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Abstract

Object stores usually maintain the mapping of objects to data
servers’ disk volumes (referred to as volume metadata) in a
central directory, while storing the object data’s in-volume
offsets (referred to as offset metadata) together with the data
on data servers. Unfortunately, the separation between vol-
ume/offset metadata complicates the processing of an object
put: to ensure consistency, the multiple writes of the object’s
volume/offset metadata and object data have to be orches-
trated in a particular order, which severely lowers object I/O
performance. We propose a write-optimal structure called
MetaX that aggregates all metadata of a put, including both
volume and offset metadata as well as othermeta information
such as data checksum and temporary meta-log. Based on
MetaX, we design the Cheetah object store, which organizes
object storage into rich metadata storage (on meta servers)
and raw data storage (on data servers). Cheetah removes the
distributed ordering constraint on the multiple metadata/data
writes by enforcing local atomicity of writing MetaX, while
still ensuring consistency. Evaluation shows that Cheetah
significantly outperforms existing object stores.
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1 Introduction

Object stores provide a simple interface of put/get/delete
for applications to write/read/remove objects, but disallow
overwriting existing objects (i.e., immutability). As the price
of solid-state drives (SSDs) has dropped drastically [18, 19],
latency-sensitive applications that have small total latency
budgets (usually hundreds of milliseconds) store both meta-
data and data of their small objects (ranging from several
KBs to a few hundred KBs) on SSDs to allow fast access.

There are two categories of approaches for placing objects
onto disk volumes, namely, directory-based mapping [21, 37]
that is maintained by a central directory service, and hash-
based mapping [45, 49, 50] that is consistently calculated in
a decentralized manner. Commercial object stores with fast-
expanding business often prefer directory-based approaches
to hash-based ones, as these object stores require flexible
management likemigration-free expansion [47]. For instance,
Haystack [21] uses a directory to flexibly place objects onto
volumes; and Tectonic [42] supports file-based object storage
and explicitly controls the mapping of chunk files to volumes.
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Although widely used for read-dominant applications [1,
14], existing directory-based object stores [21, 37, 42] cannot
efficiently support write operations for small objects. This
is because they separately maintain the object-to-volume
mapping (i.e., volume metadata) on directory servers and the
in-volume file offset (i.e., offset metadata) on data servers,
which complicates the processing of object put: the volume
metadata and offset metadata are updated separately, and
(for crash consistency) the writes of volume/offset metadata
and data must be orchestrated in a particular order. The
distributed ordering constraint severely lowers object write
performance, which narrows the applicability of object.
We design a write-optimal structure called MetaX that

aggregates all metadata of an object put, including volume
metadata, offset metadata as well as other meta information
like data checksum and temporary meta-log. The goal of
metadata aggregation is for atomic access and update of the
metadata of each object, which enables us to remove the
distributed ordering constraint and ensure consistency by
enforcing local atomicity of writing the aggregated MetaX
structure. In contrast, traditional metadata disaggregation of
distributed filesystems (like ADLS [43], HopsFS [36], Tec-
tonic [42], and InfiniFS [2]) is mainly for scalability/efficiency
of metadata maintenance of the entire filesystem. For in-
stance, Tectonic disaggregates the filesystem metadata into
naming, file, and block layers each being maintained in a
separate sharded key-value (KV) store.

Based on MetaX, we design an efficient object store called
Cheetah, which organizes object storage into rich metadata
storage on meta servers and raw data storage on data servers.
Cheetah can write metadata (on meta servers) and object
data (on data servers) in parallel without distributed ordering,
and access all metadata of an object as a whole (on meta
servers) avoiding the overhead of separately accessing offset
metadata, which benefits object put/get/delete operations.

Metadata aggregation brings the following challenges.
First, as Cheetah aggregates all metadata into MetaX,

metadata storage of an ever-growing number of objects
requires either directory-based maintenance that lowers
lookup performance, or hash-based maintenance that causes
data migration after system expansion. To tackle this chal-
lenge, We extend CRUSH [50] to design a hybrid mapping
architecture. Each placement group (PG) has exactly one
corresponding volume group (VG), and objects in a PG can
be first mapped onto the PG’s meta server and then to the
volumes in the PG’s VG, realizing both migration-free expan-
sion of data storage and high scalability of metadata storage.

Second, parallel metadata and data writes of objects com-
plicate reliability/consistency guarantees. We carefully or-
ganize the MetaX structure into a set of KVs, and design
Cheetah’s replication and recovery mechanisms using a com-
bination of topology maps, leases, and view numbers [26, 39].
We prove that Cheetah guarantees reliability and consistency
(owing to object immutability) under various crashes.

Cheetah efficiently supports not only read-dominantwork-
loads [9, 14] but also write-dominant and read-write-hybrid
workloads [30] that frequently put/delete objects, thus ef-
fectively broadening the applicability of directory-based ob-
ject storage. We compare Cheetah to the state-of-the-art
directory based object stores (represented by Haystack [21])
as well as hash-based object stores (represented by Ceph
[38, 49]). Cheetah significantly improves the I/O performance
of small objects in both latency and throughput.

2 Background & Motivation

2.1 Object Placement

An object usually has a unique name, actual data, and option-
ally some attributes like times and locations. Object stores
place objects onto appropriate volumes either by adopt-
ing directory-based mapping or by using hash-based cal-
culation. Theoretically, hash-based methods (represented
by CRUSH [50]) have better performance, as they directly
calculate the target volumes without accessing directories.

However, CRUSH-like hash-based placement suffers from
data migration and performance degradation when expand-
ing the capacity, which is common for commercial systems
with fast-expanding business and ever-increasing storage
demand [47]. Although this problem can be temporarily miti-
gated by limiting the migration rate [49], all objects still have
to be eventually placed onto the calculated volumes, resulting
in an even longer period of performance degradation.
Other hash-based methods (like ring-hash [45]) not only

suffer from similar migration with more severe imbalance,
but also are unable to model the cluster hierarchy. MapX [47]
uses time-dimension mapping (from object creation times to
expansion times) for object-based block storage (Ceph-RBD
[8]) to avoid migration. But it cannot support object storage
due to the overwhelming per-object timestamp overhead.
In contrast, directory-based placement can easily real-

ize migration-free expansions by managing the object-to-
volume mapping, keeping existing objects unaffected after
expansions, and placing new objects onto new volumes. Fur-
ther, directory-based placement also allows flexible manage-
ment [21, 37] such as auditing and remapping.

2.2 Problem of Directory-Based Mapping

In directory-based object stores, a directory service main-
tains the mapping from objects to volumes (i.e., volume meta-
data, a.k.a. application metadata [21]). To reduce the per-
object metadata overhead suffered by small-file-based object
stores (like Swift [16] and S3 [5]) where each object is stored
as a small file, modern object stores [21, 37, 42] usually op-
timize storage organization by appending objects to large
volume files, which needs tomaintain the local mapping from
an object to its file offset (i.e., in-volume offset metadata).
The separation of the volume metadata (in directories)

and the offset metadata and actual data (on data servers)
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greatly complicates the processing of object write operations.
First, the volume metadata and offset metadata are written
separately. Second, the writes of volume/offset metadata
and/or data have to be orchestrated in a particular order
[24] (discussed in detail in the next subsection). This is to
ensure (i) the distributed volume and offset metadata to be
consistent (i.e., metadata consistency), and (ii) the metadata
to be consistent with its data (i.e., data consistency).

Separate metadata writes severely affects the performance
of object put and delete. For instance, object delete opera-
tions in Haystack [21] and Tectonic [42] include several steps:
(i) accessing the directory to query the volume metadata, (ii)
accessing data servers to update relevant offset metadata,
and (iii) accessing the directory again to update the volume
metadata. Further, Haystack optimizes the processing of ob-
ject put by having its data servers synchronously update the
offset metadata in an in-memory KV and asynchronously
checkpoint the in-memory KV to an on-disk index file. Al-
though being effective for read-intensive workloads, this
optimization is not suitable for write-intensive workloads,
where asynchronous checkpointing will cause the persistent
index file severely lagged behind the in-memory KV and
make failure recovery difficult or even impossible.

2.3 Distributed Write Ordering

In the event of a crash, it is critical to reason about which
piece of data/metadata was already persisted and which was
not, for taking corrective recovery measures accordingly.
Crash consistency requires distributed ordering for writing
the volume metadata in directories and the offset metadata
and data on data servers. Such distributed ordering intro-
duces waits into the critical path of put/delete, and thus
lowers I/O performance especially for small objects that have
relatively-low overhead in writing objects’ actual data.

We briefly discuss the inefficiency of distributed write or-
dering by taking Haystack [21] as a representative, which
maintains the volumemetadata in a directory service and the
offset metadata (together with data) on data servers. Other
directory-based object stores like Tectonic [42] have similar
designs of separate metadata storage. Haystack includes (i) a
directory service served by meta servers, (ii) a data server
cluster, and (iii) individual clients each using a proxy as a por-
tal to interact with meta/data servers. For clarity, we assume
one-way replication where each object has only one replica
so that it can prevent data loss from temporary crashes but
not from permanent disk failures or machine crashes. Object
attributes (such as times/locations) are viewed as object data.

Objects are immutable, i.e., an object is written only once
and never overwritten [21]. Once an object has been deleted,
a new immutable object with the same name may be cre-
ated again. This simplifies the ordering constraint between
multiple put requests, because a later put will not overwrite
an existing object, allowing our discussion to focus on the
ordering of the multiple writes of an individual put.

Client proxy 
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Meta server
(M)

Data server 
(D)

ObjName, size
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Ml
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Mv, ObjData 

Ack

Put(ObjName, ObjData)

ObjData 
& Mo

tC

tM

tD

(1)

(2)
(3)

(4) (5)
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Figure 1. Distributed write ordering for crash consistency:
write-ahead meta-log (M𝑙 ) on 𝐶 → volume metadata (M𝑣)
on𝑀 → object data & offset metadata (M𝑜 ) on 𝐷 .

Considering possible crashes of client proxies (issuing
the put), meta servers (storing volume metadata) and data
servers (storing offset metadata and data), the basic process-
ing of put in Haystack is shown in Fig. 1, where we enforce
distributed ordering for metadata and data consistency [24].
(1) After receiving a put, the client proxy 𝐶 persists the

write-ahead meta-log (M𝑙 ) including the object name, se-
lected directory meta server (𝑀), and data checksum (𝑐).
(2) 𝐶 sends the object name and size to𝑀 .
(3) The directory meta server 𝑀 chooses a volume and

map the object to it, and persists the mapping information
(i.e., volume metadata denoted as M𝑣).

(4)𝑀 returns M𝑣 to 𝐶 after persistence. Note that𝑀 can-
not returnM𝑣 before it is persisted. Otherwise, data server
(𝐷) might receiveM𝑣 and data too early: if the data is suc-
cessfully persisted on 𝐷 and both 𝐶 and𝑀 fail before M𝑣 is
persisted, then the persisted data will become orphan.

(5) 𝐶 sends object data andM𝑣 to the data server 𝐷 .
(6) The data server 𝐷 allocates space for received object

data at the end of the volume file (specified by M𝑣), and
persists the data and the allocation (i.e., offset metadataM𝑜 ).

(7) 𝐷 returns to proxy𝐶 . At this point, the meta-log of the
client proxy 𝐶 can be cleaned, and the put is committed.
The sequence of disk writes (each being denoted as a “ ↶”

in Fig. 1) takes place in the following order:M𝑙 on𝐶 →M𝑣

on 𝑀 → object data & M𝑜 on 𝐷 , where → represents the
distributed ordering relationship. Note that the ordering of
local writes (of data and M𝑜 ) on 𝐷 has been well studied
[23, 24] thus being omitted here.

Consider a power failure that possibly takes place at any
time 𝑡 disabling any servers. The first→ enables 𝐶 to track
uncommitted put requests: if a failure happens at 𝑡 > 𝑡𝐶 ,
then 𝐶 can check whether a put in M𝑙 is finished by first
querying𝑀 with 𝑛𝑎𝑚𝑒 and then querying 𝐷 withM𝑣 . The
second → ensures that persisted data on 𝐷 will not become
orphan due to a failure at time 𝑡 > 𝑡𝐷 because 𝑡𝐷 > 𝑡𝑀 .
M𝑣 can be safely written on 𝑀 without worrying that a
failure at 𝑡𝑀 < 𝑡 < 𝑡𝐷 can both fail the current put and
invalidate the metadata of an existing object with the same
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Figure 2. Parallel writes (without ordering) of aggregated
MetaX (=M𝑙 +M𝑣 +M𝑜 ) on𝑀 and object data on 𝐷 .

𝑛𝑎𝑚𝑒 , as Facebook’s upper-layer applications (e.g., photo
uploader) ensure object immutability. Note that an optional
optimization [20] is that themeta server𝑀 sends and persists
volume metadata M𝑣 in parallel, and the logging on 𝐶 of
step (1) can be postponed until receivingM𝑣 . Then, 𝐶 logs
M𝑣 ,𝑀 , and the checksum (𝑐), which allows for removing the
ordering of writes on𝑀 and 𝐷 . However, this optimization
still has ordering constraint for the writes on 𝐶 and 𝑀/𝐷 ,
thus suffering similar problem as the original Haystack.

3 Metadata Aggregation with MetaX

3.1 Rich Meta Service

We extend the traditional thin directory service (on directory
meta server 𝑀 in Fig. 1) to the rich meta service (on meta
server𝑀 in Fig. 2). Accordingly, the client proxy performs
as a portal for forwarding requests and returning results;
and the data servers provide raw data service that is ag-
nostic to the objects and simply reads/writes specified data
blocks. Note that this agnosticism will not affect the internal
management of SSD’s flash translation layer (FTL), e.g., for
avoiding wear and reducing fragmentation.
The meta service is responsible for maintaining (i) the

mapping of objects to volumes, (volume metadata M𝑣), (ii)
the mapping of objects to in-volume blocks (offset metadata
M𝑜 ) with data checksum (𝑐), and (iii) the meta-log (M𝑙 )
including object name, client proxy (𝐶), etc. We refer to all
meta information of a put (M𝑣 ,M𝑜 ,M𝑙 ) as MetaX.

3.2 Consistency without Distributed Ordering

As MetaX integrates all pieces of metadata/meta-log of a
put and eliminates possibilities of inconsistency between
them, the writes of MetaX on meta servers and object data
on data servers can be processed in parallel without ordering,
as depicted in Fig. 2 (where we assume one-way replication).
(1) The client proxy 𝐶 sends the object name, size and

checksum (𝑐) to a selected meta server𝑀 .
(2)Meta server𝑀 allocates the volume (M𝑣) and in-volume

available blocks (M𝑜 ), and sendsM𝑣 and M𝑜 to 𝐶 .
(3) Meanwhile,𝑀 also persists MetaX (= M𝑣 +M𝑜 +M𝑙 )

in parallel. Note that the meta-log (M𝑙 ) is part of MetaX.
(4) 𝐶 sends the object data with the allocation result (M𝑣

andM𝑜 ) to the corresponding data server 𝐷 .
(5) 𝐷 persists the raw data according toM𝑣 andM𝑜 .

(6) After persistence, 𝐷 returns ack (with checksum) to 𝐶 .
(7)𝑀 also returns ack to 𝐶 after persistence of MetaX.
Note that in Step (3) of Fig. 1, the client persists a write-

ahead meta-log to enable the client to handle uncommitted
put. In contrast, in Fig. 2 we can rely on the meta server to
handle it, as we have aggregated all metadata into MetaX.
Here we take one-way replication and only consider tempo-
rary crashes from which the meta server can always recover.
Only if both 𝑀 and 𝐷 correctly return to 𝐶 , is the put

request committed. Otherwise, e.g., if𝑀 crashes before per-
sisting MetaX, the put is uncommitted and the problem will
be addressed (§5). The atomicity of MetaX simplifies con-
sistency and removes the ordering requirement for the two
separate writes (MetaX on𝑀 and object data on 𝐷). See §5.3
for a thorough analysis of consistency guarantees, where
a manager maintains the topology map and the failures of
meta/data/proxy servers can be (consistently) known.
The parallel processing in Fig. 2 leverages immutability

to avoid overwrite-caused inconsistency. Note that parallel
processing might cause inconsistency without the promise
of immutability. For instance, if both client proxy𝐶 and data
server 𝐷 crash at time 𝑡𝑀 < 𝑡 < 𝑡𝐷 , then an existing object
with the same name as the ongoing-put object will lose its
metadata, becauseMetaX has been persisted on𝑀 but object
data is not yet on 𝐷 . In practice, the maintenance of MetaX
is more complex than in the simplified scenario (Fig. 2), in
that Cheetah must not only achieve high I/O performance,
but also provide high reliability/scalability/availability (§4).

4 Cheetah Object Store

4.1 Architecture

Cheetah consists of a manager cluster, a data server cluster,
and a meta server cluster. Each client has a client proxy.
Manager cluster contains an odd number of manager

server processes jointly running Raft [41] as one reliable cen-
tral system manager, which maintains a consistent topology
map and periodically updates the topology as well as other
global information to other servers, as detailed in §5.1.
Data server cluster consists of data storage machines

installing disks divided into physical volumes each with one
data server process to provide raw data storage service.

Meta server cluster consists of meta storage machines in-
stalling disks and running meta server processes to maintain
the MetaX structure and provide rich meta service.
Client proxy (as a portal) provides an interface of put,

get, and delete. Client proxies are not replicated.
Cheetah adopts 𝑛-way replication (storing 𝑛 replicas) for

durability of both data and metadata, but the replicas for
data and for metadata are organized in different ways. (i)
For data storage, Cheetah first divides a disk into physical
volumes (e.g., a one-TB disk can be divided into ten 100-GB
physical volumes), and then groups physical volumes into
logical volumes [21]. A logical volume (Fig. 3) consists of 𝑛
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physical volumeswhich store exactly the same raw data. This
allows a disk’s physical volumes to be replicated to many
other disks for parallel failure recovery. (ii) For metadata,
Cheetah adopts CRUSH for organization and replication.

4.2 Hybrid Mapping

The MetaX structure aggregates all metadata, which in-
creases the overhead of the meta service thus introducing
scalability challenges. Not only the data server cluster but
also the meta server cluster needs expansion to satisfy the
rapidly-growing storage demand. It would be inefficient to
rely on an extra “metadata directory”, which introduces an-
other level of indirection, to maintain the mapping from
objects to meta servers. Therefore, we propose to adopt the
hash-based CRUSH algorithm [50] to directly calculate the
𝑛 target meta servers for each given object. CRUSH models
the cluster topology as a logical tree and introduces place-
ment groups (PGs) to facilitate the object-to-server mapping:
an object is first mapped to a PG by calculating PGID =
Hash(name) mod (number of PGs); and then a PG is mapped
to its corresponding servers by following specific selection
rules top-down in the tree. As shown in Fig. 3, we adopt
CRUSH to (i) organize objects into placement groups (PGs)
and (ii) map each PG to one primary and 𝑛 − 1 backup meta
servers. Primary meta servers are responsible to allocate not
only logical volumes but also in-volume space for object data.
It is common for two PGs with the same primary meta server
to have different backup meta servers, and vice versa.
Applying CRUSH to calculate meta servers inevitably

causes metadata migration when expanding the meta server
cluster, which is acceptable for Cheetah as the size of meta-
data is orders of magnitude smaller than that of data. What is
important is to prevent the expansion of meta server cluster
from causing migration of object data. Counterintuitively, it
is nontrivial to achieve this. When adding/removing meta
servers, PGs (together with objects’ metadata) will be moved
to the re-calculated meta servers. This requires each PG to
have its own group of logical volumes exclusively managed
by the PG’s primary meta server. Otherwise, suppose that
two PGs have a common logical volume (vol0) managed by
a primary meta server. After expansion, the two PGs might
be “CRUSHed” to two different primary meta servers both of
which manage vol0, making it difficult to ensure consistency.

To address this problem, we organize the logical volumes
into volume groups (VGs), each corresponding to one PG.
The system manager maintains the membership of logical
volumes in VGs and periodically updates the information
(as part of the system topology map) to all servers. Fig. 3
illustrates the mapping procedure from objects to in-volume
blocks. Objects are organized into PGs which are “CRUSHed”
to meta servers via calculation.When an object of a PG is put
to Cheetah, the calculated primary meta server first selects a
logical volume from the PG’s VG, and then allocates available
blocks in the logical volume for the object data.

VG0

…… …………

vol

VG1

Meta 
server0

CRUSH

vol

vol

VG2

PG0

vol

: Logical volume (representing n physical volumes). 

: Placement Group (PG). 

vol

vol

vol

vol

…

…

VGk

Meta 
server1

: Map PGs to meta servers by CRUSH.

: Allocate volumes/blocks to objects by meta servers.

PG1 PG2

: Vol Group (VG). 

…

PGk

…
Meta 

serverm

……

Allocate

Figure 3. A PG is “CRUSHed” onto a (primary) meta server
𝑀 , which assigns each object in the PG with a logical volume
(from the PG’s VG managed by𝑀) and in-volume blocks.

The introduction of VGs avoids object data migration after
expansions. If the data server cluster expands, the manager
servers will add the new logical volumes to the existing VGs
allowing new objects to be assigned to new volumes; if the
meta server cluster expands, some PGs might be remapped
to the new meta servers (by CRUSH) while the PGs’ corre-
sponding VGs will also be managed by the new meta servers
without data migration, as neither the mapping from objects
to PGs nor the membership of volumes in VGs has changed.

4.3 Object Storage

4.3.1 Parallel metadata & Data Writes for Object Put.

A put request includes the object name N and data D. As
shown in Pseudocode 1 and Fig. 4 where both meta and data
servers take 𝑛-way replication, Cheetah processes put by
extending the basic procedure of parallel writes of Fig. 2.
Failures will be handled through a recovery process (§5.3).
(1) Line 2. The client proxy (𝐶) calculates the primary

meta server (𝑀1) of the object’s PG via CRUSH. 𝐶 also com-
putes the data checksum and generates a unique request ID
(reqid). Then 𝐶 sends the object name N , size, checksum (𝑐),
and reqid to the primary meta server (𝑀1).
(2) Lines 3∼4. The primary meta server (𝑀1) takes the

following two substeps after receiving the request.
(i) 𝑀1 selects a logical volume (ID = lvid) from the PG’s

VG (i.e., volume metadataM𝑣 = lvid). It then allocates raw
blocks on the selected volume for storing object data using
a bitmap-based allocator [6]. The result is recorded as a list
of extents (i.e., offset metadata M𝑜 = extents) of the blocks.
(ii) The MetaX structure (§3.1) consists of volume meta-

dataM𝑣 , offsetmetadataM𝑜 , andmeta-log (M𝑙 ) that records
the name, client proxy, and checksum. Furthermore, since
metadata is replicated at the granularity of PGs (§4.2), we also
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Pseudocode 1 Parallel metadata and data writes for Put
1: procedure Put(ObjName N , Data D, ClientProxy 𝐶)

⊲ Meta servers𝑀1, 𝑀2, 𝑀3 = CRUSH(PGID of N )
2: 𝐶 sends N , object size, checksum, reqid to𝑀1
3: 𝑀1 allocates volume (M𝑣) and in-volume space (M𝑜 )

for object N and returns M𝑣 andM𝑜 to 𝐶
⊲ Lines 4∼6 and Lines 7∼9 are performed in parallel

4: 𝑀1 sends MetaX to𝑀2,𝑀3 and persists MetaX
5: 𝑀2 and𝑀3 persist MetaX and return to𝑀1
6: 𝑀1 returns to 𝐶 and makes object N pending
7: 𝐶 sends (D, M𝑣 , M𝑜 ) to data servers 𝐷1, 𝐷2, 𝐷3
8: 𝐷1, 𝐷2, 𝐷3 write D to disks specified by M𝑣 , M𝑜

9: 𝐷1, 𝐷2, 𝐷3 return to 𝐶 and 𝐶 acks (i.e., committed)
10: 𝐶 notifies𝑀1 that object N committed
11: end procedure

log the PG in M𝑙 for meta server crash recovery (discussed
in §5.2).𝑀1 performs the following operations in parallel:

(a) returning M𝑣 , M𝑜 to 𝐶;
(b) sending MetaX to backup meta servers (𝑀2, 𝑀3);
(c) locally persisting MetaX.
(3) Lines 5∼6.𝑀2 and𝑀3 persist the received MetaX and

return acks to𝑀1. After persisting MetaX and receiving all
acks,𝑀1 returns ack to𝐶 to confirm successes of persistence
on all meta servers. Then, it makes object N pending (i.e.,
invisible until the put is committed), for avoiding inconsis-
tency of two get requests (discussed later in Step (6)).

(4) Line 7. 𝐶 looks for the logical volume (with ID = lvid)
in its local topology map, and sends the write request (object
data D, M𝑣 , and M𝑜 ) to the responsible data servers (𝐷1 ∼
𝐷3) of the three physical volumes of the logical volume.
(5) Lines 8∼9. 𝐷1 ∼ 𝐷3 persist object data to the blocks

(M𝑜 = extents) on the physical volumes of the logical volume
(M𝑣 = lvid), and return acks to 𝐶 . After receiving acks from
both 𝑀1 and 𝐷1 ∼ 𝐷3, 𝐶 acknowledges Success. At this
point the put request is said to be committed.

(6) Line 10.𝐶 notifies𝑀1 the commitment and𝑀1 makes
object N visible to serve get requests for N .
𝑀1 cannot serve get requests for N before𝑀1 is notified.

For instance, consider a put followed by two get. For the put,
assuming Cheetah has succeeded in updating meta servers
but has not yet completed data writes to all data servers. In
this case, the put is not committed and 𝑀1 has to make N
pending. Otherwise, it is possible that the first get reads the
finished data server and succeeds, while the second reads
the unfinished server and fails causing inconsistency. A fire-
and-forget notification is enough, as the meta server𝑀 will
periodically check uncommitted meta-logs. If𝑀 encounters
a pending get, it will wait. If𝑀 fails with pending meta-logs,
after recovery each pending meta-log will be checked. There
is no pending in Fig. 2, as it assumes one-way replication.
There is no distributed ordering for the writes in Steps

(2)ii(c), (3), and (5) in Fig. 4, which are performed in parallel

(2)

(1)

Parallel disk writes

Backup meta 
server (M2)

Backup meta 
server (M3)

Primary meta 
server (M1)

(2)

(3) (5)
Put Ack

Client proxy 
(C)

(2) (4)

Data server (D1)

Data server (D2)

Data server (D3)

Figure 4. Object put of Cheetah (taking 3-way replication
for both meta and data servers). Meta data writes (2)(3) and
data writes (4)(5) execute in parallel.

on the 𝑛 meta servers and 𝑛 data servers. §5 will discuss
how Cheetah ensures consistency with local write atomic-
ity of MetaX on meta servers. For efficiency, 𝑀1 does not
immediately clean the meta-log (M𝑙 ) of the put. Instead,
it periodically cleans the committed meta-logs, checks the
uncommitted meta-logs and revokes failed writes (§5.3).

Also note that although immutability disallows overwrites,
an object can be updated by deleting it and then putting a
new one with the same name [21]. An update is equal to an
overwrite only if the delete and put can be done atomically.

4.3.2 Object Get. A get request is processed as follows.
(1) The client proxy (𝐶) calculates the primary meta server

(𝑀1) for object name N via CRUSH, and queries𝑀1.
(2)𝑀1 searches locally for N and retrieves the metadata

(M𝑣 = lvid, M𝑜 = extents, and checksum 𝑐). If N is pending,
𝑀1 will check the𝑛 data servers whether the data of objectN
has been persisted on them, which has not yet been notified
to𝑀1 because the client proxy𝐶 may fail after Line 9 in Pseu-
docode 1. If so,𝑀1 will try to contact that suspicious client
proxy and start recovery if necessary (see §5.3). Otherwise,
𝑀1 returns lvid, extents and 𝑐 to 𝐶 .

(3)𝐶 looks up the logical volume (with ID = lvid) in its local
topology map, and then sends a read request with metadata
(M𝑣 = lvid,M𝑜 = extents) to the data server of one of the 𝑛
physical volumes of the logical volume.
(4) The data server reads the blocks (M𝑜 = extents) from

the logical volume (M𝑣 = lvid), and returns the data to 𝐶 .
(5) 𝐶 verifies the data and (if correct) returns.

4.3.3 Object Delete. Traditional object storage systems
either append objects to large files (e.g., in Tectonic and
Haystack), or allocate each object with a small file (e.g., in
Swift [16] and MinIO [15]), neither of which is satisfactory
for object put/delete performance because their disk space
management causes high metadata overhead.

From the perspective of delete, appending objects to files
is a lightweight approach for data servers as a delete is sim-
ply setting a flag in the offset metadata, but doing so still
requires compaction [21] where the space of deleted objects
is reclaimed by moving the remaining objects to new files.
Unfortunately, similar to expansion-caused data migration
in hash-based object storage [47], compaction essentially
causes I/O amplification thus lowing the overall I/O perfor-
mance even being conducted in the background. Compaction
is only appropriate for workloads with daily idle windows.
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In contrast, one-file-per-object allocation needs no com-
paction, but it is costly in processing normal object I/O re-
quests because of nontrivial filesystem overhead.

Owing to MetaX, Cheetah’s data servers are object agnos-
tic and provide ultralight data service where raw data blocks
can be directly accessed without intermediate file abstrac-
tion. This allows Cheetah to (i) process delete by simply
updating metadata on meta servers and (ii) largely reduce
compaction. A delete request is processed as follows.

(1) The client proxy (𝐶) gets the primary meta server (𝑀1)
for object name via CRUSH, and sends delete to𝑀1.

(2)𝑀1 looks up the MetaX record (= M𝑣 +M𝑜 +M𝑙 ) for
object nameN in its local storage.𝑀1 then deletes the record,
and updates/flushes the bitmap (used by the space allocator)
of the logical volume (specified by M𝑣 = lvid) by clearing
the bits (specified by M𝑜 = extents). Meanwhile, delete is
also sent to the backup meta servers and processed similarly.

(3) After receiving acks from all backup meta servers,𝑀1
returns to 𝐶 , which finally acknowledges the delete.

Compared to file-append allocation of Tectonic/Haystack,
Cheetah’s raw-block-based allocation not only saves process-
ing on data servers but also allows immediate reuse of the
reclaimed space once the corresponding bits of the deleted
object data are updated in the bitmap. Neither Tectonic nor
Haystack can simply adopt Cheetah’s immediate reclama-
tion, because they manage the disk space using chunk files
[21, 42] and thus the filesystem overhead of reclamation can
severely affect normal I/O performance.

For new objects, the relatively-small object sizes allow us
to find appropriate reclaimed blocks with marginal fragmen-
tation, rather than allocating new blocks. Therefore, Cheetah
is particularly suitable for write-intensive workloads that
frequently perform (unpredictable) put/delete operations
and have no daily idle windows for compaction. Note that
Cheetah can also resort to Haystack-style compaction if the
overall fragmentation is high, which is rare in practice (§6.4).

5 Recovery

5.1 Overview

A manager cluster, which consists of an odd number of
servers jointly running Raft as a reliable system manager, is
responsible for managing a global topologymap, so that Chee-
tah can use 𝑛-way replication (storing metadata/data on 𝑛

meta/data servers) to tolerate 𝑛−1 simultaneous meta server
crashes and 𝑛 − 1 simultaneous data server crashes while
ensuring availability, with partial synchrony assumption due
to FLP impossibility [25]. The topology map maintains (i) the
information of data/meta servers and (ii) the logical volumes
of each PG’s VG as well as the logical-to-physical volumes
mapping. The manager also maintains (iii) the view numbers
[39] and (iv) the leases [27].
Servers and client proxies must share the same topology

map. To this end, the system manager maintains a view

number which is incremented every time the topology map
changes. The view number is disseminated to all servers and
client proxies, and will be piggybacked with every request
to reach a consensus about the current topology map. A
request can be processed only if the server has a matching
view number. The lagged-behind server will update its view
number and topology map coordinated by the manager.
If the manager cannot collect heartbeats [29] from any

meta/data server timely, it starts updating the topology, re-
moving the problematic meta servers, and replacing the prob-
lematic data servers with new ones of healthy physical vol-
umes within the same VG. The manager will increase the
view number by one and disseminate the new map with the
view number. It will ask the existing or new primary meta
server𝑀 ′ to coordinate the rest procedure for recovery.𝑀 ′

will contact a remaining meta server (which might be itself)
and a remaining data server (of view 𝑖) for data transferring.
Primary meta servers are key to consistency guarantees,

being responsible for maintaining the latest states of objects,
recovering lost data andmetadata, and processing unfinished
requests. To avoid inconsistent metadata when the PGs’ pri-
mary meta servers change, each time a new meta server is
selected, the view number is also updated. The same rule
applies when a crashed meta server re-joins the system.
Lease. Cheetah uses leases [22, 27, 34] for topology map
maintenance and consistency guarantees. The lease time is
the length of time during which the topology map will not
change. It also serves as an optimization for get request,
allowing a get request to be processed by the primary meta
server and any one of the𝑛 data servers. Themanager renews
the lease periodically, and a meta server will not answer
requests if its local lease has expired. When the topology
map is updated, it will become effective with the next lease.
Without leases, it is possible that a client proxy 𝐶 tem-

porarily has a stale view number and accepts the metadata
(for a get) from an outdated meta server, which causes in-
consistency. The consistency of delete is ensured similarly.
Assuming an ongoing delete is launched in the current view
and the meta server crashes after executing it. If the delete
is committed in the current view by a client proxy𝐶 then the
delete is done; otherwise 𝐶 will re-issue the delete after
topology update because the view numbers mismatch.

The manager does not wait for everyone’s lease to expire,
but just renews the lease periodically (before it expires). A
new topology map, together with its view number, is enabled
with each renewal. Upon a failure, only the failed server stops,
and none of the healthy servers will be affected.

5.2 Maintaining MetaX in KV Store

Cheetah adopts a KV store (Table 1) as the local storage of
meta servers for efficient MetaX maintenance and query.

First, meta servers need to quickly retrieve the metadata of
given objects for efficient get/delete. Therefore, the first KV
is designed to store the metadata, with key = OBMETA_name
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Table 1. MetaX KVs.

Key Value

OBMETA_name lvid, extents, checksum
PGLOG_pgid_opseq name, pxlogkey
PXLOG_pxid_reqid name, pglogkey

and value = {lvid, extents, checksum}. In the key, OBMETA is
a prefix for “object metadata” (for prefix matching queries),
and name is the unique name of the object. The value in-
cludes the ID of the allocated logical volume (M𝑣 = lvid), the
allocated in-volume blocks (M𝑜 = extents), and the object
data’s checksum (received from the client proxy).

Second, to handle a meta server (𝑀) crash, for each PG on
𝑀 , themetadata of all ongoing put of the PGmust be restored
by the PG’s remaining meta servers, which requires record-
ing the PGs (as meta-log). The second KV logs the PG infor-
mation of the put request, with key = PGLOG_pgid_opseq
and value = {name, pxlogkey}. In the key, PGLOG stands
for “PG log”, pgid is the PG’s ID (= Hash(name) mod num-
ber of PGs), and opseq is a sequence number monotonically
increased for every put in the PG. The value includes the
name of the object (name), and the key of the client proxy
log (pxlogkey = PXLOG_pxid_reqid) introduced below.

Third, to handle a client proxy (𝐶) crash, the meta servers
need to find 𝐶’s ongoing put to retrieve relevant metadata,
which requires recording 𝐶 (as meta-log). The third KV logs
the client proxy (𝐶), with key = PXLOG_pxid_reqid and value
= {name, pglogkey}. In the key, PXLOG stands for “proxy log”,
pxid is the proxy ID, and reqid is the request ID generated by
𝐶 . The value includes the unique name of the object (name),
and the key of the PG log (pglogkey = PGLOG_pgid_opseq).
The metadata and meta-log of MetaX are maintained in

the three KV pairs shown in Table 1, and updated/accessed
for object put/get/delete (§4.3). For each put, The three
KVs need to be atomically written, which is well supported
by modern KV stores like RocksDB [3] and Badger [13].

In addition, Cheetah maintains an in-memory bitmap for
each logical volume, where one bit represents the status of a
block to facilitate the selection of volumes in the VG and the
allocation of blocks. Each time when the VG’s corresponding
PG logs are cleaned, the in-memory bitmap is synchronized
with its on-disk version by accumulating the new allocations
(i.e., extents in the first KV) since last synchronization.

5.3 Crash Detection and Recovery

The atomicity of MetaX precludes inconsistency between
different parts of metadata, thus simplifying crash recovery.
Detection.Cheetah detects server crashes in twoways. First,
client proxies will notice a potential server crash (if the server
fails to respond) and report it to the manager. Second, the
manager uses servers’ heartbeats to detect potential failures.
If a server does not respond for a period of time, it will initiate
the recovery process by removing that server, updating the

topology map, and disseminating the new map after the
current lease expires. In addition, the primary meta server
will notice a client proxy crash when processing a get for a
pending object (§4.3.2) previously put by the client.
Meta server crash. If a meta server𝑀 becomes unavailable,
Cheetah will wait for a short period of time and expect𝑀 to
recover, marking the affected PGs as readonly. If𝑀 cannot
recover in time, then the manager will consider𝑀 crashed
and update the topologymapwith an increased view number.
For each affected PG, based on CRUSH a newmeta server will
be calculated and one of the 𝑛 meta servers will be primary.
The new primary meta server cannot process any requests
until the new view is synchronized to all meta servers of the
PG and the data servers of the PG’s VG.
A special case is that the primary meta server crashes

when it is processing an ongoing put. To handle this, after
the recovery completes the client proxy will resend each
uncommitted put (marked as RE-META) together with the
new view number to the calculated meta server, which will
look up key OBMETA_name. If the entry does not exist,
then it processes the request as a new one; otherwise it will
resume Step (2)ii (§4.3.1) in the processing of the incomplete
put, i.e., returning the lvid and extents to the client proxy
and sending the retrieved KVs to the backup meta servers,
which will persist the KVs if OBMETA_name does not exist.
Data server crash. If a data server 𝐷 becomes unavailable,
then the manager will mark all the affected logical volumes
as readonly and notify the logical volumes’ primary meta
servers, which will temporarily skip these volumes when
processing new put. If 𝐷 recovers in a short period, then the
logical volumes will be marked as writable again and 𝐷 will
resume its service normally. Otherwise, the manager will
change the topology map, select new physical volumes (from
other available healthy disks) to replace the failed physical
volumes of the affected logical volumes, and notifies the
relevant primary meta servers about the replacement. Lost
data will be restored to the new physical volumes in parallel.
A special case is that data server 𝐷 crashes when it is

writing data of an ongoing put request. Assuming the client
proxy does not crash, it will re-issue the put (marked as RE-
DATA) with the view number. The responsible meta server
will atomically (i) select a new logical volume from the PG’s
VG to allocate blocks, and (ii) revoke the previous allocation
on the problematic volume by clearing the bits in the bitmap.
Client proxy crash. If a client proxy 𝐶 (ID = pxid) crashes,
each affected primary meta server𝑀 (processing 𝐶’s put re-
quests) will look for the proxy logs with prefix PXLOG_pxid
which have not yet been cleaned. Each proxy log records
OBMETA_name. 𝑀 looks for the metadata with key OB-
META_name, and retrieves lvid, extents and checksum. Then
𝑀 sends lvid and extents to the data servers that will return
the checksums of the specified blocks. 𝑀 compares the re-
turned and retrieved checksums. If a checksum from 𝐷 is
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correct, then (if necessary) 𝑀 will complete the put by re-
covering the metadata/data respectively to the unfinished
meta/data servers and cleaning the logs. Otherwise, 𝑀 re-
vokes the incomplete put by deleting the KVs.
Concurrent crashes. If multiple crashes happen concur-
rently, Cheetah separately recovers each crash based on the
coordination of the cluster manager. For instance, if both
primary meta server and client proxy crash before a put is
committed, then Cheetah will (i) recover the primary meta
server𝑀 ′ with consistent MetaX records using the remain-
ing meta servers, and (ii) let 𝑀 ′ process the client proxy
crash by waiting the timeout of uncommitted requests and
checking the data servers to complete or revoke the request.
Metadata aggregation effectively prevents orphans. Sup-

pose that the metadata server crashes before it persists the
metadata, but the client proxy already gets the metadata and
sends the data to the data server, and it also crashes. Then,
the writes on the data server have no effect and no orphan
appears, because the space allocation has not yet recorded
on the meta server.

If a power loss causes all servers/clients down, after reboot
the meta servers will (i) negotiate with each other for the
PG logs to synchronize the MetaX KVs by comparing opseq
in the keys, and (ii) compare checksum in the metadata and
the checksums calculated by the 𝑛 data servers on the blocks
specified by lvid and extents. If none of the 𝑛 checksums is
correct, then the put is unfinished and will be revoked by
deleting the KVs. After that the normal service can resume.
Consistency Guarantees. Cheetah provides linearizabil-
ity [28, 31], i.e., the effect of put/get/delete requests for
the same object is equivalent to a sequential execution. Re-
quests for different objects are irrelevant and can be executed
out of order. We will prove the correctness for consistency
guarantees in Appendix A.

6 Evaluation

We have implemented Cheetah based on the open-source
Haystack project (named SeaweedFS) [20]. We realize Chee-
tah’s rich meta storage (MetaX with hybrid mapping) and
raw data storage to replace Haystack’s thin directory stor-
age and file-based data storage, respectively. Cheetah adopts
the bitmap allocator [6] of Ceph BlueStore to manage its
raw data storage. We remove distributed write ordering by
enforcing local write atomicity (Fig. 1 vs. Fig. 2), so that
Cheetah can perform metadata and data writes in parallel
while guaranteeing linearizability.

We compare Cheetah to the directory-based object stor-
age systems (Haystack and Tectonic). Tectonic is Facebook’s
general-purpose distributed filesystem that unifies the stor-
age of hot objects (Haystack) [21], warm objects (F4) [35],
and files [10], to achieve higher storage efficiency at the
price of slight performance loss. Different from Haystack,
Tectonic hashes objects onto log-structured files, and realizes

scalable distributed file storage based on which a huge num-
ber of objects can be efficiently stored. Tectonic disaggregates
filesystem metadata into naming, file, and block layers, each
being hash-partitioned and stored in a sharded KV. It explic-
itly manages the mapping of chunk files to disk volumes
for migration-free expansion (§2.2). For put, Tectonic first
replicates the data in files and later conducts Reed-Solomon
(RS) [44] encoding in batches.

For reference, we also evaluate Ceph (v17.2) [38, 49], the
state-of-the-art hash-based object store. Ceph adopts the
CRUSH algorithm to calculate the mapping of objects to
volumes but suffers from data migration after expansion.
Ceph uses BlueStore [7] to store object data on raw disks.
We do not equip Ceph with MapX [47], as MapX can support
only Ceph-RBD/Ceph-FS but not object storage. We do not
test S3 [5], as S3 is an Internet-based storage service for large
objects thus having poor performance for small objects.

Our testbed consists of fifteen machines. Three machines
run the clients (eachwith a client proxy), and they also jointly
run Raft as the reliable system manager. We have nine data
machines and three meta machines, and adopt three-way
replication for both object data and metadata. A data ma-
chine has four SSDs for object data storage (in addition to
the system disk) each being divided into 100 physical vol-
umes. Totally we have 100 × 4 × 9 = 3600 physical volumes
and 3600/3 = 1200 logical volumes. We organize the logi-
cal volumes into 200 volume groups (VGs), each having six
logical volumes and corresponding to one PG. Each meta ma-
chine has three SSDs for storing metadata. For meta servers,
RocksDB adopts the default configurations [17].

We seek to answer the following questions:
• How does Cheetah perform in micro benchmarks for la-
tency and throughput (§6.1)?

• What are the impacts of Cheetah’s various design choices,
including ordering, raw block service, and RocksDB con-
figurations (§6.2)?

• How scalable and recoverable is Cheetah (§6.3)?
• And how does Cheetah perform in trace-driven and com-
bined workloads (§6.4)?

6.1 Micro Benchmarks

We measure the put/get/delete latencies (request comple-
tion times) of Cheetah/Haystack/Tectonic/Ceph. The clients
run Intel COSBench [12] to put 10 million objects varying
the number of workers (concurrency = 20/100/500). As the
MetaX structure is optimal primarily for small objects, we
test object data sizes of 8KB/64KB/512KB. For object data
sizes ≥ 1MB, all systems have similar performance domi-
nated by bulk data I/O, and thus we do not include the results
in this section. The latency is directly measured by the client
proxies from receiving the put to acknowledging it (Fig. 2).
The result is depicted in Fig. 5a, where, e.g., 8KB-20 rep-

resents 8KB data size and concurrency = 20. For readability,
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we do not show the exceptionally high latencies of large
data size (512KB) with high concurrency, which are mainly
affected by bulk data writes on data servers. Cheetah out-
performs Haystack by up to 2.37× (at 8KB-20) in the mean
put latency. This is mainly because Cheetah realizes parallel
writes of metadata and data, and conducts atomic MetaX
writes on meta servers avoiding separate metadata I/O. Chee-
tah also performs raw block I/O on data servers thus avoiding
file system overhead. The latency of Cheetah is even lower
than that of the hash-based Ceph, mainly because of Ceph’s
complex layered design affecting concurrency [31].

In addition, Ceph has to either write logs for small (≤32KB)
objects or enforce local ordering on data servers to support
the upper-layer (overwritable) Ceph-RBD and Ceph-FS. Tec-
tonic has the highest latency, because it introduces the inter-
mediate file abstraction while its layered filesystemmetadata
sharding (objects→ file names→ file IDs→ chunk volumes)
inefficiently requires multiple recursive RPCs.
We measure the get performance by performing get for

100,000 objects chosen uniformly at random from the previ-
ously put 10 million objects. The result is shown in Fig. 5b,
where Cheetah outperforms Haystack by up to 25% (at 8KB-
500) in the mean get latency. This is mainly because Cheetah
only needs to read raw data blocks while Haystack has to
read both in-volume filesystem metadata and data on data
servers. Ceph has relatively high get latency, because it
needs to read both metadata and data on data servers.

Wemeasure the delete performance by removing 100,000
objects chosen uniformly at random from the previously put
10 million objects. The result is shown in Fig. 5c. Cheetah

significantly outperforms Haystack in delete latency, as
Cheetah accesses meta servers once to delete an object while
Haystack requires multiple accesses to meta/data servers.
Cheetah significantly outperforms Haystack in put and

delete latencies for both light and heavy loads (e.g., 8KB-500
and 64KB-500). Therefore, Cheetah broadens the applicability
of directory-based object storage to support not only read-
dominant but also write-dominant applications.
Cheetah experiences latencies of at least hundreds of 𝜇s

even for small (8KB) put, an order of magnitude higher than
that of both network ping and pure SSD writes. As reported
from industry [4], ms-level latencies for small object I/O are
common even using high-end SSDs and networks. This is
because an object put involves not only a network trip and
disk I/O but also multiple inter-node RPCs. We decompose
the overall latency of small (8KB) object put. The result is
shown in Fig. 6, where Pre-MDS, MDS-1, MDS-2, Pre-DS, and
DS are from the perspective of client proxies. Specifically,
(i) Pre-MDS: the time of preprocessing (resolving put) and
sending the request to the meta server, (ii) MDS-1: the delta
time between receiving the meta server’s first reply and Pre-
MDS, (iii) MDS-2: the delta time between receiving the meta
server’s ack and MDS-1, (iv) Pre-DS: the time of sending the
block write request to the data server, and (v) DS: the delta
time between receiving the data server’s ack and Pre-DS.

We measure the put throughput (requests per second) of
Cheetah, by increasing client-side concurrency from 100 to
1000 for various object data sizes. Since Haystack always
outperforms Tectonic by design, in this experiment we only
compare Cheetah to Haystack. All the three client machines
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Figure 14. In-expansion performance.

and nine data server machines jointly run COSBench clients
(with client proxies) to ensure clients not to be the bottleneck.
The result is shown in Fig. 7.

The throughput of Cheetah is substantially higher than
that of Haystack when concurrency < 600, because when
the system is underloaded the throughput is a function of the
concurrency and the time each put takes. After that, the ad-
vantage of Cheetah becomes smaller, and Cheetah achieves
slightly higher peak throughput than Haystack (e.g., about
6% improvement for 8KB-put with concurrency = 1000), as
placing the offset metadata (together with the volume meta-
data) on meta servers better balances the load than storing it
(in XFS) on data servers. We also inspect the CPU utilization
for all machines. It is always < 2200%, showing that the dual
16-core CPUs are not bottleneck. Therefore, for moderate
load levels, Cheetah can deliver higher throughput.
Although immutability disallows overwrites, Cheetah al-

lows clients to delete an object and put it again with new
data (§4.3.1). We write a custom benchmark tool to com-
pare the read-modify-write performance of Cheetah and
Haystack. We first put 10 million objects, and then ran-
domly read-modify-write 100,000 of them by reading an
object, deleting it, and writing it with a new value. As shown
in Fig. 8, Cheetah always achieves higher throughput.

6.2 Impacts of Design Components

We evaluate the impact of parallel writes by comparing Chee-
tah to a variation of Cheetah with ordered-writes (Cheetah-
OW), of which the proxies send the metadata and data to
the data servers after receiving acks from the meta servers
(instead of after receiving the metadata). Fig. 9 shows the
normalized throughput. When the system is not saturated,
Cheetah outperforms Cheetah-OW, proving the effectiveness

of removing distributed ordering. This is because in Cheetah-
OW the data writes must wait for their metadata writes mak-
ing the pipelined write scheduling inefficient (Fig 1), while
in Cheetah the metadata/data writes are in parallel (Fig. 2).
To quantify the advantage of raw block I/O, we compare

the throughput of Cheetah to that of Cheetah’s filesystem-
backed variation (Cheetah-FS), where the data servers run
XFS and use a large file on each volume to store object data.
Fig. 10 shows the normalized put throughput of Cheetah-FS.
The advantage of Cheetah over Cheetah-FS is relatively small
(especially for 512KB objects), because the data servers of
Cheetah-FS can access data of large files with low overhead.
Because object I/O usually experiences millisecond-level la-
tencies (Fig. 5), the filesystem impact on latency is negligible
thus being omitted due to lack of space. For throughput, by
comparing Fig. 9 and Fig. 10, we can see that for small ob-
ject writes (e.g., 8KB-20) the impact of the filesystem is only
about 10%, while the impact of ordering can reach up to 40%.
Therefore, Cheetah’s performance advantage is primarily
from the removal of distributed ordering.

Cheetah uses RocksDB for MetaX storage, which adopts
a Log-Structured Merge-Tree [40] to store KVs. RocksDB
writes the KVs both in its Memtable (of buffer_size) and
in a write-ahead log. When a Memtable is full, it is flushed
to a file and the log is cleaned. The files are organized in
a sequence of levels starting from Level-0. When one level
reaches its trigger, the files will be merged to the next level.
By default the Memtable size is 64MB and the trigger is 4. To
evaluate the impact of more aggressive flush and merge, we
reduce the two values and pad the value of each KV to 1KB.
Fig. 11 shows the normalized throughput compared to the
original configuration. The result shows that increasing flush
and merge rates only has small impact on the performance.
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Figure 15.Meta server recovery.

0-50 50-100 100-150 150-200 200-250 250-300 300-350 350-400 400-450 450-500
10.7 5.9 4.8 4.3 4 3.8 3.4 3.6 3.2 56.3

0-64 64-128 128-192 192-256 256-320 320-384 384-448 448-512
3.7 14.3 8.9 4.5 3.8 3.4 5.1 56.3

0%
20%
40%
60%
80%

100%

1 6 11 16 21

Re
qu

es
t P

er
ce

nt
ag

e

Days

PUT
GET
DELETE

3.7 14.3
8.9

4.53.8
3.45.1

56.3

(b) Size ratios (%) 

0-64 64-128
128-192 192-256
256-320 320-384
384-448 448-512

(a) OP ratios

(KB)

Figure 16. Op and Size ratios in the trace.

PUT DEL ALL
Cheetah 8217 15712 8516 8616 5298

Haystack 4638.629 11738.85 4891
Ceph (BlueStore) 3115

PUT DEL ALL
Cheetah 3.84 0.36 2.1

Haystack 6.58 1.75 4.68
Ceph (BlueStore) 16.02 9.35 12.86

10.73 2.63 6.98
18.13 11.74 15.2

0

2

4

6

8

PUT DEL ALL

La
te
n
cy
 (
m
s)

Cheetah Haystack

0

2000

4000

6000

8000

10000

ALL

Th
ro
u
gh

p
u
t 
(r
eq

/s
ec
)

(a) Latency (b) Throughput

Figure 17. Trace-based comparison.

80

85

90

95

100

1 3 5 7 9 11 13 15 17 19 21

Ef
fic

ie
nc

y 
(%

)

Days

8KB 32KB 64KB

Figure 18. Storage Efficiency.

0
10,000
20,000
30,000
40,000
50,000
60,000
70,000

Th
ro
u
gh

p
u
t 
(r
e
q
/s
e
c)

Cheetah Haystack

Figure 19. In-compact performance.

0

2000

4000

6000

8000

10 20 30 40 50 60 70 80Th
ro
u
gh

p
u
t 
(r
e
q
/s
e
c)

PUT ratio (%)

Throughput with Compo. Workloads

Figure 20. Combined workloads.

6.3 Meta Service Scalability and Recovery

To evaluate the scalability of the CRUSH-based meta service,
we use𝑚 = 3, 6, 9, 12 machines to form the meta server clus-
ter. Each of the𝑚 machine also runs a pseudo data server that
does nothing but simply acknowledge any write requests.
We use three machines to jointly run𝑚 client processes each
with concurrency = 500 that can saturate the meta service.
The clients put 10 million 8KB objects, and we measure the
aggregate throughput of the𝑚-machine meta service. The re-
sult is shown in Fig. 12, proving that Cheetah’s meta service
is scalable. For comparison we also evaluate the throughput
upper bound by using RAM disks for MetaX storage.
We evaluate the impact of maintaining all metadata in

MetaX, which introduces more load to the meta servers, on
the meta service performance. To focus on the burden of
meta servers, we use one single machine to run the meta
service without replication, and use another machine to run
the clients that bypass the processing of data servers. We
also evaluate the traditional thin directory service by main-
taining only the volume metadata, i.e., storing one KV (name
→ allocated logical volume) in RocksDB. We compare the
throughput of the meta and directory services, as the num-
ber of client processes increases. As shown in Fig. 13, the
performance of the rich meta service is slightly lower than
that of the simple directory service. Compared to traditional
directory-based object stores, Cheetah can adjust the num-
ber of meta/data servers, as it moves the maintenance load
of offset metadata from data servers to meta servers.
We evaluate the migration-free feature of Cheetah, with

the same configuration as in §6.1 except that we use eight
data machines and reserve the ninth for meta service expan-
sion.We first put 10million random-sized objects to Cheetah,
and then add the reservedmachine to the CRUSH-basedmeta

service cluster. CRUSH remaps 1/4 of the PGs to the new
meta machine, after which we measure the put/get perfor-
mance of Cheetah (with VG) and Cheetah-NoVG (without
VG). As depicted in Fig. 14, Cheetah performs much better
as Cheetah-NoVG suffers from data migration. We further
test in-expansion Ceph that adopts CRUSH to map objects
onto disk volumes. After adding one data server, the per-
formance of Ceph degrades due to the contention of data
migration. In contrast, Cheetah is affected neither by meta
server expansion nor by data server expansion.
We test the recovery of a meta server crash. We (i) write

8KB objects with concurrency = 100 for 10 sec, (ii) disconnect
one of the three meta machines, and (iii) re-connect it as a
new one. After detecting the crash, the manager will dissem-
inate the new topology map. The metadata of the affected
PGs will be recovered to the new meta servers. As shown in
Fig. 15, all metadata is recovered within a few seconds.

We also test the recovery of a disk failure in Cheetah and
Ceph.We first put 10million 512KB objects, having each disk
store 512KB × 10 million × 3 / 36 ≈ 406.9GB data. Cheetah
takes about 16.3 sec to recover the lost data to healthy disks
in parallel with an aggregate throughput of 24.9 GB/sec. In
contrast, Ceph takes about 16.1 sec for recovery, which is
slightly faster owing to its CRUSH-based data placement.

6.4 Traces and Combined Workloads

We collect a three-week trace of the workload of 24 stor-
age machines in production, which stores data as objects
for various analysis applications of a large-scale Internet
service. Fig. 16a shows the ratios of the numbers of different
requests for each day, where (i) there are much more writes
(put) than reads (get), and (ii) the ratio of delete is high
because most objects have a lifecycle (ranging from hours
to months). The object size ratios are shown in Fig. 16b. We
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use a custom benchmark tool (ignoring the timestamps) to
replay the recorded I/O requests. We evaluate the latency
and throughput. The results (Fig. 17) show that Cheetah out-
performs Haystack for production workloads, where there
are both large and small objects and some requests can be
cached due to locality.
Cheetah’s raw data storage allows direct reuse of the re-

claimed space. Cheetah can also resort to compaction if nec-
essary.We evaluate Cheetah’s storage efficiency, i.e., the total
object data size divided by the total capacity occupied on
data servers, at the end of each hour during the replay of
the three-week trace. Fig. 18 shows the maximum efficiency
for each day, where Cheetah always achieves high efficiency
(> 85%). The drops are because of scheduled batch deletes.

We evaluate the impact of Haystack’s compaction. We fill
the system with objects and trigger a compaction by ran-
domly deleting objects. We put no limitations on the band-
width used by compaction, and measure the in-compaction
put throughput. The result is shown in Fig. 19, which also
includes (compaction-free) Cheetah. The advantage of Chee-
tah gets much higher when Haystack is in compaction, and
thus Cheetah is more suitable when deletions are common
for objects with unpredictable lifecycles. Note that if we
limited the compaction bandwidth, although Haystack’s in-
compaction degradation would be slighter, Haystack would
experience less severe but longer performance degradation
as compaction inevitably causes amplification, i.e., all objects
in the old files must eventually be moved to the new ones.
We use YCSB [11] to generate combined workloads. The

delete ratio is 10%, the put ratio varies from 10% to 80%. Ob-
ject sizes are chosen randomly between 4 ∼ 512 KB. We run
the workloads with concurrency = 20. As shown in Fig. 20,
The throughput slightly decreases as the put ratio increases,
proving Cheetah is applicable to a wide range of workloads.

7 Discussion

Rich metadata. Cheetah follows the technical trend of
breaking machine boundaries, aggregating metadata into
MetaX to realize separatemetadata/data storage. This design
choice potentially has two drawbacks. First, it increases meta
servers’ complexity. To address this problem, we propose
hybrid mapping to achieve high scalability (§4.2). Second, it
makes the data servers not self-contained which may hurt
data durability. To address this problem, we carefully design
the recovery mechanism to guarantee the correctness includ-
ing data durability (§5). For instance, if multiple components
(like the meta server and the client proxy) simultaneously
crash, the writes on data servers have no effect and no or-
phans occur, as the space allocation (to which data servers
are agnostic) has not yet recorded on the meta server.
The offset metadata needs to be maintained on either

meta servers or data servers. Cheetah moves it from data
servers tometa servers (in the aggregatedMetaX), to remove

distributed ordering and enable parallel metadata/datawrites.
Experimental results of Figs. 5∼8 (all using three machines
for MDS) show the latency and throughput benefits. Fig. 12
shows that Cheetah’s hybrid mapping alows linear scale-out
to many meta servers. Therefore, Cheetah’s MDS is scalable.
Fig. 13 shows that RocksDB can atomically write a batch of
KVs with little performance overhead, and thus the increased
metadata complexity is not a problem for scalability.
Read optimization. Similar to Haystack, Cheetah can op-
timize get if reading an object previously put by the same
client proxy. Specifically, 𝐶 caches the metadata (M𝑣 = lvid,
M𝑜 = extents) before acknowledging a put for subsequent
get requests. When receiving a cache-hit get,𝐶 will perform
Step (2) and Steps (3)(4) in parallel (§4.3.2). Optionally, it can
use the checksum from𝑀1 to detect tamperedM𝑣 and M𝑜 .
Availability. Cheetah makes use of the standard synchro-
nous replication scheme for high data durability. A write
request is committed only if its metadata is replicated by 𝑓

meta servers and object data is replicated by 𝑓 data servers. A
potential inefficiency is the necessity of synchronous failure
recovery, during which the write procedure of corresponding
VGs and PGs has to be suspended thus affecting availabil-
ity. For higher availability, Cheetah can (slightly) trade off
durability by leveraging asynchronous or hybrid replication
[31, 48]. This is orthogonal to the main design of this paper
and will be studied in our future work.
Immutability. Cheetah leverages object immutability to
remove distributed write ordering and simplify data mainte-
nance and message exchange, while still guaranteeing con-
sistency. Object immutability needs to be guaranteed by
upper-layer applications (like Facebook’s photo-uploader)
generating unique object names. Without immutability, for
Cheetah it would be possible that a misbehaved user put’s
metadata overwrites an existing object but that put’s data is
lost (i.e., metadata-data inconsistency). To address this prob-
lem, Cheetah can generate a unique sub-name for each put
to keep both versions’ metadata until the put is committed.
In addition, MetaX can also support overwrites by adopting
two-phase commit [33], which inevitably lowers the object
write performance. Two-phase commit is necessary for ap-
plication scenarios of mutable objects (like Ceph-RBD and
Ceph-FS). The main difference lies in the metadata manage-
ment, as data servers are agnostic to the status of objects.
Directories vs. hashing. The choice between directory-
based and hash-based object mapping is a dilemma for fast-
expanding businesses with ever-increasing storage demands.
On one hand, hash-based mapping provides high scalability
and performance through decentralized and consistent cal-
culation for object placement in serving normal object I/O
requests, but causes severe data migration in capacity ex-
pansion. For instance, when adding one rack to a three-rack
Ceph cluster, almost 60% of the PGs will be affected [47],
which will inevitably cause performance degradation during
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the entire migration period. On the other hand, directory-
based mapping achieves migration-free expansion by main-
taining and querying object placement with a centralized
directory, but suffers from poor performance for small object
I/O. For instance, when we adopt Haystack as the underly-
ing object store for our businesses, as the total data volume
increases from PBs (petabytes) to EBs (exabytes), the cen-
tralized directory service becomes a significant bottleneck
when numerous clients from different collection/analysis
applications (§6.4) access object storage in parallel. This mo-
tivates us to propose the hybrid mapping architecture (§4.2),
which realize the scalable (meta) directory service without
expansion-caused data migration. Further, we find that even
though we eliminate the centralized directory bottleneck, ap-
plications still experience unsatisfactory performance espe-
cially in small I/O latency, which is because of the distributed
ordering constraint on the object I/O path.

8 Conclusion

In existing directory-based object stores, it is the separate
metadata maintenance that complicates object write oper-
ations and enforces distributed write ordering, which con-
sequently lower the performance of small object I/O. Our
insight is that all metadata of an object can be aggregated
into MetaX, so that we can replace the distributed ordering
constraint with the much simpler local write atomicity of
MetaX. We leverage MetaX to implement an efficient object
store called Cheetah, which significantly improves I/O per-
formance of put/get/delete for immutable objects while
still ensuring consistency. In our future work, we will inte-
grate Cheetah with erasure coding [32] for high efficiency
and asynchronous replication [46, 48] for high availability.
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Appendix

Appendix A: Proof of Correctness

We prove that Cheetah ensures the following invariants,
which together guarantee consistency.

Lemma 1. If a put request is committed and the primary
meta server is notified, then all subsequent get requests will
see the data unless a delete is committed thereafter.

Proof. Different from existing work, Cheetah writes meta-
data and data of an object in parallel without distributed
ordering. Therefore, we focus on the argument that this par-
allel processing does not affect the correctness.

It is trivial to see that all future get will see the data within
the same view. Now we argue that Lemma 1 holds after
updating the topology map, even if Cheetah writes metadata
and data in parallel. Suppose that an ongoing put request,
𝑟𝑒𝑞𝑝 , is issued (but may not be committed) in view 𝑖 , and that
𝑓 = 𝑛−1 meta severs storing the metadata of 𝑟𝑒𝑞𝑝 and 𝑓 data
servers storing the data of 𝑟𝑒𝑞𝑝 either crash permanently or
are partitioned due to network issues. The remaining meta
and data servers that are updated to view 𝑖 + 1 are𝑀 and 𝐷 ,
respectively.
We discuss two cases. First, if 𝑟𝑒𝑞𝑝 is already committed by

the proxy in view 𝑖 , then both𝑀 and 𝐷 should have written
the metadata and object data of 𝑟𝑒𝑞𝑝 in view 𝑖 . Owing to
immutability, the metadata of 𝑟𝑒𝑞𝑝 will not be replaced by a
new put at𝑀 , and thus𝑀 and𝐷 will relay the metadata/data
of 𝑟𝑒𝑞𝑝 to the new servers in view 𝑖 + 1. The object can be
accessed after recovery. Note that a delete request does not
introduce distributed write operations owing to the MetaX
structure. Either a delete succeeds in view 𝑖 after 𝑟𝑒𝑞𝑝 and
𝑀 should not store the metadata of 𝑟𝑒𝑞𝑝 anymore; or 𝑟𝑒𝑞𝑝
can be recovered in view 𝑖 + 1 with the help of𝑀 , which is
also acceptable.

Second, if the metadata of 𝑟𝑒𝑞𝑝 is not written on𝑀 or the
object data of 𝑟𝑒𝑞𝑝 is not written on 𝐷 , then the proxy does
not commit 𝑟𝑒𝑞𝑝 in view 𝑖 and will re-issue the request in
view 𝑖 + 1 once it is notified about the topology and view
updates. If the metadata of 𝑟𝑒𝑞𝑝 is written on𝑀 , but 𝐷 does
not have the data, then 𝑀 will abort 𝑟𝑒𝑞𝑝 and revoke its
processing since the checksum does not match. In this case
the proxy cannot commit 𝑟𝑒𝑞𝑝 in view 𝑖 anymore, because
either 𝑀 or 𝐷 will reject 𝑟𝑒𝑞𝑝 due to the mismatching of
view numbers (𝑟𝑒𝑞𝑝 is in view 𝑖 , but 𝑀 or 𝐷 is already in
view 𝑖 + 1). Therefore, Cheetah guarantees that either 𝑟𝑒𝑞𝑝 is
committed in view 𝑖 and will be durable since then, or 𝑟𝑒𝑞𝑝
is not committed at all.
Finally, suppose that a get request (𝑟𝑒𝑞𝑔) for the same

object is issued after the topology map update. If 𝑟𝑒𝑞𝑔 is with
view 𝑖 then it will not be served by any servers because of
the mismatching of view numbers and the lease mechanism.
So 𝑟𝑒𝑞𝑔 must be re-issued in view 𝑖 + 1, and thus the corre-
sponding meta servers and data servers in view 𝑖 + 1 can
reply with correct metadata and data, respectively. □

Lemma 2. If a get request sees an object, then all subsequent
get requests will see the same data unless a delete request is
committed thereafter.

Proof. A get request sees an object only if the corresponding
put request is committed and the client proxy has notified the
primary meta server (Line 10 in Algorithm 1). According to
Lemma 1, all future get requests will see the same data. □
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