
Enabling ECN for Datacenter Networks with RTT Variations

Junxue Zhang1, Wei Bai2, Kai Chen1,3
1SING Lab, Hong Kong University of Science and Technology

2Microsoft Research 3Peng Cheng Laboratory

ABSTRACT
ECN has been widely employed in production datacenters to de-
liver high throughput low latency communications. Despite being
successful, prior ECN-based transports have an important draw-
back: they adopt a fixed RTT value in calculating instantaneous
ECN marking threshold while overlooking the RTT variations in
practice.

In this paper, we reveal that the current practice of using a fixed
high-percentile RTT for ECN threshold calculation can lead to
persistent queue buildups, significantly increasing packet latency.
On the other hand, directly adopting lower percentile RTTs re-
sults in throughput degradation. To handle the problem, we intro-
duce ECN , a simple yet effective solution to enable ECN for RTT
variations. At its heart, ECN inherits the current instantaneous
ECN marking (based on a high-percentile RTT) to achieve high
throughput and burst tolerance, while further marking packets
(conservatively) upon detecting long-term queue buildups to elim-
inate unnecessary queueing delay without degrading throughput.
We implement ECN on a Barefoot Tofino switch and evaluate
it through extensive testbed experiments and large-scale simula-
tions. Our evaluation confirms that ECN can effectively reduce
latency without hurting throughput. For example, compared to the
current practice, ECN achieves up to 23.4% (31.2%) lower average
(99th percentile) flow completion time (FCT) for short flows while
delivering similar FCT for large flows under productionworkloads.

CCS CONCEPTS
• Networks → Data center networks.

KEYWORDS
Datacenters, ECN, RTT Variations, AQM

ACM Reference Format:
Junxue Zhang, Wei Bai, and Kai Chen. 2019. Enabling ECN for Datacen-
ter Networks with RTT Variations. In The 15th International Conference
on emerging Networking EXperiments and Technologies (CoNEXT ’19), De-
cember 9–12, 2019, Orlando, FL, USA. ACM, New York, NY, USA, 13 pages.
https://doi.org/10.1145/3359989.3365426

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACMmust be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CoNEXT ’19, December 9–12, 2019, Orlando, FL, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6998-5/19/12. . . $15.00
https://doi.org/10.1145/3359989.3365426

1 INTRODUCTION
Datacenter applications desire high throughput (e.g., data mining
and storage) and low latency (e.g., web search and memory cache)
communications. To achieve this, Explicit Congestion Notification
(ECN) has been widely used, and many ECN-based transports,
such as DCTCP [12] and DCQCN [39], have been proposed and
adopted by industry [1, 2, 28, 35].

ECN-based transports require both ECN-aware rate control at
the end host and ECN marking at the switch. ECN marking is ac-
complished by an active queuemanagement (AQM) policy. To han-
dle transient bursts which are common and harmful in production
environments [38], datacenter AQM solutions usually mark pack-
ets aggressively based on instantaneous congestion states. For ex-
ample, DCTCP [12] modifies the original RED1 [20] to leverage the
instantaneous queue length to mark packets, thus achieving good
burst tolerance.

For instantaneous ECN marking, the choice of the marking
threshold is critical as it directly affects the tradeoff between
throughput and latency [12, 37]. Despite being successful, prior
ECN-based transports have shared an important drawback: they
only adopt a fixed RTT2 value in calculating the marking thresh-
old without considering RTT variations.

However, large RTT variations are common in datacenters as
different flows traverse different processing components, e.g., net-
work stack, hypervisor and middlebox. For example, compared to
intra-service flows, inter-service flows experience large extra pro-
cessing delays from the layer 4 load balancer [19, 33]. Furthermore,
the processing delay of a given component also varies depending
on workloads. With a very simple testbed (§2.2), we show these
factors can easily lead to ∼3× RTT variations, which also implies
even larger RTT variations in real production.

We point out, through testbed experiments, that the current
practice of using a fixed high-percentile RTT for ECN threshold
calculation can lead to persistent queue buildup, significantly in-
creasing packet latency. For example, our experiment results show
that using 90th percentile RTT (as suggested by [37]) can achieve
high throughput, but the latency of short flows is increased by
over 50% due to queueing delay (§2.3). On the other hand, directly
adopting lower percentile RTTs does not solve the problem either,
as it results in throughput degradation.

Motivated by this, we seek an ECNmarking scheme that can de-
liver high throughput and low latency simultaneously, in the pres-
ence of high RTT variations. To this end, we present ECN (§3), a
simple yet effective solution to achieve our goal. At its heart, ECN
marks packets based on both the instantaneous and persistent con-
gestion states. On the one hand, ECN inherits the advantage of

1We call this version of RED as DCTCP-RED in this paper.
2In this paper, we use RTT to denote the base RTT without the queueing delay in
datacenters.

233

CoNEXT ’19, December 9–12, 2019, Orlando, FL, USA Junxue Zhang, Wei Bai, and Kai Chen

current instantaneous ECN marking based on a high-percentile
RTT to achieve high throughput and burst tolerance. On the other
hand, to eliminate the persistent queueing caused by flows with
small RTTs, ECN further marks packets when observing long-
term switch queue buildups. This is performed conservatively in
order not to affect throughput (§3.2).

By nature, ECN works with both queue length and sojourn
time (i.e., the amount of time a packet spends in the queue) as con-
gestion signals. In our implementation we adopt sojourn time in
order to be compatible with packet scheduler with traffic dynam-
ics [16, 31].

We implement an ECN prototype with ∼500 lines of P4 code
and compile it to a Barefoot Tofino [5] switch using Barefoot Capi-
lano SDE [9] (§4). Our implementation uses little switch resource,
e.g., 5 32-bit register arrays and 2 64-bit register arrays. We ad-
dress two practical challenges in the implementation: 1) To ensure
the correctness, we use emulation to get a 32-bit microsecond-
granularity system time; 2) To update switch states at line rate,
we leverage match action tables to implement the complex control
flow.

We build a small 10Gbps testbed with 8 servers connected to
the above Tofino switch. Our experiments with realistic work-
loads [12, 22] show that, by eliminating persistent queue buildups,
ECN can deliver up to 23.4% lower average FCT and 31.2% lower
99th percentile FCT for short flows compared to DCTCP-RED
(where the ECN marking threshold is based on a high-percentile
RTT according to current practice) while still maintaining compa-
rable throughput for large flows. Furthermore, we find that instan-
taneous ECN marking is integral to ECN to tolerate bursts and
reduce packet drops. For example, ECN outperforms CoDel [31]
(which marks packets only based on persistent queue buildups in-
stead of instantaneous queueing) by more than 50.0% FCT reduc-
tion for short flows.

To complement small-scale testbed experiments, we further per-
form larger-scale simulations to deep-dive into ECN (§5.3). Our
simulation results further confirm the superior performance of
ECN . For example, compared to DCTCP-RED, ECN can achieve
up to 37.9% lower FCT for short flows. Furthermore, from the mi-
croscopic view of switch queues, we show ECN can effectively
eliminate queue buildups by keeping the switch queue length
95.6% lower than that of DCTCP-RED (from 182 packets to 8 pack-
ets). Finally, we show ECN is robust to parameter settings and
arbitrary packet schedulers.

To make our work easy to reproduce, we have made our simula-
tion code available at https://github.com/snowzjx/ns3-ecn-sharp.

2 BACKGROUND AND PROBLEMS
2.1 Instantaneous ECN Marking
ECN-based transports consist of two parts: ECN marking at the
switch and ECN-aware rate control at the end host. ECN marking
is accomplished by an active queue management (AQM) policy. To
handle transient bursts which are common in production datacen-
ters [38], most datacenter AQM solutions [12, 16, 39] aggressively
mark packets based on the instantaneous congestion states, e.g.,
instantaneous queue length.

For instantaneous ECN marking, the choice of the marking
threshold is important as it directly affects the tradeoff between
throughput and latency [12, 37]. Most ECN-based datacenter con-
gestion control algorithms [12, 36, 37] set the two thresholds of
RED to the same value, Kmin = Kmax = K . Given the low statisti-
cal multiplexing of large flows in datacenter environments [12], to
fully utilize link bandwidth while delivering low latency, the ideal
ECN marking threshold K is given as follows [12, 18, 37]:

K = λ ×C × RTT (1)

To calculate and configure the ideal ECN marking threshold at the
switch, datacenter operators must get values for three parameters:
λ,C and RTT . λ is a parameter determined by the congestion con-
trol algorithm at the end host. Different congestion control algo-
rithms have different ECN reaction mechanisms, resulting in dif-
ferent λ. For example, ECN (regular ECN-enabled TCP) cuts the
window by half in the presence of ECN marks, thus having λ = 1.
DCTCP reduces the window in proportion to the fraction of ECN
marked packets, thus having amuch smaller λ (0.17 in theory [13]).
C is the bottleneck link capacity, which can be easily obtained for
threshold calculation as datacenter operators have full knowledge
of the network.

RTT is the base round-trip time and is the focus of this paper.
Here the base RTT does not include switch queueing delay. In cur-
rent practice, people use a fixed RTT value for calculation, implic-
itly assuming that base RTTs in datacenters are relatively stable
due to the small cable length (low propagation delay variations),
e.g., 200-300 meters [23], and high link capacity (low transmission
delay variations). However, we show this does not hold in reality
(§2.2) and causes problems (§2.3).

2.2 RTT Variations in Datacenters
The base RTT consists of three parts: transmission delay, prop-
agation delay, and processing delay. As discussed above, trans-
mission delay and propagation delay are small inside datacenters.
The transmission time of a 1.5KB packet on a 10Gbps link is only
∼1.2μs. The propagation delay of a 1KM cable is only 3.3μs. How-
ever, the processing delay can be as high as tens (or even hundreds)
of μs, dominating the base RTT. Thus, the variation of the base RTT
is actually caused by the variation of processing delay.

In fact, the processing delay in datacenters varies vastly as dif-
ferent flows traverse different processing components, e.g., net-
work stack, hypervisor, and middlebox. The more processing com-
ponents a flow traverse, the larger delay it experiences. For exam-
ple, in our production datacenters, we use a layer-4 software load
balancer (SLB) [33] to process and balance the inter-service traffic
(e.g., traffic from compute to storage)3. Inter-service inbound traffic
is first delivered to the SLB Multiplexer (a scalable set of dedicated
servers), then forwarded to the application server, thus experienc-
ing extra processing delay compared to intra-service traffic. Fur-
thermore, the processing delay of a given component also varies
depending on the loads.

We use testbed experiments to demonstrate the variations of
processing delay. In our testbed, 3 hosts are connected to a Mel-
lanox SN2100 switch via 100 Gbps links. Each server is equipped

3A large portion of inter-service traffic stays within the same datacenter [33].

234

Enabling ECN for Datacenter Networks with RTT Variations CoNEXT ’19, December 9–12, 2019, Orlando, FL, USA

Case #1 Case #2 Case #3 Case #4 Case #5

0

50

100

150

200

AVG:39.3 63.9 69.3 99.2 105

Figure 1: [Testbed] RTT variations.
Varying processing delay has enlarged
RTT variations up to 2.68 times.

50 100 150 200 250
0.8

1

1.2

1.4

1.6

1.8

Figure 2: [Testbed] Instantaneousmark-
ing cannot achieve high throughput and
low latency simultaneously.

1 2 3 4 5

1

1.5

2

2.5

3

Figure 3: [Testbed] Larger RTT varia-
tions cause more degradation to perfor-
mance.

with a 100 Gigabit Ethernet Adapter. We enable DCTCP [12] at the
end host. A host installed with ApacheHTTP Serverworks as the
web server. We generate HTTP requests using ApacheBench on
another host to fetch a 1-byte web page. On the client host, we in-
stall a modified TCP Probe to record smoothed RTTs (srtt) mea-
sured by Linux kernel. For each experiment, we generate 1000 re-
quests and get ∼3000 RTT samples. Note that a new request is sent
when we receive the previous response. Since there is no conges-
tion and hop difference, the RTT variation is caused by processing
delay. We consider the following five cases and show correspond-
ing results in Figure 1 and Table 1.

1. Network Stack: In this experiment, the requests from the client
are directly sent to the server. Therefore, processing delay mainly
comes from network stacks of the client and server. As shown in
Table 1, the average RTT and standard deviation are 39.3μs and
12.2μs, respectively. We think the variation is due to multiple fac-
tors, e.g., kernel scheduling, advancedNIC techniques such as TSO,
GSO, GRO and TCP delayed ACK mechanism.

2. Network Stack + SLB: In this experiment, we add a layer 4 SLB
between the client and the server. SLB is widely used to process
inter-service traffic inside the datacenters [33]. Our SLB is another
host installed with LinuxVirtual Server (LVS)[11]. The requests
are first sent to the SLB. Then SLB forwards them to the backend
server. The responses are directly returned to the client, without
traversing the SLB. With SLB, the average RTT and standard devi-
ation are increased to 63.9μs (1.62X) and 18.3μs, respectively. The
processing latency imposed by the SLB is ∼24.6μs.
3. Network Stack + Hypervisor: In this experiment, we use a
quad-core virtual machine (VM) as the web server. Therefore, com-
pared to the first experiment, request and response packets expe-
rience extra processing latencies on the hypervisor. On the hyper-
visor, we only add a necessary bridge rule without installing other
complex rules, which is much simpler than the configuration in
production environments. The average RTT and standard devia-
tion are 69.3μs (1.76X) and 18.8μs, respectively. The extra latency
caused by the hypervisor is ∼30μs.

4. Network Stack + SLB + Hypervisor: In this experiment, we
combine the above two experiments. With the SLB and hypervi-
sor, the average RTT is increased from 39.3μs to 99.2μs (2.52X),
compared to the first one.

5. Network Stack (High Load) + SLB + Hypervisor: In this ex-
periment, to emulate the high load, we use stress to run 4 workers
spinning on sqrt() on the web server VM. As a result, the average
RTT reaches 105.5μs, which is around 2.68X larger than that in the
first experiment.

Summary: We use the above simple experiments to demonstrate
the causes of RTT variations in datacenters. Network components,
such as Network Stack, SLB, Hypervisor, and etc., add varying and
unpredictable variations to the RTT, especially when they are un-
der different loads. Furthermore, different flows may traverse dif-
ferent numbers of components, making RTT variations more se-
vere. Note that all of the experiments are conducted in very simple
settings, e.g., only a single bridge rule in the hypervisor, and very
low loads (except for the last one). We believe that the actual RTT
variations in production environment would bemuch larger due to
complex configurations, high system loads, and more processing
components. For example, Rohan Gandhi et al. [21] showed that
the SLB in Microsoft datacenter adds a median latency of 196us to
packets while the 90th percentile can reach as high as 1ms . More-
over, the base RTT varies across both flows and time. As the last
two experiments show, the base RTT of a given flow also varies
when the load of a processing component changes.

2.3 Current Practice and Problems
Existing solutions [12, 16, 18, 37] only adopt a fixed RTT value
for ECN marking threshold calculation while overlooking RTT
variations, which can cause severe problems. For example, op-
erators get RTT distributions using tools such as PingMesh [24]
and in current practice they use a high percentile RTT (e.g., 90th
percentile [37]) to derive the threshold. While this approach can
achieve high throughput for flows with different RTTs in general,
for flows with small RTTs, it results in persistent queue buildups,
causing queueing delay. On the other hand, directly using low per-
centile RTTs (e.g., 50%) or average RTT canmitigate such queueing

235

CoNEXT ’19, December 9–12, 2019, Orlando, FL, USA Junxue Zhang, Wei Bai, and Kai Chen

Combination of different processing components Mean (μs) STD (μs) 90 percentile(μs) 99 percentile(μs)
Networking Stack 39.3 12.2 59.0 79.0
Networking Stack + SLB 63.9 18.3 87.0 121.0
Networking Stack + Hypervisor 69.3 18.8 91.0 130.0
Networking Stack + SLB + Hypervisor 99.2 23.0 129.0 161.0
Networking Stack(high load) + SLB + Hypervisor 105.5 23.6 138.0 178.0

Table 1: [Testbed] RTT statistics. Different combinations of processing components result in up to 2.68× RTT variations in a
very simple testbed setting, implying that the actual RTT variations in production datacenters would be even larger.

latency, but cause flows with high RTTs to suffer from throughput
degradation.

Since we only have three 100Gbps adapters, we build a new
testbed to demonstrate this dilemma. We use 8 endhosts with
10Gbps Ethernet adapters, connecting to the Mellanox SN2100
switch. The cable speed is 10Gbps (with QSFP+ to SFP+ Adapter).
We generate traffic according to theweb searchworkload [12] (Fig-
ure 5). The average load of the bottleneck link is 50%. To emulate
RTT variations, we use netem [6]. netem is a Linux traffic control
component which can emulate increased delay, packet loss, dupli-
cation, and etc.. It allows adding delays in microseconds. We use
netem to add extra delay at senders to emulate RTT variations.

Assume the minimum RTT and maximum RTT within the net-
work are RTTmin and RTTmax respectively, we define RTT varia-
tion as RTTmax /RTTmin here.

Observation 1: Instantaneous ECN marking cannot achieve
high throughput and low latency simultaneously. First, we let
the RTT variation to be 3× (70μs to 210μs4) and choose different
ECN marking thresholds. We change the marking threshold from
50KB to 250KB. The FCT statistics are shown in Figure 2. The re-
sults have been normalized to the FCT achieved by the threshold
50KB. If we choose high percentile RTTs to derive the threshold,
such as 90th percentile (250KB) according to the current practice,
short flows suffer from 119.2% longer 99th percentile FCT (581μs to
265μs). On the contrary, setting threshold based on low percentile
RTTs leads to throughput loss. For example, using average RTT
(∼ 100KB) causes 8% throughput degradation (3701μs to 3426μs).
Thus, none of the values in the range can simultaneously achieve
high throughput and low latency.

Observation 2: Larger RTT variations enlarge performance
loss. Second, we try to understand how the RTT variations af-
fect the performance. We change the RTT variation from 2× (70μs
to 140μ) to 5× (70μs to 350μ) and set the ECN marking thresh-
old based on the average and 90th percentile RTTs accordingly.
The FCT statistics are shown in Figure 3, normalized to the result
achieved by average RTT. When the variation is 2×, the thresh-
old with the average RTT leads to 6.7% throughput loss (3375μs
to 3163μs) compared to that with the 90th percentile. The gap
increases to 29.8% (4464μs to 3439μs) when the RTT variation
reaches 5×. Similarly, for 99th percentile FCT of short flows, the
performance degradation caused by current practice has increased
from 41.1% (404μs to 287μs) to 198.0% (995μs to 334μs) when the

4 The emulated RTT denotes end-to-end base RTT.

RTT variations rise from 2× to 5×. Thus, larger RTT variation has
enlarged the performance degradation.

Summary: Instantaneous ECN marking cannot deliver both high
throughput and low queueing delay under RTT variations. The
performance degrades more as the RTT variation grows.

3 ECN
3.1 Design Choice
Given the above dilemma, we seek to develop a solution to achieve
high throughput and low queueing delay in datacenters even with
high RTT variations. In the meanwhile, the solution should be re-
silient to traffic burstiness.

As shown in §2.3, the crux of existing instantaneous ECNmark-
ing is that the configured static threshold cannot adapt to the base
RTTs of active flows. Given the emerging reconfigurable switch-
ing chips [5], a straightforward solution is a radical switch AQM
that tracks the base RTTs of active flows (both spatially and tem-
porally) and dynamically adjusts the instantaneous threshold on
each individual switch correspondingly. For example, we can use
the average base RTTs of all active flows to compute the threshold
in Equation 1. However, it is challenging to measure real-time base
RTTs. The reason is that, to exclude the noise of queueing delay,
we first need to measure real-time processing delay of each com-
ponent in both directions and embed this information into packet
headers. This is a huge burden for operators as they need tomodify
all network processing components in datacenters.

Therefore, we take one step back and seek a lightweight solu-
tion. Our lesson learned from §2.3 shows that the current practice
of using a high percentile RTT to derive the instantaneous thresh-
old is able to achieve high throughput and burst tolerance, but suf-
fers from persistent queues when the base RTTs of active flows
are small. Inspired by this, our design choice is to inherit the cur-
rent practice for throughput and burst tolerance, and augment it
with a scheme to detect and eliminate persistent queues. As a re-
sult, we introduce ECN : 1) inherits instantaneous ECN marking
based on a high percentile RTT to handle bursts and maintain high
throughput; and 2) further enables ECN marking upon presistent
queue buildups to eliminate unnecessary queueing delay without
incurring throughput loss.

236

Enabling ECN for Datacenter Networks with RTT Variations CoNEXT ’19, December 9–12, 2019, Orlando, FL, USA

Configuration Parameters
pst_target persistent queueing target
pst_interval interval to determine persistent queueing
ins_target threshold for instantaneous marking

Variables
sojourn_time sojourn time of the current packet
detected if persistent queueing is detected
marking_state if ECN has marked packets
marking_count number of marked packets
marking_next the next marking time
first_above_time when sojourn time starts to exceeds pst_target

Table 2: Parameters and variables used in ECN .

3.2 ECN Mechanism
ECN is a new AQM solution. Following the above rationale, it
marks packets based on both instantaneous and persistent conges-
tion states. A packet is marked when either one of the following
conditions decides to mark it:

• When there is a large instantaneous queue, ECN aggressively
marks packets to avoid buffer overflow.

• When there is a persistent queue, ECN conservatively marks
packets to reduce queueing delay.

By nature, ECN works with both queue length and sojourn
time (i.e., the amount of time a packet spends in the queue) as con-
gestion signals. According to Equation 1, the equivalent sojourn
time based ECN marking threshold is:

T =
K

C
=

λ ×C × RTT

C
= λ × RTT (2)

In our design and implementation, we adopt sojourn time over
queue length in order to be compatible with packet scheduler with
traffic dynamics [16, 31].

ECNmarking based on instantaneous queue: To achieve burst
tolerance, ECN employs instantaneous ECN marking. When a
packet dequeues, ECN compares the sojourn time of the packet
with the instantaneous marking threshold, T = ins_target, which
can be calculated based on Equation 2 with high percentile RTTs.
If the sojourn time exceeds the threshold, the packet gets ECN
marked.

ECN marking based on persistent queue buildups: First,
ECN tracks the minimal queueing over an interval to detect per-
sistent queue buildups. Then, it performs conservative marking
to eliminates those queues. Here, two parameters are involved: 1)
pst_interval: the time interval used to observe the queue before de-
ciding if there is persistent queueing; 2) pst_target: the persistent
queue threshold used to compare against the packet sojourn time
to control the long-term queueing. The algorithm mainly contains
the following two parts as illustrated in Algorithm 1. Table 2 shows
all parameters and variables.

Persistent queue buildups detection. ECN measures whether the
sojourn time has exceeded pst_target for at least one pst_interval
to determine long-term queueing. ECN only uses one variable

Algorithm 1: ECN marking upon persistent congestion
input : Coming packet pkt
output: Whether the pkt should be marked

1 Procudure ShouldPersistentMark(pkt)
2 detected = IsPersistentQueueBuildups(pkt)
3 if marking_state == true then
4 if detected == false then
5 marking_state = false
6 return false
7 else if now() > marking_next then
8 marking_count ++
9 marking_next += pst_interval / sqrt(marking_count)

10 return true
11 end
12 else
13 if detected == true then
14 marking_state = true
15 marking_count = 1
16 marking_next = now() + pst_interval
17 return true
18 end
19 return false
20 end
21 Procudure IsPersistentQueueBuildups(pkt)
22 if pkt.sojourn_time < pst_target then
23 first_above_time = 0
24 return false
25 end
26 if first_above_time == 0 then
27 first_above_time = now()

28 return false
29 else if now() > first_above_time + pst_interval then
30 return true
31 else
32 return false
33 end

first_above_time to record the timestamp that sojourn time ex-
ceeds pst_target for the first time (first_above_time = now()). If so-
journ time is lower than pst_target, whichmeans the queue expires,
ECN will reset first_above_time to 0. If ECN finds it has been over
one pst_interval since first_above_time (now() > first_above_time
+ pst_interval), it confirms there is persistent queueing and trig-
gers the conservative marking logic.

Conservative marking. After detecting the persistent queue
buildups, ECN conservatively marks one packet in each
pst_interval in order not to adversely affect throughput. In the
meanwhile, pst_interval is a time-varying interval that adapts to
real workloads. If the sojourn times of packets continuously ex-
ceed the threshold, ECN reduces the interval of next marking to
increase the marking probability (marking_next += pst_interval /
sqrt(marking_count)), thus reducing the buffer occupancy.

3.3 Why ECN works?
We discuss why ECN can achieve all the design goals.

High throughput & low queueing delay: Instead of directly
using a low instantaneous ECN marking threshold to aggressively
bring down the buffer occupancy at the cost of throughput loss,
ECN uses a more conservative mechanism. By tracking the min-
imal queueing over a time interval, ECN only marks packets af-
ter it determines persistent queue buildups. These queue buildups

237

CoNEXT ’19, December 9–12, 2019, Orlando, FL, USA Junxue Zhang, Wei Bai, and Kai Chen

are caused by providing excessive buffer space for flows with small
RTTs, which do not contribute to the throughput but only increase
the queueing delay. Eliminating these queues can benefit latency-
sensitive short flows without throughput degradation. We care-
fully choose the interval to be around one worst case base RTT be-
cause TCP needs one RTT to react to ECN marking. Furthermore,
the marking itself is conducted in a conservative way to mitigate
throughput loss. Only after detecting persistent queue buildups,
ECN marks one packet and schedules next marking after an in-
terval. Afterwards, ECN checks again to see whether the queue
expires or not. If not, ECN increases the marking frequency by
reducing the interval. Through both persistent queueing detec-
tion and conservative ECN marking, ECN can achieve both high
throughput and low queueing delay simultaneously.

Burst tolerance: ECN leverages the instantaneous ECN mark-
ing to achieve good burst tolerance. As discussed above, the in-
stantaneous marking scheme enables fast response to bursty traf-
fic, such as incast. Once the queue exceeds the threshold, it ag-
gressively marks the packets to tame the subsequent bursts from
senders and bring down the buffer usage. This scheme ensures a
upper bound of buffer occupancy to avoid packet loss. Further-
more, ECN ’s instantaneous marking threshold is derived base on
a high percentile RTT, which provides sufficient buffer without
causing throughput loss.

3.4 Parameter Setting
ECN has 3 key parameters: ins_threshold, pst_target and
pst_interval. We provide a rule-of-thumb to tune those parame-
ters while leaving the optimality analysis as future work. We also
conduct parameter sensitivity analysis in §5.4 to show that ECN
can achieve good performance by following the rule-of-thumb.

The instantaneous marking threshold, ins_target, can be calcu-
lated based on Equation 2. As discussed in §2.3, we use high per-
centile RTTs (e.g., 90th percentile) to derive a high instantaneous
marking threshold to avoid throughput loss.

Both pst_interval and pst_target are critical for identifying and
mitigating persistent queue buildups. pst_interval determines the
time that ECN spends tracking a queue before it confirms there
is a persistent queue buildup. It has been recommended that the
interval has to be around one RTT in order to accurately determine
the persistent queueing [31]. Thus, we set pst_interval to be around
the high percentile RTT to ensure that ECN can precisely detect
the persistent queue buildups caused by flows with smaller RTTs.
However, in real environment where traffic is very bursty, we can
set a smaller value for pst_interval to increase the marking rate to
achieve fast reaction to those dynamics.

For pst_target, theoretically, we can set a very small value for it.
The reason is that by observing the queue for an interval, we can
detect persistent queue buildups, and a lower target will further
bring down those unnecessary queues. However, in datacenters,
the queue oscillation is large due to some network settings (MTU
settings, etc.) or NIC offloading (GSO, LSO, etc.) [12]. Thus, we also
recommend setting it to be a more conservative value, which is
larger than or equal to λ × RTT , where λ is determined by the
transport protocol and RTT is the average RTT. This setting can

reduce the buffer occupancy to an acceptable value without risk-
ing throughput loss.

3.5 Discussion

ECN vs CoDel: ECN is partially inspired by CoDel [31], an
AQM solution to address the bufferbloat problem in Internet.
CoDel uses the minimal queueing over an interval to distin-
guish good queues (queues that contribute to throughput) and
bad queues (queues that do not contribute to throughput, such as
the persistent queueing mentioned above). After detecting a bad
queue, CoDel gradually reduces the marking interval to mitigate
persistent queue buildups while not degrading throughput. How-
ever, such conservative markingmakes CoDel react slowly to tran-
sient bursts, resulting in excessive packet losses. In contrast, ECN
leverages the instantaneous ECN marking to keep good burst tol-
erance. Hence, ECN can greatly outperform CoDel in incast sce-
narios. We further analyze it through simulations in §5.4.

ECN vs TCN: TCN [16] combines the sojourn time and instan-
taneous ECN marking. However, under high RTT variations, it is
challenging to decide a proper sojourn time threshold for TCN.
Current practice with high percentile RTTs leads to persistent
queue buildups. In contrast, ECN can conservatively mark pack-
ets based on persistent congestion state, thus delivering low la-
tency.

Probabilistic instantaneous marking: Some transport proto-
cols, e.g. DCQCN [39], need probabilistic instantaneousmarking to
ensure fairness. Two instantaneous marking thresholds, Kmin and
Kmax are used, packets are marked with probabilities from 0 to 1
when queue length resides fromKmin toKmax , instead of "cut-off"
behaviors (mark all packets if queue length exceeds a single thresh-
old). One possible solution for ECN to work with probabilistic
marking is to change the original cut-off marking into probabilis-
tic marking, and keep the marking based on persistent congestion
unchanged since it is conducted in a probabilistic way. Detailed
analysis of ECN with probabilistic marking is beyond the scope
of this paper.

4 IMPLEMENTATION
We have implemented an ECN prototype in the egress pipeline
of Barefoot Tofino switch [5]. ECN is essentially a stateful data
plane algorithm as the per-packet processing involves updates of
multiple switch states. Our implementation has around 500 lines
of P4 [10] code and is compiled to Barefoot Tofino switch using
Barefoot Capilano SDE 6.1.1 [9].

Resource requirement: In our implementation, we use 7 match
action tables in total. The number of table entries is less than 10
(most of match action tables use default actions, so no entry is
needed explicitly). To store switch updates on all the 128 ports,
we use 5 32-bit register arrays and 2 64-bit register arrays. The
register memory consumption is only ∼37KB. Each packet needs
124-bit metadata. Our ECN prototype only uses little switch re-
source, leaving more for other network functions.

238

Enabling ECN for Datacenter Networks with RTT Variations CoNEXT ’19, December 9–12, 2019, Orlando, FL, USA

(a) Pseudo code (b) Controlflow function implementa-
tion

(c) Match action table implementation

Figure 4: Different control flow implementations. Control flow implementation that directly interprets the pseudo code into
control flow cannot be compiled to Tofino as it causes multiple accesses to the same register. Hence, we use match action table
to optimize the ECN control flow instead.

We meet two main challenges in our implementation: 1) how
to obtain the precise system time, and 2) how to update multiple
switch states at line rate. In the following, we will describe our
efforts to address them.

4.1 Emulate Precise System Time
As shown in Algorithm 1, ECN requires current system
time to determine persistent queue buildups and mark pack-
ets. In the egress pipeline, each packet carries a metadata
egress_global_tstamp, which has 64 bits and expresses current
egress pipeline time in nanoseconds. However, we cannot directly
use this 64-bit metadata. This is because we need to compare the
current timewith other states, e.g. first_above_time, using algo-
rithm logical units (ALUs), but ALUs in Tofino only accept 32-bit
input. Thus, we need an approximation method to derive a 32-bit
system time. To solve this problem, there are several potential so-
lutions:

• Use the lower 32 bits of egress_global_tstamp. The time is
accurate enough but wrap around in every ∼4 seconds (232

nanoseconds). When the time wraps around, we will have a
very smallmarkinд_next (line 16 of Algorithm 1), resulting in
aggressive marks. A serious performance degradation in every
4 seconds is unacceptable.

• Use the higher 32 bits of egress_global_tstamp. The time is
not accurate enough (around 4-second granularity) for low la-
tency datacenters.

• Right shift egress_global_tstamp by 10 bits and then get
lower 32 bits. The time is accurate enough (microsecond gran-
ularity) for datacenters and only wraps around in every 4295
seconds (232 microseconds), which is more than 1 hour. How-
ever, the operation shift_right in Barefoot Capilano SDE can
only support 32-bit input data.
Faced with above problems, we decide to emulate a 32-bit

microsecond-granularity system time. Our key idea is given as fol-
lows. We first use the lower 32 bits of egress_global_tstamp,
then right shift the 32 bits by 10 bits to get a 22-bit microsecond-
granularity time. For the remaining higher 10 bits, we increase it
by 1 whenever we observe the lower 22 bits wrap around. Finally,
we attach the emulated 32-bit microsecond-granularity time to the

Algorithm 2: Emulate Precise System Time
Input : pkt.egress_global_tstamp
Output: pkt.current_time

1 tmp_tstamp = lower_32bits(pkt.egress_global_tstamp)
2 time_low = shift_right(tmp_tstamp, 10)
3 if time_low ≤ register_low then

/* Wrap around */

4 register_high = register_high + 1
5 end
6 register_low = time_low
7 pkt.current_time = register_high ×222+ register_low

packet as a metadata. Algorithm 2 gives the pseudo code. In our
implementation, we use two 32-bit registers to store values of the
lower 22 bits and the higher 10 bits, respectively.

4.2 Update Switch States at Line Rate
ECN keeps several switch states on the switch registers and up-
dates them for every packet arrival. To achieve line rate, Tofino
imposes a register update limit: a Tofino program can only access
a register once (in a pipeline). Note that in Tofino, reading a reg-
ister, comparing the register value with another value, and then
updating the register correspondingly are also treated as one ac-
cess. For example, the line 4 to 5 of Figure 4a only has one access
to first_above_time[idx].

To implement the control flow of ECN , we first directly use
control flow function in P4 to apply different tables. A sim-
ple example is Figure 4b. However, directly interpreting the
logic of pseudo code into control follow function implementa-
tion causes problems, e.g., both tables read_first_above_time
and add_now_to_first_above_time access the same register
first_above_time[idx]. This implementation cannot be com-
piled to the Tofino switch due to the hardware restrictions men-
tioned above. We notice that some reconfigurable hardware re-
search work [29] also reports similar problem.

An alternative solution is to use resubmit primitive. The packet
will be sent back to the beginning of the ingress pipeline with cer-
tain flags and regarded as a new packet. Then we can apply differ-
ent tables based on the flags. This can guarantee the access to the

239

CoNEXT ’19, December 9–12, 2019, Orlando, FL, USA Junxue Zhang, Wei Bai, and Kai Chen

register is mutually exclusive. However, resubmiting packets oc-
cupies more pipeline resources and largely degrades the through-
put.

To this end, we use the match action table to optimize the con-
trol flow of ECN . Given a register, we first ensure that one register
only has one table with actions accessing it. In this table, different
actions reflect different control flow paths and they are naturally
mutual exclusive. We further ensure the register is only accessed
once within one action. Based on the two rules, we optimize the
control flow by breaking it down into multiple match action tables.
Figure 4c is one example. Before applying a match action table, we
first compute the result of condition and attach the result to the
packet as a metadata. Then we use the metadata to match the de-
sired action, where the register will only be accessed once, and
update switch states correspondingly. In our evaluation (§5.2), we
confirm ECN can achieve line-rate performance.

5 EVALUATION
In this section, we conduct both testbed experiments and ns-3 sim-
ulations [3] to answer the following questions:

• How does ECN perform in practice? Our testbed experi-
ment results show that compared with current practice, ECN
achieves up to 23.4% smaller average FCT and 31.2% smaller
99th percentile FCT for small flows while providing the similar
performance for large flows (§5.2). ECN ’s good burst control
makes it largely outperform CoDel.

• Does ECN scale to large datacenters?We evaluate the per-
formance of ECN using large scale ns-3 simulations (§5.3). Re-
sults show that ECN achieves up to 36.9% smaller FCT for
small flows compared to current practice.

• How does ECN control the queue length and react to
bursty traffic? We evaluate ECN using simulations mixing
both the background traffic and bursty query traffic (§5.4). We
find that compared to current practice, ECN keeps a much
smaller average queue occupancy (182 packets to 8 packets). By
changing the fanout of the incast traffic, we further show that
compared to CoDel, ECN can support 1.75× more concurrent
senders without TCP timeouts.

• How robust is ECN to network settings? Through targeted
simulations, we show that ECN is robust to parameter choices
(§5.4) and the packet scheduler (§5.4).

5.1 Methodology

Transport Protocol: We use DCTCP [12] at the end host by de-
fault. In testbed experiments, we use the DCTCP in Linux kernel
4.9.0 [2]. We also implement DCTCP in ns-3 simulator. The param-
eters are set as suggested in [12]. All endhosts in our evaluation are
running DCTCP.

Schemes Compared: We compare ECN against the following
three schemes:
• DCTCP-RED: [testbed, simulation]We useDCTCP-RED to re-
fer to themodified RED inDCTCP paper [12], i.e., instantaneous
ECN marking based on single threshold Kmin = Kmax = K .

100 102 104 106 108
0

0.5

1

Figure 5: Flow size distributions.

For testbed, we implement it on Barefoot Tofino switch. For
simulation, we start from the ns-3’s RED implementation and
add instantaneous ECN marking. We set the threshold based
on both the current practice, 90th percentile RTT (denoted as
DCTCP-RED-Tail), and average RTT (denoted as DCTCP-RED-
AVG). Please note, when only one queue is active, the perfor-
mance of DCTCP-RED is identical to TCN.

• CoDel: [testbed, simulation] CoDel tracks minimal queueing
over an interval tomark packets based on persistent congestion.
For testbed, we implement CoDel on Barefoot Tofino to perform
ECN marking.

• TCN: [simulation] TCN uses instantaneous sojourn time to
adapt to packet schedulers. We implement TCN based on the
software prototype provided by TCN paper [7].

Workloads: We generate traffic based on two realistic work-
loads in production: web search [12] and data mining [22]. The
flow size distributions follow Figure 5. Both workloads are heavy-
tailed. In testbed experiments, we use an open source traffic gen-
erator [8, 18] to generate the benchmark traffic. Similar to previ-
ous work [14, 17], flows arrive according to a Poisson process to
achieve the desired network utilization. We also use the same ap-
proach to generate traffic in simulations.

Metrics: We use the Flow Completion Time (FCT) as the primary
metric. Besides the overall average FCT, we also breakdown FCT
results across short flows (< 100KB) and large flows (> 10MB).
We run experiments and simulations three times and report the
average value.

5.2 Testbed Experiments

Testbed setup: We use the testbed in §2.3 with 8 servers con-
nected to a Barefoot Tofino switch with ECN ’s implementation
(§ 4). There are 7 senders and 1 receiver.

We use netem to emulate a 3× RTT variations (from 70μs to
210μs). The RTTs generated are based on the distribution in Fig-
ure 1, which is long-tail distribution. For DCTCP-RED, we set
the marking threshold of DCTCP-RED-AVG to 80KB and DCTCP-
RED-Tail to 250KB. For CoDel, we set interval to be 200μs and tar-
get to be 85μs. For ECN , by following the rule-of-thumb(§3.4),
we set the ins_target to be 200μs, pst_interval to be 200μs and
pst_target to be 85μs.

240

Enabling ECN for Datacenter Networks with RTT Variations CoNEXT ’19, December 9–12, 2019, Orlando, FL, USA

10 20 30 40 50 60 70 80 90

0.6

0.8

1

1.2

1.4

(a) Overall:AVG

10 20 30 40 50 60 70 80 90

0.6

0.8

1

1.2

1.4

(b) (0, 100KB]:AVG

10 20 30 40 50 60 70 80 90

0.5

1

1.5

(c) (0, 100KB]:99th percentile

10 20 30 40 50 60 70 80 90

0.6

0.8

1

1.2

1.4

(d) [10MB,∞):AVG

Figure 6: [Testbed] FCT statistics with web search workload. All are normalized to the results achieved by DCTCP-RED with
threshold derived from 90 percentile RTT.

10 20 30 40 50 60 70 80 90

0.6

0.8

1

1.2

1.4

(a) Overall:AVG

10 20 30 40 50 60 70 80 90

0.6

0.8

1

1.2

1.4

(b) (0, 100KB]:AVG

10 20 30 40 50 60 70 80 90

0.5

1

1.5

(c) (0, 100KB]:99th percentile

10 20 30 40 50 60 70 80 90

0.6

0.8

1

1.2

1.4

(d) [10MB,∞):AVG

Figure 7: [Testbed] FCT statistics with data mining workload. All are normalized to the results achieved by DCTCP-RED with
threshold derived from 90 percentile RTT.

Realistic Workloads
We evaluate ECN using both web search and data mining work-
loads. The results are shown in Figure 6 and Figure 7. All results
have been normalized to the result of current practice, DCTCP-
RED-Tail. They are breakdown in terms of overall FCT (a), FCT
of short flows (b, c) and FCT of large flows (d). All Figures show
normalized FCT.

Short flows: Compared to current practice, i.e., DCTCP-RED-
Tail, ECN can achieve up to 23.4% (964μs to 738μs at 90% load)
and 31.2% (548μs to 377μs at 80% load) lower average FCT in
web search and data mining workloads, respectively (Figure 6b
and Figure 7b). At the 99th percentile, ECN achieves up to 37.2%
(5242μs to 3287μs at 90% load) and 37.6% (2161μs to 1347μs at 80%
load) lower FCT with both workloads (Figure 6c and Figure 7c).
These results show that, by well controlling the persistent queue
buildups caused by RTT variations, ECN can eliminate unneces-
sary queueing delay and effectively improve the performance of
delay-sensitive short flows.

We observe that DCTCP-RED-AVG achieves the best perfor-
mance for short flows, but it adversely hurts the FCT of large flows,
e.g., over 20% for the web search workload (Figure 6d). This is
because DCTCP-RED-AVG sets a lower ECN marking threshold,
which strictly limits the queueing to a very low level, thus benefit-
ing FCT of the short flows. In the meanwhile, such a low marking
threshold throttles the throughput of large flows, affecting their
FCT.

We also note that CoDel achieves very bad performance for
short flows. The reason is that CoDel suffers from frequent TCP
timeouts (1 TCP timeout adds > 1 milliseconds to FCT) because it
does not react to the instantaneous queueing state, and thus expe-
riences frequent packet loss under traffic bursts.

Large flows: From Figure 6d and Figure 7d, we see ECN
achieves similar results as DCTCP-RED-Tail and outperforms
DCTCP-RED-AVGwith both workloads. For web search workload,
ECN achieves up to 25.6% (94411μs to 70192μs at 80% load) lower
FCT compared to DCTCP-RED-AVG. For data mining workload,
ECN achieves up to 20.5% (1049035μ to 833396μs at 80% load)
lower FCT compared to DCTCP-RED-AVG. The reason is that by
conservatively marking packets when observing persistent queue
buildups, ECN can bring down the buffer occupancy without
hurting throughput for large flows.

Overall: In general, ECN achieves good overall performance
among the four schemes. In data mining workload, ECN performs
the best at all loads, whereas in web search workload its over-
all FCT degradation is within 4.2% (2240μs to 2148μs) compared
to DCTCP-RED-Tail at 10% load (Figure 6a). In contrast, DCTCP-
RED-AVG achieves very bad performance. This further confirms
that ECN can maintain the throughput of all flows.

Towards Larger RTT Variations
We increase the RTT variation from 3× (70μs to 210μs) to 5×
(70μs to 350μs). We evaluate ECN using the more challenging

241

CoNEXT ’19, December 9–12, 2019, Orlando, FL, USA Junxue Zhang, Wei Bai, and Kai Chen

web search workload, where the traffic is more bursty. We com-
pare ECN with current practice, DCTCP-RED-Tail. The results
are shown in Figure 8. NFCT n× denotes the normalized FCT of
ECN to DCTCP-RED-Tail when RTT has n× variation.

As shown in Figure 8a, ECN generally achieves similar over-
all FCT as DCTCP-RED-Tail. When the RTT variation reaches 5×,
the FCT degradation is within 7.6%(2854μs to 2650μs at 30% load).
When the load is higher, ECN can achieve slightly better results
than DCTCP-RED-Tail. The reason is that due to the conservative
marking for persistent congestion, ECN can consistently achieve
comparable overall FCT no matter how RTT variation enlarges.

Furthermore, ECN greatly outperforms DCTCP-RED-Tail for
short flows. As show in Figure 8b, ECN can achieve up to 37.3%
(5242μs to 3287μs at 90% load) lower FCT when the RTT variation
is 3×. The advantage is enlarged to 71.2% and 73.4% when the vari-
ation is 4× and 5× respectively. This shows ECN can effectively
reduce the FCT for short flows by controlling the persistent con-
gestion. When the RTT variation is larger, ECN can bring more
benefit to delay-sensitive short flows.

5.3 Large Scale Simulations
To complement the small-scale testbed, we further evaluate ECN
on a larger-scale spine-leaf topology with production work-
loads (§5.3).

Setup: We simulate a 128-host leaf-spine topology with 8 spine
and 8 leaf switches. Each leaf is connected to 16 servers via 10Gbps
links. The spine and leaf switches are also connected via 10Gbps
links. We use ECMP for load balancing. The RTT has 3× variations
and varies from 80μs to 240μs. The average RTT here is ∼ 137μs
and 90th percentile is ∼ 220μs. The distributions are similar to Fig-
ure 1, which is a long-tail distribution.

In our simulation, the calculation of packets’ sojourn time is im-
plemented with packet tags in ns-3 [4]. When a packet enqueues,
we add a packet tag with the enqueue timestamp to the packet.
When the packet dequeues, we calculate the sojourn time by de-
ducting the enqueue timestamp from the current timestamp.

We evaluate ECN using both web search and data mining
workloads. The results are shown in Figure 9. Due to the space
limitation, we omit the results with the data mining workload. All
results have been normalized to FCT achieved by DCTCP-RED-
Tail.

Short flows: As shown in Figure 9b, ECN outperforms DCTCP-
RED-Tail by at least 18.5% (7195μs to 5867μs) at 50% load and the
performance gap reaches 36.9% (7297μs to 4607μs) at 40% load. This
further confirms that, by controlling the persistent queue buildups,
ECN can effectively reduce the FCT for short flows.

Overall: As shown in Figure 9a, compared to DCTCP-RED-Tail,
ECN achieves 26.3% (37479μs to 27644μs at 20% load) to 37.4%
(36931μs to 23095μs at 50% load) lower overall average FCT. This
is because ECN maintains high throughput for large flows while
effectively improving latency for short ones.

10 20 30 40 50 60 70 80 90

0.6

0.8

1

1.2

1.4

(a) Overall:AVG

10 20 30 40 50 60 70 80 90

0.2

0.4

0.6

0.8

1

1.2

(b) (0, 100KB]:99th percentile

Figure 8: [Testbed] FCT statistics with web search workload
when RTT variation enlarges. NFCT n× denotes the nor-
malized FCT of ECN to DCTCP-RED-Tail when RTT has
n× variation. ECN achieves lower FCT for short flows and
comparable throughput consistently.

20 30 40 50 60 70 80 90

0.6

0.8

1

1.2

1.4

(a) Overall:AVG

20 30 40 50 60 70 80 90

0.6

0.8

1

1.2

1.4

(b) (0, 100KB]:AVG

Figure 9: [Simulations] FCT statistics of large-scale simula-
tions with web search workload. All results have been nor-
malized to DCTCP-RED-Tail.

5.4 ECN Deep Dive
In this section, we first show a microscopic view of queues to ex-
plain the superior results achieved in both §5.2 and §5.3. Then, we
analyze ECN ’s parameter sensitivity. Finally, we compare ECN
with the latest datacenter AQM solution, TCN [16].

Microscopic View

Simulation setup: We use a simple 16 to 1 topology with 10Gbps
links, 16 servers are senders and 1 receiver. Other settings are sim-
ilar to §5.3. For CoDel, the interval is set to 240μs while tarдet is
set to 10μs.

We send flows from 16 senders to the receiver. The size of both
large and short flows are generated based on data mining work-
load. We also generate some query flows to emulate bursty incast
traffic. The size of query flows follows a uniform distribution from
3KB to 60KB. We start N (100 in default) concurrent query flows
at 4s . We further change the value of N to show how these bursty
query flows affect the performance of all schemes.

Queue occupancy: To better illustrate how different schemes
manage their queues, we sample the queue length of the bottle-
neck link for 0.005 seconds and the results are shown in Figure 10.
Compared to other schemes, ECN achieves two advantages:

242

Enabling ECN for Datacenter Networks with RTT Variations CoNEXT ’19, December 9–12, 2019, Orlando, FL, USA

4 4.001 4.002 4.003 4.004 4.005
0

100

200

300

400

500

600

(a) DCTCP-RED-Tail

4 4.001 4.002 4.003 4.004 4.005
0

100

200

300

400

500

600

(b) CoDel

4 4.001 4.002 4.003 4.004 4.005
0

100

200

300

400

500

600

(c) ECN

Figure 10: [Simulations] Queue occupancy (with 100 concurrent query flows). ECN achieves much lower queue occupancy (8
packets) compared to current practice, DCTCP-RED-Tail (182 packets). Meanwhile, ECN achieves comparable performance
in handling incast (no packets drop), large outperforms CoDel (drops 125 packets).

50 100 150 200
0

1

2

3

4

5 10-3

(a) Query flows: AVG

50 100 150 200
0

2

4

6

8
10-3

(b) Query flows: 99th percentile

Figure 11: [Simulations] Statistics of query flow comple-
tion time. ECN can achieve comparable performance as
DCTCP-RED-Tail and largely outperforms CoDel.

• Low persistent queueing: ECN keeps much lower queue oc-
cupancy (8 packets) compared to DCTCP-RED-Tail (182 pack-
ets). The low queue occupancy confirms ECN ’s effectiveness
in handling persistent queue buildups caused by the mismatch
between RTTs and marking threshold.

• No packet drops with incast flows: ECN achieves compa-
rable results in handling bursty query traffic (no packet drops)
with DCTCP-RED-Tail, outperforming CoDel (drop 125 pack-
ets). The reason is that by leveraging the merit of instantaneous
marking, ECN can achieve good burst tolerance.

Impact of bursty query flows: To have a deeper view on how
those schemes handle bursty query flows, we change the concur-
rent query senders from 25 to 200 and trace the query completion
time. The results are shown in Figure 11. When there are 100 con-
current senders, CoDel begins to suffer from packet loss, seriously
degrading the performance. On the contrary, ECN achieves com-
parable performance with DCTCP-RED-Tail, and begins to suffer
from packet loss when the concurrent senders are increased to 175.
In summary, due to its good burst tolerance, ECN can support
1.75×more concurrent senders than CoDel with bursty incast traf-
fic. The reason is that ECN leverages the instantaneous marking
and has a good control over bursty traffic.

100 150 200 250
0.98

0.99

1

1.01

1.02

(a) Sensitivity to pst_interval

6 10 14 18
0.99

0.995

1

1.005

1.01

(b) Sensitivity to pst_target

Figure 12: [Simulations] Parameter Sensitivity. ECN is ro-
bust to parameter choices with only <1% variations on over-
all FCT with different parameter settings.

Parameter Sensitivity
We next show how robust ECN is to different parameter settings.
We set both pst_target and pst_interval based on the rule-of-thumb
proposed in §3.4. We conduct analysis on both workloads. The re-
sults are shown in Figure 12. We have the following two observa-
tions from the results:

• Different parameter settings do not have a large impact on the
performance of ECN considering the overall FCT. The differ-
ence is within 1% for web search workload and 0.2% for data
mining workload.

• After reducing the value of pst_interval, ECN behaves differ-
ently on the two workloads. For data mining workloads, ECN
performs slightly worse (0.2% longer FCT). However, for web
search workload, ECN performs 1% better. The reason is that
web search workload is more bursty, and a more aggressive
marking mechanism is better. We can reduce the pst_interval
to increase the marking frequency.

Packet scheduler
We finally compare ECN with TCN [16], the latest AQM solu-
tion to show how ECN works with arbitrary packet scheduler.
We mainly focus on the following questions.

243

CoNEXT ’19, December 9–12, 2019, Orlando, FL, USA Junxue Zhang, Wei Bai, and Kai Chen

• Can ECN preserve the packet scheduling policy?

• Can ECN mitigate the persistent queueing exacerbated by RTT
variations even with packet scheduler?
To evaluate this, we configure the switch with Deficit Weighted

Round Robin (DWRR) with 3 queues/services. The weights among
the 3 queues/services are 2 : 1 : 1. We first start a long-lived TCP
flow from sender 1 and classify this flow into queue/service 1, then
from sender 2 and classify into queue/service 2, finally from sender
3 into queue/service 3. We also randomly start short flows (the size
is from 3KB to 60KB) from the rest of senders to probe the queue
occupancies. We set the TCN marking threshold to 150μs to avoid
throughput loss. The other settings are identical to §5.4.

Figure 13a shows the goodput of flows achieved by ECN . We
observe at the beginning, only queue 1 is active, flow 1 achieves
around ∼ 9.6Gbps goodput (Goodput is slightly smaller than
throughput due to packet header overhead). After flow 2 starts,
queue 2 becomes active and flow 1 achieves ∼ 6.42Gbps good-
put while flow 2 achieves ∼ 3.18Gbps goodput. Finally, when
three queues all become active, flow 1, flow 2 and flow 3 achieve
around 4.82Gbps, 2.40Gbps and 2.40Gbps goodput respectively,
which strictly preserves the packet scheduling policy.

We also measure the FCT of short flows among all queues and
the results are shown in Figure 13b. Compared to TCN, ECN
achieves 19.6% better average FCT (2913μs to 2341μs) for short
flows.

In summary, ECN can strictly preserve the packet schedul-
ing policy with multiple queues/classes. Furthermore, compared
to TCN, ECN achieves better performance for short flows be-
cause ECN eliminates persistent queue buildups exacerbated by
the RTT variations.

6 RELATEDWORK

ECN-based Transports in Datacenters: The ECN-related lit-
erature on datacenter networks is vast. Alizadeh et al. [12] identi-
fied the transport requirements in production datacenters and pro-
posed DCTCP to address the challenges. To achieve good burst tol-
erance, DCTCP uses a simplified version of ECN/RED [20] to mark
packets at the switch.

ECN [37] uses the standard TCP congestion control algorithm
at the end host. D2TCP [36] and L2DCT [30] modified the DCTCP
congestion control algorithm to meet flow deadlines . Shan et al.
proposed CEDM [34] to accurately mark ECN to reduce through-
put loss by reducing queue oscillations. These solutions apply the
sameAQMmarking as DCTCP . Thus they all suffer from increased
queueing delay with the current practice under RTT variations
(§2.3). ECN can benefit all of them. DCQCN [39] is a rate-based
congestion control to enable RDMA in datacenters. At the switch,
it requires RED-like probabilistic marking to ensure convergence.
ECN can be extended to work with it.

MQ-ECN [18] first pointed out the drawbacks of existing
ECN/RED implementations in packet scheduling context. To adapt
to the varying queue capacity caused by packet schedulers,
TCN [16] proposed to use instantaneous sojourn time to mark
packets. ECN inherits the merit of TCN, but further tracks the
persistent congestion state to reduce long-term queue buildups.

0 1 2 3
0

2

4

6

8

10

(a) Flow goodput

0 1000 2000 3000 4000 5000
0

0.2

0.4

0.6

0.8

1

(b) FCT of short flows

Figure 13: [Simulations] ECN with packet schedulers.
ECN can preserve the network scheduling policy while
achieve better performance for short flows.

Buffer Sizing and AQM in Internet: Appenzeller et al. [15]
showed that the minimum buffer size should beC×RTT /√n when
there are a large number of n concurrent large flows. However,
datacenter networks typically have a small number of concurrent
large flows [12]. Therefore, people still applied the old rule-of-
thumb C × RTT for buffer sizing for regular TCP.

Many AQM solutions have been proposed to handle bufferbloat
in Internet. CoDel [31] tracks the minimum sojourn time over a
varying time interval to detect bad queues. PI [26] and PIE [32] use
a proportional-integral controller to keep the queueing to a con-
stant target. Relative to them, ECN further applies the aggressive
instantaneous ECN marking to handle transient bursts.

New Design over Programmable Switches: With the emer-
gence of programmable switches, such as Barefoot Tofino. Many
clean designs, such as NDP [25] and PERC [27] have been proposed
to deliver ultra low latency communication. However, they are not
compatible with state-of-the-art ECN-based solutions in datacen-
ters. On the contrary, ECN is fully compatible with ECN-based
solutions and utilizes the networking programmability to mitigate
performance degradation caused by RTT variations.

7 CONCLUSION
In this paper, we have presented ECN a simple yet effective so-
lution that enables ECN in datacenters with high RTT variations.
ECN marks packets based on both instantaneous and persistent
congestion states. It inherits the merit of current instantaneous
ECN marking based on a high-percentile RTT to achieve high
throughput and burst tolerance, and further marks packets when
observing long-term switch queue buildups to eliminate the per-
sistent queueing caused by flows with smaller RTTs. We have im-
plemented ECN on a Barefoot Tofino switch and evaluated it
through both testbed experiments and ns-3 simulations. Our eval-
uation shows that ECN is a viable solution that achieves all our
design goals.

ACKNOWLEDGMENTS
We thank the anonymous CoNEXT reviewers and our shepherd
Prof. Eric Rozner for their constructive feedback and suggestions.
This work is supported in part by Hong Kong RGC GRF-16215119,
CRF-C703615G, and a Huawei research grant.

244

Enabling ECN for Datacenter Networks with RTT Variations CoNEXT ’19, December 9–12, 2019, Orlando, FL, USA

REFERENCES
[1] 2012. DCTCP in Windows Server 2012. https://technet.microsoft.com/en-us/

library/hh997028(v=ws.11).aspx. (2012).
[2] 2014. DCTCP in Linux kernel 3.18. https://kernelnewbies.org/Linux_3.18.

(2014).
[3] 2015. The Network Simulator ns-3. https://www.nsnam.org. (2015).
[4] 2015. The Network Simulator ns-3. Packets. https://www.nsnam.org/docs/

release/3.10/manual/html/packets.html#tags-implementation. (2015).
[5] 2016. Barefoot Tofino. https://www.barefootnetworks.com/technology/. (2016).
[6] 2016. netem in Linux. https://wiki.linuxfoundation.org/networking/netem.

(2016).
[7] 2016. TCN Prototype. https://github.com/HKUST-SING/TCN-Software. (2016).
[8] 2016. Traffic Generator. https://github.com/HKUST-SING/TrafficGenerator.

(2016).
[9] 2018. Barefoot Capilano SDE. https://www.barefootnetworks.com/products/

brief-capilano/. (2018).
[10] 2018. P4 Language. https://p4.org/. (2018).
[11] 2019. Linux Virtual Server. http://www.linuxvirtualserver.org. (2019).
[12] Mohammad Alizadeh, Albert Greenberg, David A. Maltz, Jitendra Padhye,

Parveen Patel, Balaji Prabhakar, Sudipta Sengupta, and Murari Sridharan. 2010.
Data Center TCP (DCTCP). In SIGCOMM 2010.

[13] Mohammad Alizadeh, Adel Javanmard, and Balaji Prabhakar. 2011. Analysis of
DCTCP: Stability, Convergence, and Fairness. In SIGMETRICS 2011.

[14] Mohammad Alizadeh, Shuang Yang, Milad Sharif, Sachin Katti, Nick McKeown,
Balaji Prabhakar, and Scott Shenker. 2013. pFabric: Minimal Near-optimal Dat-
acenter Transport. In SIGCOMM 2013.

[15] Guido Appenzeller, Isaac Keslassy, and Nick McKeown. 2004. Sizing Router
Buffers. In SIGCOMM 2004.

[16] Wei Bai, Kai Chen, Li Chen, Changhoon Kim, and Haitao Wu. 2016. Enabling
ECN over Generic Packet Scheduling. In CoNEXT 2016.

[17] Wei Bai, Li Chen, Kai Chen, Dongsu Han, Chen Tian, and Hao Wang. 2015.
Information-agnostic Flow Scheduling for Commodity Data Centers. In NSDI
2015.

[18] Wei Bai, Li Chen, Kai Chen, andHaitaoWu. 2016. Enabling ECN inMulti-service
Multi-queue Data Centers. In NSDI 2016.

[19] Daniel E. Eisenbud, Cheng Yi, Carlo Contavalli, Cody Smith, Roman Kononov,
Eric Mann-Hielscher, Ardas Cilingiroglu, Bin Cheyney, Wentao Shang, and Jin-
nah Dylan Hosein. 2016. Maglev: A Fast and Reliable Software Network Load
Balancer. In NSDI 2016.

[20] Sally Floyd and Van Jacobson. 1993. Random early detection gateways for con-
gestion avoidance. IEEE/ACM Transactions on Networking (ToN) 1, 4 (1993), 397–
413.

[21] Rohan Gandhi, Hongqiang Harry Liu, Y. Charlie Hu, Guohan Lu, Jitendra Pad-
hye, Lihua Yuan, and Ming Zhang. 2014. Duet: Cloud Scale Load Balancing with
Hardware and Software. In SIGCOMM 2014.

[22] Albert Greenberg, James R. Hamilton, Navendu Jain, Srikanth Kandula,
Changhoon Kim, Parantap Lahiri, David A. Maltz, Parveen Patel, and Sudipta
Sengupta. 2009. VL2: A Scalable and Flexible Data Center Network. In SIGCOMM
2009.

[23] Chuanxiong Guo, Haitao Wu, Zhong Deng, Gaurav Soni, Jianxi Ye, Jitu Padhye,
and Marina Lipshteyn. 2016. RDMA over Commodity Ethernet at Scale. In SIG-
COMM 2016.

[24] Chuanxiong Guo, Lihua Yuan, Dong Xiang, Yingnong Dang, Ray Huang, Dave
Maltz, Zhaoyi Liu, Vin Wang, Bin Pang, Hua Chen, Zhi-Wei Lin, and Varugis
Kurien. 2015. Pingmesh: A Large-Scale System for Data Center Network Latency
Measurement and Analysis. In SIGCOMM 2015.

[25] Mark Handley, Costin Raiciu, Alexandru Agache, Andrei Voinescu, Andrew W.
Moore, Gianni Antichi, and Marcin Wójcik. 2017. Re-architecting Datacenter
Networks and Stacks for Low Latency and High Performance. In SIGCOMM
2017.

[26] CV Hollot, Vishal Misra, Don Towsley, and Wei-Bo Gong. 2001. A control the-
oretic analysis of RED. In INFOCOM 2001.

[27] Lavanya Jose, Lisa Yan, MohammadAlizadeh, George Varghese, NickMcKeown,
and Sachin Katti. 2015. High Speed Networks Need Proactive Congestion Con-
trol. In HotNets 2015.

[28] Glenn Judd. 2015. Attaining the Promise and Avoiding the Pitfalls of TCP in the
Datacenter. In NSDI 2015.

[29] Bojie Li, Kun Tan, Layong (Larry) Luo, Yanqing Peng, Renqian Luo, Ningyi Xu,
Yongqiang Xiong, Peng Cheng, and Enhong Chen. 2016. ClickNP: Highly Flexi-
ble and High Performance Network Processing with Reconfigurable Hardware.
In SIGCOMM 2016.

[30] Ali Munir, Ihsan A Qazi, Zartash A Uzmi, Aisha Mushtaq, Saad N Ismail, M Saf-
dar Iqbal, and Basma Khan. 2013. Minimizing flow completion times in data
centers. In INFOCOM 2013.

[31] Kathleen Nichols and Van Jacobson. 2012. Controlling Queue Delay. ACMQueue
10, 5 (2012), 20:20–20:34.

[32] R. Pan, P. Natarajan, C. Piglione, M. S. Prabhu, V. Subramanian, F. Baker, and B.
VerSteeg. 2013. PIE: A Lightweight Control Scheme to Address the Bufferbloat
Problem. In HPSR 2013.

[33] Parveen Patel, Deepak Bansal, Lihua Yuan, Ashwin Murthy, Albert Green-
berg, David A. Maltz, Randy Kern, Hemant Kumar, Marios Zikos, Hongyu Wu,
Changhoon Kim, and Naveen Karri. 2013. Ananta: Cloud Scale Load Balancing.
In SIGCOMM 2013.

[34] Danfeng Shan and Fengyuan Ren. 2017. Improving ECN marking scheme with
micro-burst traffic in data center networks. In INFOCOM 2017.

[35] Arjun Singh, Joon Ong, Amit Agarwal, Glen Anderson, Ashby Armistead, Roy
Bannon, Seb Boving, Gaurav Desai, Bob Felderman, Paulie Germano, Anand
Kanagala, Jeff Provost, Jason Simmons, Eiichi Tanda, Jim Wanderer, Urs Höl-
zle, Stephen Stuart, and Amin Vahdat. 2015. Jupiter Rising: A Decade of Clos
Topologies and Centralized Control in Google’s Datacenter Network. In SIG-
COMM 2015.

[36] Balajee Vamanan, Jahangir Hasan, and T.N. Vijaykumar. 2012. Deadline-aware
Datacenter TCP (D2TCP). In SIGCOMM 2012.

[37] HaitaoWu, Jiabo Ju, Guohan Lu, Chuanxiong Guo, Yongqiang Xiong, and Yong-
guang Zhang. 2012. Tuning ECN for Data Center Networks. In CoNEXT 2012.

[38] Qiao Zhang, Vincent Liu, Hongyi Zeng, and Arvind Krishnamurthy. 2017. High-
resolution Measurement of Data Center Microbursts. In IMC 2017.

[39] Yibo Zhu, Haggai Eran, Daniel Firestone, Chuanxiong Guo, Marina Lipshteyn,
Yehonatan Liron, Jitendra Padhye, Shachar Raindel, Mohamad Haj Yahia, and
Ming Zhang. 2015. Congestion Control for Large-Scale RDMA Deployments. In
SIGCOMM 2015.

245

