
Cutting Tail Latency in Commodity Datacenters
with Cloudburst

Gaoxiong Zeng1, Li Chen2*, Bairen Yi3*, Kai Chen1
1iSING Lab@Hong Kong University of Science and Technology 2Huawei 3ByteDance

Abstract—Long tail latency of short flows (or messages) greatly
affects user-facing applications in datacenters. Prior solutions to
the problem introduce significant implementation complexities,
such as global state monitoring, complex network control, or
non-trivial switch modifications. While promising superior per-
formance, they are hard to implement in practice.

This paper presents Cloudburst, a simple, effective yet readily
deployable solution achieving similar or even better results with-
out introducing the above complexities. At its core, Cloudburst
explores forward error correction (FEC) over multipath — it
proactively spreads FEC-coded packets generated from messages
over multipath in parallel, and recovers them with the first few
arriving ones. As a result, Cloudburst is able to obliviously exploit
underutilized paths, thus achieving low tail latency. We have im-
plemented Cloudburst as a user-space library, and deployed it on
a testbed with commodity switches. Our testbed and simulation
experiments show the superior performance of Cloudburst. For
example, Cloudburst achieves 63.69% and 60.06% reduction in
99th percentile message/flow completion time (FCT) compared
to DCTCP and PIAS, respectively.

I. INTRODUCTION

Low latency message1 delivery is critical for many applica-
tions in datacenter networks (DCN), such as web search [1],
[2], page creation [3], recommendation systems, stream pro-
cessing, and online advertising [4]. These applications are
usually user-facing, and even a very small delay in flow com-
pletion time (FCT) can reduce application performance, de-
grading user experience [1], [2] and causing financial loss [4].

However, the long tail latency problem is particularly pro-
nounced in production DCNs for multiple reasons (§II-A):
(1) applications emit synchronized high fan-in bursts (in-
cast [5]); (2) shared-buffer switches are too shallow [6] to
absorb bursts; (3) transport protocols use Automatic Repeat
Request (ARQ) [7], [8] and retransmission timeouts for packet
recovery; (4) coarse-grained load balancing (e.g., ECMP [9]);
and (5) hardware malfunctioning (e.g., packet black-hole,
silent random packet drops, etc. [10]–[12]) is unpredictable.

In order to tackle such long tail latency problem, prior
works (§II-B) adopt a variety of strategies from fine-grained
load balancing [3], [13]–[15], rate control [1], [4], [16]–
[20], prioritization [2], [3], [21]–[23], to fast loss recov-
ery [11], [24]. However, most of these proposals introduce
non-trivial implementation difficulties, such as global state
monitoring [13], [14], complex network control [14], [22], and
switch modifications [13], [16], [21], [24]. While achieving

*Work done while Li Chen and Bairen Yi were both at HKUST.
1Message and short flow are used interchangeably in this paper.

Fig. 1. Cloudburst Concept

superior performance, these solutions are hard to deploy in
existing commodity datacenters.

Therefore, we ask a pragmatic question: is there a simple
scheme for commodity datacenters to cut tail latency without
the above complexities, while still delivering similar or better
performance? In this paper, we answer the question affir-
matively by presenting Cloudburst, a simple and deployable
solution to cut tail latency of short messages in datacenters.

Cloudburst works as follows (Figure 1 & §III):
• Encoding messages with FEC: Forward error correction

(FEC) has been deployed in many applications [25], [26],
it uses proactive and redundant approach to tolerate er-
rors. In DCN, the error tolerant feature can be adopted to
handle packet losses. That is, we do not need to retransmit
the lost packets while still guaranteeing the reliable trans-
mission. Cloudburst explores the coding dimension of the
transport-layer design. It employs FEC with proactive and
oblivious redundant transmission. Each encoded packet
contains information of multiple original packets. In this
way, even if some of the encoded packets are lost, the
original packets can still be reconstructed at the receiver.

• Bursting over multiple paths: Cloudburst spreads encoded
packets over multiple paths, which obliviously exploits
the rich path diversity in modern DCNs [27]–[29], as
well as the temporary network under-utilization [30].
If any congestion-free path exists, Cloudburst will take
advantage of them without extra signalling overhead.

• Separated and size-limited switch queue: We limit the
buffer usage of the Cloudburst short flows to minimum, so
that the per-hop queueing latency of a Cloudburst packet
is deterministically low (less than a few µs). This is
achieved by separating Cloudburst short flows and other
traffic in different queues, and limiting the maximum
depth of the Cloudburst queue to a tiny value (a few
packets). Such a limitation on buffer usage of Cloudburst
traffic also makes it friendly to other traffic.

1

Our design choices result in a very simple transport that
works drastically different from TCP. Cloudburst performs
neither congestion control2 nor reactive retransmission (i.e., no
per-packet ACK, no congestion feedback, no loss detection,
and no retransmission timeout (RTO)). Instead, it simply
transmits at line-rate and unilaterally keeps generating and
sending the encoded packets until the receiver acknowledges
the reception of the message. Meanwhile, the in-network
requirement of Cloudburst is also simple: limiting queue size
is readily configurable in commodity switches [33].

To be deployable with existing commodity datacenters,
Cloudburst is now implemented as a user-space library (§IV),
so that applications can voluntarily use it for latency-sensitive
short flows. We built a small 2-tier leaf-spine testbed and
deployed Cloudburst on it. The testbed consists of 6 Pronto-
3295 (Broadcom) Ethernet switches and 8 Dell R320 servers
with quad core Xeons E5-1410 CPU and 1GbE NIC. Our
implementation experience shows that Cloudburst is readily-
deployable with existing commodity switches.

Our testbed experiments (§V-A–§V-C) show that Cloud-
burst outperforms prior practical schemes. For example, it
achieves more than 60.06% and 63.69% reduction in 99th
percentile (p99) flow completion time compared to PIAS [2]
and DCTCP [1]. Furthermore, our results also verify that it is
resilient to incast, and handles failures gracefully. We comple-
ment testbed experiments with large-scale simulations (§V-D)
in 10/40G environments. We find that Cloudburst achieves
comparable or better performance than prior solutions. For
example, it achieves 24% tail latency reduction compared to
a clean-slate design, pFabric [21].

II. ACHIEVING LOW LATENCY

We first look at the causes for long tail latency in DCN
(§II-A). Then, we review the prior solutions to cut tail latency
(§II-B). Finally, we overview Cloudburst (§II-C).

A. Causes of long tail latency

The traffic characteristics of DC applications, current DCN
configurations, and the usage of TCP in DCNs jointly con-
tribute to the long tail latency for short flows.

High fan-in bursts (incast [5]): Tree-based applications
emit synchronized high fan-in bursts. They are constructed
with multiple layers, and each parent aggregates results from
its children. The interactivity constraint (e.g. 300ms [4]) is
distributed to each layer (e.g. 40ms). Hence children of a same
parent respond at almost the same time, causing fan-in burst at
the parent. These synchronized fan-in bursts exceed the egress
port capacity of switches, causing queue to build up and may
lead to congestive packet drops.

Shallow shared-buffer switch: Shared buffer is usually
configured to absorb bursts, i.e. a portion of buffer is shared
among multiple ports, so if one port is experiencing bursts,
it can take all available shared buffer. However, shallow
buffer switches cannot absorb fan-in bursts from applications

2In fact, for erasure coded flows, dropping can be considered as a form
of congestion control [31], or “decongestion control” [32].

at high bandwidth. The expansion of buffer (from 4MB to
12MB [6], [34]) in commodity switches is not compatible
with the 10X+ growth of per port bandwidth (from 1Gbps
to 10/40Gbps [29]). Additionally, throughput-intensive flows
requires a certain amount of buffering (α×Bandwidth Delay
Product, α depends on the transport protocol [1]) in the switch
to achieve high throughput, requiring guaranteed buffer in each
port and further reducing the shared buffer for burst tolerance.
When bursts occurs, packets from latency-sensitive flows may
be dropped due to lack of buffer [5].

Error handling and retransmission timeout: Applications
deliver data reliably using TCP with Automatic Retransmis-
sion Request (ARQ) error handling (e.g., Go-back-N [7],
Selective Repeat [8]), and timeout-based error discovery). For
each error, ARQ needs at least one RTT to recover, thus
it works well for long flows, because acknowledgement of
received or missed packets are batched for large congestion
windows. However, ARQ does not help for short flows, which
may finish within the slow start phase. If a flow’s initial
window packets coincide with congestion and get dropped,
it can only discover the loss by RTO. Therefore, setting a
proper RTOmin [3], [5] is key to fast recovery of short flows.
RTOmin in DCN is usually set to 5ms [5], [11], which is
almost two orders of magnitude larger than the base RTT
(∼ 100us). A single timeout can easily lead to long latency
tail. Reducing the timeout can surely benefit packet recovery,
but may also increase the load on network and servers due to
frequent retransmissions and require high-precision timers.

Malfunctioning hardware: Packet loss may also occur due
to hardware failures, which happens even in well-engineered
modern DCNs with lossless fabric [10]–[12]. Such failures
may come from TCAM deficits, aging transceivers, etc. Par-
ticularly, silent packet drops or blackholes are discovered with
network-wide diagnostic tools [10]. Thus, these failures are
difficult for single-path transport to recover, and can take
multiple RTTs for multipath transport to recover.

Imperfect flow load balancing (LB): Current load balanc-
ing in commodity DCNs usually depends on flow hashing,
i.e., per-flow ECMP [9], to keep utilization of parallel paths
even. However, hash collision may occur, which can tem-
porarily overload some links and cause queue length to grow,
prolonging per-packet latency and inducing packets drops.
Randomized LB also cannot help with application bursts when
all flows have the same destination port.

B. Prior Solutions

We overview the prior solutions to the tail latency problem:
Reducing queueing latency: Generally, solutions in this

category follow a few strategies such as fine-grained load
balancing [3], [13]–[15], rate control [1], [4], [16]–[20], and
traffic prioritization [2], [3], [21]–[23].
• By load balancing traffic across multiple paths evenly,

we can avoid excessive queue build-up that may result
in queueing latency or loss. For better performance,
congestion awareness is often required [3], [13]–[15].
For example, CONGA [13] measures link utilization and

2

directs flows to less congested paths, while DeTail [3] de-
tects and avoids congestion by monitoring queue lengths.
In the extreme, Fastpass [14] centrally schedules and
routes every packet with complete knowledge of per-path
load conditions. These solutions, however, require very
complex network control or switch modifications.

• By rate-throttling flows (especially the larger ones) based
on ECN [35], delay [36], or in-band network telemetry
(INT) [16] signal, we can control the queue build-up so
that latency-sensitive short flows see small queues at the
switch. While helpful, these solutions [1], [4], [16]–[19]
still rely on load-balancing, and short flows may suffer
long latency when traffic is unevenly distributed. Besides,
the advanced INT signal may not even be available on
switches and thus require customized hardware.

• By giving latency-sensitive flows high priority, the switch
dequeues them first, without regards to lower priority
ones before them, thus achieving low latency [2], [3],
[21]–[23]. For example, pFabric [21] assumes priority
dequeueing (and dropping) to minimize flow completion
time of short flows, and QJump [23] leverages prioriti-
zation to cut tail latency. However, they either assume
infinite switch queues or rely on accurate configurations.

Recovering from packet losses: Fast in-network feedback
for packet drops [24], [41] can accelerate the transition of TCP
state machine, thus triggering retransmission earlier. As above,
these solutions also require non-trivial hardware modifications.
Retransmission can also be proactive: FUSO [11] augments
MPTCP [37], [38] by eagerly retransmitting on less congested
paths. However, it needs to keep complex states of subflows.

Another line of work [17], [18], [39] seeks help from
lossless fabric [40]. However, at large scale, packet loss may
still happen even on lossless fabric, due to mis-configuration
or hardware failures [12]. In case of losses, they often rely on
the NIC hardware for efficient recovery. This line of work is
still under exploration and is beyond the scope of this paper.

Proactive transport solutions: Some recent works [41],
[42], [44] use pre-allocated rate to avoid excessive packet
delay and inaccurate self-adapted rate control. In these solu-
tions, link capacities are proactively allocated by the receivers
as “credits” to each active sender who then send “scheduled
packets” at an optimal rate to ensure low queueing delay
and near-zero packet loss. However, this approach requires
at least one RTT to allocate credits to a new flow, which
is unacceptable for short flows. While recent schemes [45],
[46] enable line rate start, issues still exist for short flows.
For example, it is hard to assign a right amount of credits
to senders before termination in the last RTT [42], [43]—too
large for short flows will lead to link under-utilization due to
credit wastage, while too small will introduce large delay.

C. Cutting tail latency via FEC over multipath (Overview)

Cloudburst aims to cut the long tail latency with a simple
and readily deployable protocol. It applies FEC to multi-
ple paths (§III-A) in commodity datacenters. By proactively
spreading encoded packets over multiple paths in parallel,

Fig. 2. Example of a 3-path FEC

and decoding the first few arriving ones to recover the origi-
nal message, Cloudburst obliviously exploits the uncongested
paths to achieve persistent low latency, while not maintaining
network state or performing complex control.

At the end-host, Cloudburst performs “burst-until-received”
(§III-B). The sender encodes short messages with FEC and
proactively sends the encoded packets over multipaths until
the messages are decoded at the receiver with the first few
arriving packets. In this way, Cloudburst always exploits the
best paths for low latency. If any uncongested path exists,
Cloudburst uses it without signaling; if a path is experiencing
congestion or failure, Cloudburst avoids it automatically by
using encoded packets from other under-utilized paths.

At the switch, Cloudburst performs aggressive dropping
(§III-C) for Cloudburst flows, We limit the buffer usage of
the Cloudburst flows to minimum, i.e., separating Cloudburst
traffic and other traffic in different queues, and limiting the
maximum depth of the Cloudburst queue to a small value. This
ensures that the per-hop queueing latency is deterministically
low. Besides, it protects other flows from being affected by
the burst-until-received behavior of Cloudburst flows, making
it friendly to co-existing traffic.

III. DESIGN

We proceed to describe the details of Cloudburst design.

A. Choosing FEC for encoding

Figure 2 is a simplified illustration of how FEC works.
There are 3 paths from source to destination, and past ex-
perience indicates only one of them has congestion at any
given time, but the sender does not know which until it sends.
Suppose the sender has 2 packets to send, say A and B. A
suitable FEC scheme is to create another packet C = A⊗ B
(bitwise exclusive-OR). After encoding, the sender sends A,
B, C on three paths in parallel. The receiver can recover the
message as soon as it collects any 2 out of 3 packets, thus
avoiding congestion at the cost of sending 1.5x more traffic.

Fixed-rate block codes, as shown in the example in Figure 2,
are simple to understand and implement, but have the funda-
mental difficulty of choosing a right coding rate. In Figure 2,
the suitable code rate is 3

2 . Fixed rate codes like this may
suffer if the path condition deteriorates: if two of the paths
suddenly become congested instead of one in Figure 2, then
the message will take much longer time to recover, as the first
two arrivals determine the transmission time.

Rateless erasure codes, or fountain codes [47], are better
suited for dynamic traffic characteristics in DCNs, as its code
rate is adaptable to dynamic channel conditions. The key prop-
erty of fountain codes is that they can generate a potentially

3

Fig. 3. Random linear encoding in one round of transmission

Fig. 4. Cloudburst header format

Fig. 5. Decoding example

limitless sequence of encoded symbols from a given set of
source symbols (the source symbols can be decoded with a
large enough subset of encoded symbols). Specifically, we
adopt LT Code (LTC) [48] in our prototype due to its low
complexity, where an encoded packet is generated by random
linear combination of original packets.

Encoding: We assume the message is given before the
transmission. As shown in Figure 3, we first packetize the orig-
inal message into equal-length parts. If necessary, we pad zero
bits to packets so that every part from the original message has
the same size: MTU −HIP −HUDP −Hcbrst, where MTU
is Maximum Transmission Unit (1.5KB), HIP is IP header
size (20B), HUDP is UDP header size (8B), and Hcbrst is
Cloudburst header size. For each encoded packet, its degree
(d) is defined as the number of un-decoded original packets
encoded in it. We first chose the value of d from a certain
probability distribution. Then, we randomly choose d packets
from the original message {x(1), . . . , x(d)}. The encoded
packet in the ith iteration is then: yi = x

(1)
i ⊕x

(2)
i ⊕ . . .⊕x

(d)
i .

The header of encoded packet (Figure 4) includes the number

Fig. 6. Sequence Diagram

of packets (n) in the message, the message size in unit of bytes,
an 8-bit message ID, and the list of indices (1), . . . , (d).

Decoding: The decoding algorithm uses standard Gaussian
elimination method [49]. We illustrate the decoding with an
example in Figure 5. In step 1, y1 is received, and its degree is
1 (Degree of a symbol is defined as the number of un-decoded
original packets encoded in it), so that the corresponding x1
is decoded. In step 2, y2 is received, and its degree is 2. But
since x1 is already decoded, y2’s degree is reduced by 1, so
x2 is decoded. By iteratively finding symbols with degree 1,
the original message is recovered.

B. Burst-until-Received at End-host

The sequence diagram of the end-host operations of Cloud-
burst is shown in Figure 6. We elaborate on the sender and
receiver operations below.

Sender operations: As a variant of fountain code, LT
coding can generate endless sequence of encoded packets for
a given message. LT coding enables the Cloudburst sender to
continuously generate encoded packets and sending them on
multiple paths, as described in Algorithm 1. It stops only after
it receives a ”STOP” signal from the receiver.

This burst-until-received behavior may consume all band-
width of the network. So we add a rate control mechanism to
allow users to adjust the sending rate. The user/application
specifies rate r, which is the share for Cloudburst traffic.
We define a round of transmission as the period of time
the sender puts an encoded packet on each of the paths
(Line#6-9 in Algorithm 1), and the rate is adjusted by adding
delay between rounds of transmission. For example, if NIC
capacity is 10Gbps, r = 0.5, and 5 paths between source and
destination. Then the sending rate of the message is 5Gbps
(1Gbps per path). Pumping 5 1.5KB encoded packets on 5
paths takes 12µs, thus, a 12µs inter-round delay is added.

Receiver operations: All encoded packets are received by
the listening thread, and forwarded to their corresponding
decoder (each decoder is instantiated for a message). Decoder
buffers all the encoded packets that have unrecovered packets
for decoding. It returns the message to the receiver listening
thread after full recovery, or expires if there is no more
incoming encoded packets after a pre-defined timeout. Then
the receiver signals a STOP to the sender. In case that the

4

Algorithm 1: cbrst_send(·)
Input: Receiver IP & Port, Message m, Transmission timeout t, Ratio r
Output: Success/Failure

1 if sizeof(m) > MAX MSG SIZE then
2 return Failure
3 Set up count down timer of t
4 while STOP not received do
5 Wait for (1

r * NUM PATHS * PKT SIZE / LINK CAP)
6 foreach path p to Receiver do
7 Get symbol y from encoding thread and send it on p
8 if timer expires then
9 return Failure

10 return Success

STOP signal is lost, the receiver will send a new STOP for
each received encoded packet after the first STOP is sent.

C. Aggressive Dropping in Network

A major concern is that the open-loop rate control of
Cloudburst is dangerous to other flows and may overflow
switch buffers in the network. Thus, it seems that a conges-
tion control mechanism for Cloudburst is needed. However,
dropping is also a form of congestion control [32] for high-
bandwidth erasure coded flows. When packets are erasure
encoded, dropping some is not an issue as the message can be
recovered with a subset of the packets sent from the source.
Thus, for a network with purely erasure coded flows, the
switches do not need deep buffers to keep network stable [50],
and the sources can burst as fast as possible [32].

This is also true for TCP-like transport. For example,
pFabric [21] features minimum TCP, a line rate transport,
with shallow buffer and priority dropping at the switch. The
flows with same priority achieves the max-min fairness despite
dropping due to shallow buffer. In fact, replacing congestion
control with erasure coding has been discussed for future
Internet [31], but there are fundamental difficulties. First, in
public Internet, many transport protocols coexist, and bursts
of a few erasure coded flows may take all the buffer and
bandwidth, hurting others. Second, on the path of an erasure
coded flow, if a packet gets dropped after it passes a few
switches, the bandwidth it consumed is wasted. These “dead
packets” [32] may induce congestion collapse: packet loss
requires additional packets (more redundancy) to recover,
which incurs more load in the network and more packet drops,
forming a positive feedback loop.

By leveraging the properties of DCNs, targeting only the
short flows, and limiting buffer usage, we avoid the drawbacks
of erasure coding transport.
• DCNs often have abundant multipath [27]–[29]. With

encoded symbols on all paths, the network core with
Cloudburst is load balanced for short flows, and the only
bottleneck is the egress switch. With just one bottleneck,
“dead packets” are not likely to occur.

• For long flows, using erasure coding is dangerous due
to the positive feedback loop described above. However,
Cloudburst serves only short flows, which do not per-
sist: because of the small sizes and the high bandwidth
network, short flows dissipates quickly.

• We enforce aggressive dropping by separating the buffer
for Cloudburst and other flows, and limiting the buffer
usage of the Cloudburst flows to minimum. This protects
other flows from Cloudburst traffic. Thus, fan-in bursts
of Cloudburst flows no longer affect others on a shared
shallow-buffer switch; meanwhile, TCP flows can also
safely use remaining buffer for high throughput.

D. Discussion: two potential issues

Infiniteness of flow sending: The termination condition of
our algorithm is that the receiver can decode all of the original
packets. However, since we do not use the ACK mechanism,
the senders do not know which packets have already arrived,
they just randomly chose packets, which may cause the failure
of flow completion. In fact, the mathematical property of
LTC [48] guarantees the flow completion. k original packets
can be recovered by k + O(

√
k ln2 k/δ) encoding packets

with probability of 1 − δ. That means, we can bound the
total number of encoding packets with a certain probability.
Meanwhile, we can also set a packet sending upper bound to
avoid the tail latency caused by unlimited sending. When a
certain number of encoding packets are sent, the sender will
request the receiver for the information of received packets.

Aggravate last hop congestion: In fact, our algorithm
focuses on the tail latency caused by the different congestion
condition of sub-paths. In DCN, the last hop may be the
bottleneck and sending FEC-coded packets only aggravates
the congestion. This problem is still caused by the agnostic of
packets’ receiving in senders. When the last hop congestion
(e.g., incast) happens, even the slow flow may not be finished
in one RTT, it gives the senders the opportunity and time to
respond to the packet receiving information. More specifically,
when a flow does not finish within a certain time, the sender
will ask the receiver for the arrival information. Even though
our algorithm is not designed for solving incast problem, it
eliminates the retransmission cost, thus the experiment result
shows that Cloudburst still performs well in incast scenario.

IV. IMPLEMENTATION

In this section, we describe implementation and parameter
settings of Cloudburst.

A. Enabling Cloudburst at End-host

For the end-host, we build a prototype Cloudburst with
Rust 1.6 [51] as a user-space library. The implementation is
multi-threaded: sending (receiving) and encoding (decoding)
are handled by different threads at the sender (receiver). We
discuss the settings of coding-related parameters as follows.

Choosing message size n & degree d: A larger header
size supports larger message size at the cost of more header
overhead and possibly higher load on the network (with the
same code rate, a larger message generates more encoded
symbols). We consider header overhead (percentage of packet
used for header), computation overhead (number of decoding
operations), and coding overhead (number of encoded symbols
to reconstruct the message) when choosing n & d.

5

Fig. 7. Computation and coding overhead

Header overhead is as follows: x is the length of the field
representing the maximum number of packets in a message
(n = 2x packets). The message size is log2(MTU × 2x) =
x+ log2(MTU) (bytes). The bit-set representing the packets
included in the symbol is 2x (bits). Thus, assuming 1.5KB
MTU, the header overhead for x = 9 is less than 7%, which
suggests that, choosing x < 10 is efficient.

Computation overhead for different encoding degree d and
message size n is plotted in Figure 7(a). For different (d, n)
pairs, we perform the en/decoding process 100 times, and
calculate the average number of XOR operations necessary to
reconstruct the message. We see that the number of operations
increases with n. For each n, the number of operations
increases with d, but slows down for d ≥ 5.

Coding overhead is measured by the ratio between the
number of packets needed to recovery the message and the
number of original packets in the message. We collect this
ratio by running the same experiment as above, and plot the
results in Figure 7(b). The coding overhead drops for all sizes
with respect to d, but beyond d ≥ 5, increasing d does not
lead to lower coding overhead.

With the above results, we recommend to set d = 5, n =
64 = 26 for the current prototype. It thus supports message
size of at most 93.44KB (i.e., 26 × 1.46KB). We note that
typical latency-sensitive applications in DCNs exhibit multi-
tier partition/aggregation patterns, and the queries are often
less than 10KB in size [1], [4], which suggests the current
header design should work well in practice.

Choosing r: r is the expected throughput of Cloudburst
flows in the DCN. For oversubscribed DCN, we can adjust
the parameter r in Algorithm 1 to the oversubscription ratio.
For network with full bisection bandwidth, r = 1. In the
experiments and simulations, we choose r to be exactly the
oversubscription ratio of the network, so that Cloudburst flows
will not overload the network.

B. Enabling Cloudburst in Network

Configuring switch buffer: To enforce aggressive drop-
ping, we set the packets of Cloudburst flows to the same
DSCP value, so that they are carried in the same switch queue,
separated from other non-Cloudburst traffic. We then set the
dedicated buffer for the Cloudburst queue to a small value.

On our testbed, we set it to be 1% of total buffer size, and we
disable the shared buffer of this queue to avoid affecting other

flows. This is done by setting “buffer queue-limit” in
our Pronto-3295 switches [52]. Other switches also support
such configurations. For example, in Cisco switches, we can
set the depth of a traffic class queue [53].

Multipath routing A key issue for Cloudburst is how
to spread packets on different paths. The implementation is
dependent on how multipath is supported in the network.
Sub-optimal multipath: The network may use multipath im-
plicitly, so that load balancing over multipath is transparent to
the applications. ECMP [9] is an good example: for each flow,
an ECMP-enabled switch picks an outgoing port at random
based on the hash of the flow’s source and destination IPs and
ports. To use Cloudburst on ECMP, the sender and receiver
need to maintain a pool of ports, and each encoded symbol
will be given a header with a random combination of sender
ports and receiver ports, which implicitly asks ECMP to hash
packets on different paths. While this may not fully utilize all
paths, we show that Cloudburst still works well in §V-C.
Explicit multipath routing: Multiprotocol label switching [54]
(MPLS) can provide explicit routing for each packet, but this
requires support from the network fabric. Also, setting up
multiple path labels for each short message requires signaling
the switches on multipath, which is undesirable for low latency
delivery. To attain the same efficiency as implicit multipath
with ECMP, we turn to a DCN routing scheme—XPath [55],
which enables explicit path-based routing in DCNs. It com-
presses and pre-installs end-to-end paths into forwarding tables
of commodity switches, and packets are routed based on the
path ID in their headers. With XPath’s explicit path control,
Cloudburst adds path IDs to the headers of the encoded
symbols, which will place them on different paths.

V. EVALUATION

In this section, we evaluate Cloudburst with testbed experi-
ments (§V-A–§V-C), complemented by large-scale simulations
(§V-D). We summarize the results below:
• §V-A: we inspect Cloudburst’s design choices and quan-

tify their benefits. With all choices combined, Cloudburst
reduces the tail latency by 75.32% compared to DCTCP.

• §V-B: we compare Cloudburst with the prior practical
schemes, and find that it achieves more than 60.06%
reduction in p99 flow completion time compared to
DCTCP+ECMP [1], [9] or PIAS [2].

• §V-C: we dive into Cloudburst and find that it is resilient
to many critical cases including incast and failures.

• §V-D: we use large-scale simulations to show that Cloud-
burst achieves 24% tail latency reduction compared to a
near-optimal clean-slate design, pFabric [21].

Traffic patterns: Following related works [3], we em-
ulate traffic of latency-sensitive applications: data retrieval
(request/response) and page generation. Each response mes-
sage is triggered by a 1.5K-byte (MTU) request from the
receiver to the senders. The senders reply with a message with
variable size uniformly chosen from {5, 10, 20, 50, 93}KB.
The inter-arrival time of initiating requests follows exponential
distribution with mean 4, 5, 10ms (A Poisson random process

6

Fig. 8. Testbed setup

with arrival rate 250, 200, 100 requests per server per second).
Each server randomly picks another server to send request.

Testbed: We built a spine-leaf (8 servers, 2 leaf or Top-of-
rack & 4 spine switches) testbed to create 4 paths between any
pair of servers from 2 racks (Figure 8). Each path corresponds
to a spine switch. We use Pronto-3295 switches and Dell
PowerEdge R320 servers, each with a quad core Xeons E5-
1410 CPU and 1GbE NIC, and with Debian 6.0 (kernel 2.6.32-
5) installed. XPath [55] is enabled by default.

We generate background flows to create network con-
gestion. For the 4 servers on one rack, each randomly
chooses another server in the other rack, and sends a flow
of 10MB using DCTCP on a random path. When a flow
finishes, the server will start another one. In this way, each
path has the same probability for different degrees of con-
gestion (1/256, 3/64, 27/128, 27/64, 81/256 chance to have
0, 1, 2, 3, 4 flows, respectively). Unless specified otherwise,
background flows are in a separate queue (totally 2 queues
are used), and switches use WRR for these 2 queues.

A. Inspecting Design Choices

Cloudburst incorporates three design choices: 1) Cloudburst
uses LTC to encode the message, and runs the ”burst-until-
received” protocol; 2) Cloudburst spreads the encoded packets
on multiple paths, obliviously taking advantage of uncongested
paths; 3) the switches perform aggressive dropping with tiny
queues for Cloudburst flows. We now study the impact of each
of these decisions progressively.

We run the all-to-all pattern with varying request rates
(each for 10 minutes), and plot the p99 completion times for
{5, 20, 93}KB flows in Figure 9,10&11, respectively. We take
DCTCP as a reference (parameter setting follows §V-B). We
compare the following schemes:
• A: FEC (Design Choice 1). We encode the message into

encoded packets, and send the packets at line rate using
UDP on a randomly chosen single path.

• B: A + Multipath (Design Choice 1&2). Senders spread
the encoded packets of each flow on multiple paths.

• C: A + Aggressive Dropping (Design Choice 1&3).
Senders send encoded packets on a single path, and
switches aggressively drop packets by limiting buffering.

• D: Cloudburst (Design Choice 1,2,&3). Cloudburst com-
bines all three design choices.

Impact of FEC: Cloudburst uses FEC to perform loss
recovery. Consider a simple mathematical model: message
size is M packets, and link capacity is C packet/s. Assume
the packet drop probability is pd on a path. If a packet

DCTCP

A

B

C

Cloudburst

0us

1000us

2000us

3000us

Request/Second
800 1600 2000

Fig. 9. p99 Completion Time (5KB)

DCTCP

A

B

C

Cloudburst

0us

2000us

4000us

6000us

8000us

Request/Second
800 1600 2000

Fig. 10. p99 Completion Time (20KB)

DCTCP

A

B

C

Cloudburst

0us

10,000us

20,000us

30,000us

Request/Second
800 1600 2000

Fig. 11. p99 Completion Time (93KB)

is lost, a sender transmitting at link capacity without cod-
ing takes M

C s to retransmit it, and the expected latency is
ED = (1 − pd)MC

∑∞
i=0(i + 1)pid = M

(1−pd)C
. Thus, with a

larger pd (aggressive dropping), D takes more time to recover
a lost packet. Encoding essentially sends multiple packets’
information at the same time. For degree d, d original packets
are XOR’d for each encoded packet. In this way, a packet do
not have to wait for M

C to be retransmitted. For each encoded
packet, the sender randomly chooses d packets, thus it takes
M
dC to deliver all the packet’s information. Therefore, the time
to receive information of all packets becomes M

d(1−pd)C
, d

times smaller than ED. However, FEC alone cannot work.
Scheme A keeps generating encoded packets, and sends them
on a single path. We see that, the tail latency is 51.12% longer
compared to DCTCP across all message sizes at 2000 Request
per second (rps). This is caused by the queueing created by the
aggressive sending of encoded packets. In contrast, DCTCP
controls the queueing by enforcing a small queue at the switch,
which allows the end-hosts to react to congestion quickly.

Impact of Multipath: Queueing is created when back-
ground flows choose the same path due to imperfect load
balancing. Good load balancing is difficult to achieve for TCP
flows, because in-order packet delivery is expected. However,
the same is not true for erasure-coded flows, as there is no
order between encoded packets and the original message is
reconstructed as a whole. This allows for easy implementation
of load balancing: the sender can simply spray encoded
packets on multiple paths. Scheme B does exactly this. We
observe that, with evenly load balanced FEC flows, the tail
latency is improved by 44.52% for 5KB messages across all
loads. This improvement is smaller with increasing message
size (23.88% for 93KB message), because larger messages

7

take longer to decode (Figure 7). Compared to DCTCP, we
see the same trend: B outperforms DCTCP for short messages
(tail latency is 16.24% shorter for 5KB) and sightly worse for
long messages (tail latency is 5.89% longer for 93KB). This is
because Scheme B spreads traffic to all available paths evenly,
while DCTCP is vulnerable to imperfect load balancing.

Impact of Aggressive Dropping: To counter A’s queueing,
we can also limit the queue depth. Scheme C uses FEC and
aggressive dropping on a single path. In Figure 10&11, C is
similar to DCTCP for 20KB and 93KB messages. For 5KB
short messages, C’s tail latency is 51.42% shorter than that of
DCTCP, because DCTCP relies on timeouts to discover packet
loss for short messages. In contrast, C proactively retransmits
encoded packets despite dropping.

Summary: With all three design points, we have Cloud-
burst. With erasure coding (Design Choice 1), each encoded
packet can help recover any of the d original packets. With
multipath forwarding (Design Choice 2), packets are spread on
all paths evenly, thus exploiting uncongested paths obliviously.
Finally, aggressive dropping (Design Choice 3) ensures that
packets arriving at the receiver experience deterministically
low queueing delay, because packets that encounter any queue
build-up are dropped. Compared to DCTCP, Cloudburst re-
duces the tail latency by 75.32% (averaged over all sizes).

B. Comparing with prior schemes

We proceed to compare Cloudburst with existing schemes
that are implementable in commodity DCNs:
• DCTCP [1] + ECMP: RTOmin is set to 10ms. ECN

marking threshold is set to 65 packets. All flows share
the same switch queue.

• PIAS [2]: We implemented PIAS with 2-level feedback
queue and set the first threshold to be 95KB, so that all
short flows or messages have highest priority.

• Replicated DCTCP: Transmitting flows with same con-
tent using DCTCP on 2-4 paths [56] (paths are randomly
chosen). All flows share the same switch queue.

• MPTCP [37], [38]: Using tc in Linux, MPTCP flows are
tagged with DSCP value for the short flow queue.

We run the all-to-all request/response traffic pattern, and
collect message completion time (MCT) for each scheme.

Average Latency: In Figure 12, despite the en/decoding
overheads, Cloudburst performs similarly to PIAS for different
request arrival rates in terms of average MCT. MPTCP shows
the worst performance, because if any congested path exists,
MPTCP is bound to experience congestion, prolonging MCT.
Among the DCTCP-based schemes, for low request rate (800
r/s), DCTCP with the most duplicated flows (4) achieves the
best performance, as it transmits on all paths, thus can always
avoid congestion. However, as the request rate increases, the
performance of Replicated DCTCP starts to degrade, because
the replication essentially multiplies the load, leading to con-
gestion and packet drops.

Tail Latency: In Figure 13, for p99 MCT, Cloudburst
outperforms all the other schemes. The p99 MCT captures the
tail latency events (e.g. long queueing, packet loss). At 2000

Cloudburst
PIAS
DCTCP+ECMP
DCTCP-2 Rep.
DCTCP-4 Rep.
MPTCP

0us

500us

1000us

1500us

Request/Second
800 1600 2000

Fig. 12. Average Message Completion Time

Cloudburst
PIAS
DCTCP+ECMP
DCTCP-2 Rep.
DCTCP-4 Rep.
MPTCP

0us

10,000us

20,000us

Request/Second
800 1600 2000

Fig. 13. p99 Message Completion Time

800 r/s 1600 r/s 2000 r/s Average
5KB 1.221 1.241 1.381 1.281
10KB 1.478 1.133 1.367 1.331
20KB 1.398 1.972 1.875 1.748
50KB 1.167 1.311 1.643 1.373
93KB 1.542 1.928 1.676 1.715
Average 1.361 1.517 1.591 1.490

Fig. 14. Coding rates of experiments in Figure 12,13

r/s, its tail latency is over 60.06% (63.69%) less than that of
PIAS (DCTCP+ECMP). This is because Cloudburst packets
are encoded with redundancy, thus flows need not wait for
retransmission timeout, unlike TCP variants.

Coding Overhead: In Table 14, we list the coding rates
in Figure 12&13, which is the ratio of the number of sent
packets over the number of packets in the original message.
The average coding rate is 1.49, i.e. Cloudburst adds ∼ 49%
more traffic load in the experiments.

C. Cloudburst Deep Dive

In this section, we use a series of targeted experiments to
further understand Cloudburst.

Impact of incast: We first examine the incast scenario.
We have 4 senders on one rack sending 90KB (60 pkts)
messages to a receiver on the other rack, and set receiver’s
ToR switch buffer size to 100KB (with no traffic to other
ports, the total switch buffer size for this port is the sum of
shared and dedicated buffer). The flows start at the same time
and are evenly distributed among the senders. We increase
the number of concurrent flows, N , and measure the time
from the start to the last flow. Figure 15 shows the average
flow completion times (FCT) with the increase of N . We find
that, as N grows larger, the performances of different schemes
start to diverge, and DCTCP-based schemes (including PIAS)
start to have increasingly longer FCT. In contrast, Cloudburst
shows consistently low FCT under incast, and its FCT grows
almost linearly with N . The key reason is that, unlike TCP,
Cloudburst’s aggressive burst-until-received protocol does not
require a timeout to discover packet loss, which is bound to
happen in incast. A Cloudburst flow in an incast proactively
retransmits without need to discover a packet loss.

8

Cloudburst

PIAS

DCTCP+ECMP

DCTCP-2 Rep.

DCTCP-3 Rep.

DCTCP-4 Rep.

MPTCP

m
s

0

200

400

600

Number of Concurrent Flows (N)

0 20 40 60 80 100

Fig. 15. Incast: Average Completion Time

No Failure

1 Fail Path

2 Fail Paths

3 Fail Paths
0us

5000us

Request/Second

800 1600 2000

Fig. 16. Failure: p99 Completion Time

Impact of failures: When link/switch failures happen, some
paths may become unavailable. We evaluate how Cloudburst
handles such scenario. We vary the number of failed paths,
and compare p99 FCT. As shown in Figure 16, with increasing
number of failed paths, the p99 FCT increases gradually: for
2000rps, from 5412µs to 6907µs. As expected, the scenario
with the most failed paths performs the worst. This is because,
when there is only one path, the tiny buffer on the switch
may drop many packets on this path, as Cloudburst senders
continuously resend encoded packets on this path to recover
the drops. This shows Cloudburst is sensitive to the existence
of multipath, but not the number of available paths.

D. Large-scale Simulations

We complement the testbed experiments by simulating
Cloudburst in a large DCN. We use a leaf-spine topology with
144 hosts, 9 leaf (ToR) switches, and 4 spine (Core) switches.
Each leaf switch has 16× 10Gbps downlinks and 4× 40Gbps
uplinks to the spine. The base RTT across the spine (4 hops) is
20µs. We generate the all-to-all traffic workload as above, and
fix the traffic load to 2000rps. We implemented Cloudburst
based on ns-2 simulation of QJump [57]. The en/decoding
times of Cloudburst are obtained from experiments (not shown
due to space limitation), and are added to Cloudburst’s FCT
measurement. We compare Cloudburst with the following:
• DCTCP [1]: We configure DCTCP with the recom-

mended ECN marking threshold of 65 packets.
• pFabric [21]: Queue size is 34 packets (2×BDP), initial

window is 17 packets, and RTOmin is 1ms.
• QJump [23]: Based on topology, we configure the min-

imum bandwidth R = 10Gbps, cumulative switching
delay ε = 4us, P = MTU = 1.5KB. For messages, we
set the throughput factor f = 1 (guaranteed latency); for
background flows, we set f = n (maximum throughput.
n = 144, the total number of end-hosts).

• Expresspass [42]: For credit packet, the packet size is 84
bytes and the queue size is 10 packets; for data packet,
the packet size is 1538 bytes and the queue size is 100
packets. The credit rate is 500Mbps.

Tail latency: We first compare the tail latency. Figure 17
shows p99 FCT. For small message size (5KB), the difference

5KB 20KB 93KB

10ms

20ms
40ms

 DCTCP
 CLoudburst
 pFabric
 QJump
 Expresspass

Fig. 17. p99 Completion Time

Fig. 18. Choosing r in 2:1 over-subscribed network

is insignificant. As size grows larger, Cloudburst begins to
show its advantage over the others. The main reason is that
TCP-like schemes takes at least RTOmin to recover loss.
Since packet loss is captured by the tail latency, Cloudburst
outperforms DCTCP, pFabric, and QJump by 40.12%, 24%,
and 29.63%, respectively. To our surprise, our result shows
that Expresspass performs the worst among all the schemes.
We imagine there are two main reasons: 1) it requires one
additional RTT for credit allocation, and 2) such credit-based
algorithm is fundamentally not suitable for mice flows in a
dynamically changing environment, because it is very hard to
set up an appropriate amount of credits for short-live flows.

Impact of over-subscription: We further examine how
Cloudburst performs in over-subscribed networks. We reduce
all ToR-to-Core links’ capacity to 20Gbps, creating a network
with 2:1 over-subscription. We run this experiment for DCTCP
and Cloudburst. For Cloudburst, we vary r, the rate limit in
Algorithm 1, from 0.1 (sending at 1Gbps) to 1 (10Gbps), and
collect MCTs. We summarize the results in Figure 18 normal-
ized to DCTCP. We find that, for varying sizes, choosing r
close to the over-subscription ratio results in higher tail latency
reduction. If r is too small, the sender is not sending enough
to compensate for the aggressive dropping, and the message
can take longer to finish. If r is too large, the senders may
overload the network and cause more frequent packet drops,
which is bad for longer messages. Overall, when r is chosen
appropriately (∼ 0.5), the MCT reduction is > 12.88% for all
message sizes. Therefore, we suggest setting the sending rate
r (in Algorithm 1) to the over-subscription ratio.

VI. CONCLUSION

We present the design, implementation, and evaluation of
Cloudburst — a simple scheme to cut long tail latency of
message delivery by proactively sending FEC-coded packets
generated from the messages on multipath in parallel, thus
avoiding complexities like prior solutions. Cloudburst is read-
ily deployable in today’s commodity DCNs. We implemented
a Cloudburst prototype, and validated its performance with ex-
tensive testbed experiments as well as large-scale simulations.
Acknowledgement: This work is supported in part by the
Hong Kong RGC TRS T41-603/20R, GRF-16215119 and
GRF-16213621. We thank the feedback from the anonymous
reviewers. Kai Chen is the corresponding author of this paper.

9

REFERENCES

[1] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B.
Prabhakar, S. Sengupta, and M. Sridharan, “Data center TCP (DCTCP),”
In ACM SIGCOMM 2010.

[2] W. Bai, L. Chen, K. Chen, D. Han, C. Tian, and H. Wang, “Information-
Agnostic Flow Scheduling for Commodity Data Centers,” In NSDI 2015.

[3] D. Zats, T. Das, P. Mohan, D. Borthakur, and R. Katz, “DeTail:
reducing the flow completion time tail in datacenter networks,” In ACM
SIGCOMM 2012.

[4] B. Vamanan, J. Hasan, and T.N. Vijaykumar. “Deadline-aware datacenter
tcp (D2TCP),” In ACM SIGCOMM 2012.

[5] V. Vasudevan, A. Phanishayee, H. Shah, E. Krevat, D. G. Andersen, G.
R. Ganger, G. A. Gibson, and B. Mueller, “Safe and Effective Fine-
grained TCP Retransmissions for Datacenter Communication,” In ACM
SIGCOMM 2009.

[6] W. Bai, S. Hu, K. Chen, K. Tan, Y. Xiong, “One More Config is
Enough: Saving (DC)TCP for High-speed Extremely Shallow-buffered
Datacenters,” In IEEE INFOCOM 2020.

[7] Y. Yao, “An effective go-back-N ARQ scheme for variable-error-rate
channels,” In IEEE Transactions on Communications 43, 1 (1995).

[8] E. Blanton, K. Fall, and M. Allman, “A conservative selective acknowl-
edgment (SACK)-based loss recovery algorithm for TCP,” 2003.

[9] C. E. Hopps, “Analysis of an equal-cost multi-path algorithm,” 2000.
[10] C. Guo, L. Yuan, D. Xiang, Y. Dang, R. Huang, D. Maltz, Z. Liu,

V. Wang, B. Pang, H. Chen, “Pingmesh: A large-scale system for data
center network latency measurement and analysis,” In ACM SIGCOMM
2015.

[11] G. Chen, Y. Lu,YuanMeng, B. Li, K. Tan, D. Pei, P. Cheng, L. Luo, Y.
Xiong, X. Wang, “Fast and Cautious: Leveraging Multi-path Diversity
for Transport Loss Recovery in Data Centers,” In USENIX ATC 2016.

[12] C. Guo, H. Wu, Z. Deng, G. Soni, J. Ye, J. Padhye, and M. Lipshteyn,
“RDMA over Commodity Ethernet at Scale,” In ACM SIGCOMM 2016.

[13] M. Alizadeh, T. Edsall, S. Dharmapurikar, R. Vaidyanathan, K. Chu,
A. Fingerhut, F. Matus, R. Pan, N. Yadav, G. Varghese, “CONGA:
Distributed congestion-aware load balancing for datacenters,” In ACM
SIGCOMM 2014.

[14] J. Perry, A. Ousterhout, H. Balakrishnan, D. Shah, and H. Fugal,
“Fastpass: A centralized zero-queue datacenter network,” In ACM
SIGCOMM 2014.

[15] H. Zhang, J. Zhang, W. Bai, K. Chen, and M. Chowdhury, “Resilient
Datacenter Load Balancing in the Wild,” In ACM SIGCOMM 2017.

[16] Y. Li, R. Miao, H. H. Liu, Y. Zhuang, F. Feng, L. Tang, Z. Cao,
M. Zhang, F. Kelly, M. Alizadeh, and M. Yu, “HPCC: high precision
congestion control,” In ACM SIGCOMM 2019.

[17] Y. Zhu, H. Eran, D. Firestone, C. Guo, M. Lipshteyn, Y. Liron, J. Padhye,
S. Raindel, M. H. Yahia, and M. Zhang, “Congestion control for large-
scale rdma deployments,” In ACM SIGCOMM 2015.

[18] R. Mittal, T. Lam, N. Dukkipati, E. Blem, H. Wassel, M. Ghobadi,
A. Vahdat, Y. Wang, D. Wetherall, and D. Zats, “TIMELY: RTT-based
Congestion Control for the Datacenter,” In ACM SIGCOMM 2015.

[19] G. Kumar, N. Dukkipati, K. Jang, H. M. G. Wassel, X. Wu, B.
Montazeri, Y. Wang, K. Springborn, C. Alfeld, M. Ryan, D. Wetherall,
and A. Vahdat, “Swift: Delay is Simple and Effective for Congestion
Control in the Datacenter,” In ACM SIGCOMM 2020.

[20] G. Zeng, S. Hu, J. Zhang, and K. Chen, “Transport Protocols for Data
Center Networks: A Survey,” In Journal of Computer Research and
Development 2020.

[21] M. Alizadeh, S. Yang, M. Sharif, S. Katti, N. McKeown, B. Prabhakar,
and S. Shenker, “pFabric: Minimal Near-optimal Datacenter Transport,”
In SIGCOMM 2013.

[22] A. Munir, G. Baig, S. Irteza, I. Qazi, I. Liu, and F. Dogar, “Friends, not
foes: synthesizing existing transport strategies for data center networks,”
In ACM SIGCOMM 2014.

[23] M. P. Grosvenor, M. Schwarzkopf, I. Gog, R. Watson, A. W. Moore, S.
Hand, and J. Crowcroft, “Queues Don’t Matter When You Can JUMP
Them!” In USENIX NSDI 2015.

[24] P. Cheng, F. Ren, R¿ Shu, and C. Lin, “Catch the whole lot in an action:
rapid precise packet loss notification in data centers,” In USENIX NSDI
2014.

[25] R. Mahajan, J. Padhye, S. Agarwal, and B. Zill, “High performance
vehicular connectivity with opportunistic erasure coding,” In USENIX
ATC 2012.

[26] H. Harry Liu, S. Kandula, R. Mahajan, M. Zhang, and D. Gelernter,
“Traffic engineering with forward fault correction,” In ACM SIGCOMM
2014.

[27] M. Al-Fares, A. Loukissas, and A. Vahdat, “A Scalable, Commodity
Data Center Network Architecture,” In ACM SIGCOMM 2008.

[28] A. Roy, H. Zeng, J. Bagga, G. Porter, and A. C Snoeren, “Inside the
Social Network’s (Datacenter) Network,” In ACM SIGCOMM 2015.

[29] A. Singh, J. Ong, A. Agarwal, G. Anderson, A. Armistead, R. Bannon, S.
Boving, G. Desai, B. Felderman, P. Germano, “Jupiter Rising: A Decade
of Clos Topologies and Centralized Control in Google’s Datacenter
Network,” In ACM SIGCOMM 2015.

[30] T. Benson, A. Akella, and D. Maltz, “Network Traffic Characteristics
of Data Centers in the Wild,” In IMC 2010.

[31] D. Clark, S. Shenker, and A. Falk, “GENI Research Plan (Version
4.5),” GENI Research Coordination Working Group and GENI Planning
Group. GDD (2007).

[32] B. Raghavan, and A. C. Snoeren, “Decongestion control,” In ACM
HotNets 2006.

[33] Pica8 PICOS Configuration Guide. https://docs.pica8.com. Accessed on
July 2021.

[34] G. Zeng, W. Bai, G. Chen, K. Chen, D. Han, Y. Zhu, and L. Cui,
“Congestion Control for Cross-Datacenter Networks,” In IEEE ICNP
2019.

[35] S. Floyd, “TCP and explicit congestion notification,” In ACM SIG-
COMM 1994.

[36] G. Zeng, W. Bai, G. Chen, K. Chen, D. Han, and Y. Zhu, “Combining
ECN and RTT for Datacenter Transport,” In ACM APNet 2017.

[37] D. Wischik, C. Raiciu, A. Greenhalgh, and M. Handley, “Design,
Implementation and Evaluation of Congestion Control for Multipath
TCP,” In USENIX NSDI 2011.

[38] C. Raiciu, S. Barre, C. Pluntke, A. Greenhalgh, D. Wischik, and M.
Handley, “Improving datacenter performance and ro- bustness with
multipath tcp,” In ACM SIGCOMM 2011.

[39] W. Cheng, K. Qian, W. Jiang, T. Zhang, and F. Ren, “Re-architecting
Congestion Management in Lossless Ethernet,” In USENIX NSDI 2020.

[40] IEEE. 802.11Qbb, “Priority based flow control,” 2011.
[41] M. Handley, C. Raiciu, A. Agache, A. Voinescu, A. W. Moore, G.

Antichi, and M. Wójcik, “Re-architecting datacenter networks and stacks
for low latency and high performance,” In ACM SIGCOMM 2017.

[42] I. Cho, K. Jang, and D. Han, “Credit-scheduled delay-bounded conges-
tion control for datacenters,” In ACM SIGCOMM 2017.

[43] G. Zeng, J. Qiu, Y. Yuan, H. Liu, and K. Chen, “FlashPass: Proactive
Congestion Control for Shallow-buffered WAN,” In IEEE ICNP 2021.

[44] B. Montazeri, Y. Li, M. Alizadeh, and J. Ousterhout, “Homa: A receiver-
driven low-latency transport protocol using network priorities,” In ACM
SIGCOMM 2018.

[45] S. Hu, W. Bai, G. Zeng, Z. Wang, B. Qiao, K. Chen, K. Tan, and Y.
Wang, “Aeolus: A Building Block for Proactive Transport in Datacen-
ters,” in ACM SIGCOMM 2020.

[46] S. Hu, G. Zeng, W. Bai, Z. Wang, B. Qiao, K. Chen, K. Tan, and Y.
Wang, “Aeolus: A Building Block for Proactive Transport in Datacenter
Networks,” in IEEE/ACM ToN 2021.

[47] J. W. Byers, M. Luby, M. Mitzenmacher, and A. Rege, “A digital foun-
tain approach to reliable distribution of bulk data,” In ACM SIGCOMM
1998.

[48] M. Luby, “LT codes,” In Proceedings of the 43rd Annual IEEE Sympo-
sium on Foundations of Computer Science, 2002.

[49] M. Luby, A. Shokrollahi, M. Watson, T. Stockhammer, and L. Minder,
“RaptorQ Forward Error Correction Scheme for Object Delivery,” In
RFC 6330, 2011.

[50] T. Bonald, M. Feuillet, and A. Proutiere, “Is the ’Law of the Jungle’
Sustainable for the Internet?” In IEEE INFOCOM 2009.

[51] Rust Programming Language. https://www.rust-lang.org.
[52] PicOS Routing & Switching Command Ref. https://shorturl.at/eixFG.

Accessed on July 2021.
[53] QoS: Congestion Management Configuration Guide, Cisco IOS XE

Release 3S. https://shorturl.at/svAIX. Accessed on July 2021.
[54] E. Rosen, A. Viswanathan, and R. Callon, “Multiprotocol Label Switch-

ing Architecture,” In RFC 3031, 2001.
[55] S. Hu, K. Chen, H. Wu, W. Bai, C. Lan, H. Wang, H. Zhao, and C.

Guo, “Explicit Path Control in Commodity Data Centers: Design and
Applications,” In USENIX NSDI 2015.

[56] A. Vulimiri, P. B. Godfrey, R. Mittal, J. Sherry, S. Ratnasamy, and S.
Shenker, “Low latency via redundancy,” In ACM CoNEXT 2013.

[57] QJUMP ns-2. https://github.com/camsas/qjump-ns2. Accessed on July
2021.

10

