and observing the cache miss rate and

throughput variations. To be more realistic, we deploy eRPC [25]

over RDMA, a popular high-performance RPC framework, to gen-

erate end-to-end workloads.

Experiment Setup: We deploy eRPC with hostCC on two servers

with 200Gbps network configurations, each equipped with two

Intel Xeon Silver 4309Y CPUs, one NVIDIA ConnectX-7 200GbE

NIC with PCIe 4.0×16 interconnection, and 512GB DDR4 3200MT/s

DIMMs connected to 8 memory channels.

Scenario 1: Reduce V2. In this case, we change the processing

time for each received message (i.e, ticks per message), which is

a common scenario in datacenter as different application behav-

iors have different processing times. When the processing time

increases, the consumer speed 𝑣2 defined in §3 decreases. We eval-

uate the end-to-end throughput for basic echo operations using 16

cores within a NUMA, where one server sends 256B requests to

another, which then reads payload, generates 256B responses back.

Results are shown in Figure 5(a)
5
, where throughput decreases by

up to 45% and read cache misses increases to over 30% with increas-

ing processing time. The results are consistent with our analysis

in §3. When processing is fast (𝑣1 ≤ 𝑣2), receiver remains in S1 with

nearly zero cache misses. When processing time increases (𝑣1 > 𝑣2),

receiver fluctuates between four states and the time portions spent

in different states are decided by mismatch degree of 𝑣1 and 𝑣2.

With smaller 𝑣2, more time is spent on posterior states, where cache

misses rate is high.

Scenario 2: Increase V1. In this scenario, we change the network

ingress rate of receiver, which is a common scenario in datacenter

as different flow sizes leads to different network ingress rates (i.e.,

long flows have higher throughput (Gbps)). When the network

ingress rate increases, the producer speed 𝑣1 defined in §3 increases.

We locate two types of flows on one sever, and the flow sizes are

7.9MB, 72B respectively, equipped with same 32B responses. We

use 8 cores to process messages of short flows, and assign different

number of cores (0-8 cores) to long flows, through which we can

increase 𝑣1 of receiver via increasing core number of long flows.

The results of short flows’ total throughput (Mpps) and long flows’

per core throughput (Gbps), are shown in Figure 5(b) and Figure 5(c)

respectively. In Figure 5(b), with the increase of core number of long

5
Ticks per message=0 means that application just reads payload once, then sends

response.
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flows, the throughput of short flows decreases by up to 60% with

surging read cache misses increases. This is because the ingress

data of long flows evict short flows’ data in LLC, which become

more severe with the increase of core number of long flows
6
. From

Figure 5(c), we can see that the long flows’ cache miss rates also

increase to more than 90% when introducing more cores, which

bounds the performance of long flows that per core throughput

decreases by up to 60%. Results of Figure 5(b)(c) are also in line with

our analysis in §3. With increasing 𝑣1, S1 can transfer to S4 quickly,

which leads the receiver keep staying in high cache misses state.

To summarize, the results in Figure 5 are consistent with our

analysis in §3.1 that the speed mismatch of producer and consumer

leads to states transitions and cache misses (i.e., From S1 to S4).

With more severe mismatch, cache misses become more serious,

resulting in greater performance degradation (i.e., Degeneration to

S4 is more frequent and faster).

Our Insight. Narrowing the gap between producer and consumer

speeds can slow down the state transfer. If we can identify the

current status of system and timely apply rate control (e.g., when

detecting status approaches S3, reduce 𝑣1 until it less than 𝑣2), it is

possible to avoid S3 and S4, thus eliminating I/O congestion.

4 CARC Design
In this paper, we propose CARC, aligning the producer’s speed with

the consumer’s rhythm as soon as possible to avoid I/O conges-

tion. We achieve this goal by adopting credit-based rate control

for speed coordination, with loosened credit adjustment to tolerate

coordination error due to RTT latency and I/O-unrelated memory

access. Figure 6 illustrates the overall workflow of CARC.

Credit-Based Rate Control. Typically, the consumer rate changes

frequently and is hard to predict, for example, in RPC, the process-

ing time of different requests varies significantly. Therefore, we

adopt a credit-based rate control to force the network ingress rate

(producer speed) to match receiver’s processing rate (consumer

speed), whatever the consumer rate changes to.

Specifically, CARC maintains a credit pool for each RDMA con-

nection, where each credit represents a cache line in receiver’s

LLC. When the sender sends an RDMA request, CARC first checks

the available credits and only posts the request to RNIC if credits

are enough. Otherwise, request is blocked until credits are replen-

ished. When the receiver finishes processing the data, it triggers

6
We also conducted experiment to show that the performance degration of short flows

is not caused by HoI problem as there is no queuing in NIC and using priority flow

control mechanism [22] has no improvement.
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Figure 7: Comparison between a system with only basic cred-
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CARC and returns corresponding credits. Noticed that, in order to

reduce synchronization overhead, when application’s communi-

cation mode is request-response, CARC will not explicitly return

credits as receiving response represents its request’s credits are re-

turned. Only when application’s communication mode is one-way,

CARC explicitly return credits to sender when finishing processing

data. Since the LLC on the receiver side is shared by all connections,

each sender’s credits are determined by the LLC size and number

of connections on the receiver side. We can calculate the number

of credits by Formula 1:

𝐶 =
𝑠𝑙𝑙𝑐

𝑠𝑙𝑖𝑛𝑒 × 𝑛
, (1)

where we denote cache line size as 𝑠𝑙𝑖𝑛𝑒 , LLC size as 𝑠𝑙𝑙𝑐 and con-

nection number as 𝑛. We define credits in the granularity of cache

line to accommodate packets with different sizes while considering

cache access granularity. Through this mechanism, unconsumed

data cannot exceed LLC size and receiver can stay in state S1 and

S2 with zero cache miss.

Loosened Credits. Such above case is built on the assumption that

the sender can receive the returned credits with zero latency, which
is not practical due to network latency. Specifically, when receiver

finishes processing existing data and returns credits, it needs to

wait for near RTT time for new data if client’s credits are exhausted

before, which leads to receiver’s CPU idle, as shown in Figure 7(a).

It is also worth noting that applications may have other memory

accesses unrelated to I/O (e.g., looking up tables in key-value stores),

which incurs unexpected I/O data eviction in S2 and may degrades

receiver to enter S3 or S4. To address above problems, we introduce

loosened value 𝛿 to original credits, formulated in Formula 2:

𝐶𝑙𝑜𝑜𝑠𝑒𝑛𝑒𝑑 =
𝑠𝑙𝑙𝑐

𝑠𝑙𝑖𝑛𝑒 × 𝑛
+ 𝛿. (2)

When CARC observes that the receiver’s CPUs are idle (i.e., it

is in state S1 with zero unconsumed data, waiting for messages ar-

rival), we increase 𝛿 to enlarge the sender’s credits and increase 𝑣1.

In this way, we enable the sender to have in-flight messages outside

LLC, providing a supplement to receiver to overlap RTT latency

of returning credits. Specifically, as shown in Figure 7(b), client is

allocated with extra loosened credits, whose value is decided by
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Figure 8: Throughput and cache misses rate of eRPC deployed with hostCC and
CARC when changing message processing speed or network ingress speed.

Flows Ratio with HostCC with CARC
P50 P99 P50 P99

8:2 3883 4025 2786 (↓1.4×) 2926 (↓1.4×)
8:4 4765 4865 3625 (↓1.3×) 3753 (↓1.3×)
8:6 5403 5556 4129 (↓1.3×) 4286 (↓1.3×)
8:8 5983 6275 4341 (↓1.4×) 5109 (↓1.2×)

Table 1: FCT (us) of long flows in eRPCwith
HostCC or CARC. Flows Ratio refers to the
ratio of CPU cores allocated to short flows
and long flows. The symbol ↓ indicates the
speedup factor.

receiver data processing rate multipling RTT time. Then, during the

interval of RTT time, data volume consumed by receiver is equal

to the loosened data volume, followed by receiving new round of

data using basic credits. Thus, total credits are always enough for

reciver to avoid CPU idle. Loosened credits value needs be updated

frequently to reflect the processing rate changes. To mitigate the

synchronization overhead of server sending back updated credits

to clients, CARC calculated updated value in clients through mea-

suring latency between request and response, which is consisted of

two parts: RTT and request processing time.

When CARC detects receiver’s status approaches S3 though

with bounded credits allocation, we infer that there are other I/O-

unrelated memory accesses occuring in the server. To address this,

we set a negative 𝛿 to limit the credits allocated to senders, thereby

adapting to the unknown intensive memory accesses. This reduces

𝑣1, curbing I/O ingress and rolling back the system status to S2.

5 Evaluation
We use the same experiment setup in §3 to evaluate the effective-

ness of CARC, and we report our results in Figure 8. We observe

the following results:

• In Figure 8(a), we vary the processing speed of receiver. Results

show that our credit-based rate control can adapt to the change of

consumer speed, and reduce the cache misses by up to 42% com-

pared to hostCC. Meanwhile, the throughput is increased and is

closer to the theoretical limit.

• In Figure 8(b), we vary the ingress rate of receiver through involv-

ing more long flows. Results of long flows show that after deploying

CARC, throughput is increased by up to 1.35× compared to baseline

and cache misses are reduced by 20%. FCT of long flows are pre-

sented in Table 1, which shows that CARC can reduce FCT by up to

1.4×. Cache misses cannot be reduced to zero because application

(i.e., eRPC) maintains another set of message buffers to assemble

large messages before processing, thus incurring memory copy and

dense memory access.

6 Discussion
Integrated with local I/O control. Beyond hostCC, several other

approaches can alleviate I/O congestion to some extent. For instance,

prior works such as [9, 21, 41] propose the use of shared ring buffers

between queues to reduce memory footprint. Additionally, [2, 52]

allocate more cache space for DDIO by adjusting LLC allocation

strategies or utilizing higher-level caches. We clarify that CARC

operates orthogonally to these approaches and serves a distinct role

in I/O optimization. Specifically, CARC and hostCC provide end-

to-end adaptation as enhancements to transport protocols, while

these new I/O architectures offer intra-host mechanisms to mitigate

memory pressure. These two approaches are complementary and

can be integrated to achieve enhanced performance.

Integrated with network congestion control. Network conges-

tion controls (NCC) adapted by RDMA [28, 30, 36, 53, 54] primarily

focus on the network congestion signals, such as queue occupancy

and packet loss, to regulate the sending rate. However, such signals

are unsuitable for I/O congestion control, as they do not accu-

rately capture the congestion of the host memory system. CARC

is designed to complement existing NCCs by specifically targeting

host I/O congestion. We currently implement CARC as an inde-

pendent module in RDMA userspace driver to provide flexibility

and extensively support for various RDMA transport protocols.

While promising, integrating CARC with existing NCCs presents

significant challenges. Such integration requires hardware modifica-

tions, as offloading transport layers is increasingly prevalent in the

RDMA community. Moreover, careful consideration of interactions

between the two congestion control systems is essential, along

with meticulous tuning of hyperparameters to prevent oscillatory

behavior. We leave the exploration of integration to future work.

7 Conclusion
RDMA-based systems experience severe I/O congestion. In this

paper, we model I/O congestion as a speed mismatch between

network ingress and CPU processing. To address this, we propose

CARC, which coordinates these speeds within the same rhythm of

change. Preliminary evaluations demonstrate that CARC effectively

mitigates I/O congestion and enhances the performance of RDMA-

based systems.
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