
Error Tolerant Address Configuration for Data
Center Networks with Malfunctioning Devices

Xingyu Ma†,‡, Chengchen Hu†, Kai Chen\, Che Zhang†,
Hongtao Zhang†, Kai Zheng§, Yan Chen\, Xianda Sun†,‡

†MOE KLINNS lab, Department of Computer Science and Technology, Xi’an Jiaotong University
‡National Laboratory for Information Science and Technology, Tsinghua University

\Department of Electrical Engineering and Computer Science, Northwestern University
§IBM China Research Lab

Abstract—Address auto-configuration is a key problem in data
center networks, where servers and switches encode topology
information into their addresses for routing. A recent work
DAC [2] has been introduced to address this problem. Without
malfunctions, DAC can auto-configure all the devices quickly. But
in case of malfunctions, DAC requires significant human efforts
to correct malfunctions and it can cause substantial operation
delay of the whole data center.

In this paper, we further optimize address auto-configuration
process even in the presence of malfunctions. Instead of waiting
for all the malfunctions to be corrected, we could first configure
the devices that are not involved in malfunctions and let them
work first. This idea can be translated to considerable practical
benefits because in most cases malfunctions in data centers
only account for a very small portion. To realize the idea, we
conceptually remove the malfunctions from the physical data
center topology graph and mathematically convert the address
configuration problem into induced subgraph isomorphism prob-
lem, which is NP-complete. We then introduce an algorithm
that can solve the induced subgraph isomorphism quickly by
taking advantage of data center topology characteristics and
induced subgraph properties. We extensively evaluate our design
on representative data center structures with various malfunction
scenarios. The evaluation results demonstrate that the proposed
framework and algorithm are efficient and labor-free to deal with
the mapping task in the presence of error devices.

Index Terms—Data Center Networks, Address Configuration,
Induced Subgraph Isomorphism Problem

I. INTRODUCTION

The cloud computing is fast evolving. As the infrastructure
of cloud computing, Data Center (DC) is kept enlarging its
scale and it is common to contain hundreds of thousands of
servers in a DC nowadays [3, 10]. For reliability and perfor-
mance purposes in huge data centers, locality and topology
information has been encoded into the Data Center Network
(DCN) addresses. For example, in a distributed file system
such as GFS [14], a chunk of data is usually replicated several
times and stored on servers on different racks. To optimize the
performance, people may embed locality information into IP
addresses of servers such that it is easier to know how to fetch

Xingyu Ma and Xianda Sun are guest students at MOE Key Lab for
Intelligent Networks and Network Security (MoE KLINNS Lab) of Xi’an
Jiaotong University during the period of this work.

This paper is in part supported by the National Natural Science Foundation
of China (60903182, 60921003), the Fundamental Research Funds for Central
Universities.

data from a nearby server rather than a remote one from the IP
address. The recently proposed data center structures [1, 6]–
[8, 17] go one step further to design new addresses or logical
IDs for servers and switches that describe their positions in
the topology. This topology information is essential for high-
performance routing of these new structures. For instance,
BCube [7] can build its node-disjoint parallel routing path
solely based on the source and destination BCube logical IDs.
PortLand [11] switches forward packets according to location
information of the destination Pseudo-MAC.

While such kind of topological information embedded
addressing has greatly facilitated the network performance
of data centers, it also poses challenges for the operations.
How to automatically configure the logical IDs is one of
such challenges. A logical ID is more than an IP address,
which is only required to be in an address range, but also
carries topology information. Therefore, the traditional au-
tomatic address configuration schemes such as DHCP [12]
are not able to work directly. In a recent work [2], Chen
et al proposed DAC, a generic and automatic address auto-
configuration scheme for data center networks. DAC assumes
a blueprint graph (with logical IDs labeled) and a physical
topology graph of the to-be-configured data center (with device
IDs labeled), and performs the device-to-logical ID mapping
by leveraging graph isomorphism theory [15]. DAC is the
first and significant step on automatically configuration of
DCN. If the physical data center is built exactly as what the
blueprint defines, DAC can auto-configure all the devices very
efficiently. However, DAC is subjected to several constraints
when there are malfunctions1 in a DCN.

Given data centers are usually of large scale and are with
strict wiring rules (e.g., BCube [7] and DCell [8]), malfunc-
tions brought by mis-wirings are not uncommon. In case of
malfunctions, DAC first reports all the malfunction-related
devices and wait for manual correction of malfunctions before
auto-configuration. The malfunction correction process is a
great human effort and can cause substantial operation delay
of the whole data center, and thus it does not make sense for
majority of the well-functioning devices to wait for the long
manual correction process of the malfunctions.

1Malfunctions in this paper refer to mis-wirings, broken NICs, broken wires
and etc.

In fact, the correction process can be very difficult for
large-scale DCN. Take the malfunctions of miswiring as
example. Even with the knowledge of mis-wired nodes and
links reported by DAC, it still leaves unknown how to connect
these nodes in a right order. A simple and intuitive way to
reconnect the x mis-wired nodes in a right order is trying
all the connection permutations. It is normal that x is in the
magnitude of tens for a DCN with hundreds of thousands of
servers. If we have 20 malfunctioning devices, and each of
which has only 2 connection options, the possible permutation
has already reached 220. It would be the nightmare of the
operators. As a result, a more efficient auto-configuration,
when malfunctions exist, is a necessity rather than an option.

In this paper, we advocate a new framework ETAC (Error
Tolerant Address Configuration) to configure data center ad-
dresses in the presence of malfunctioning without involving
any human efforts. We aim to auto-configure the devices
that are not involved in malfunctions and let them work
first, instead of relying on time-consuming manual correction
of malfunctions. The idea in ETAC can bring considerable
practical benefit because in most cases malfunctions in data
centers, if exist, only account for a very small portion [2].
This means that the majority part of data center is correct
and is able to operate first. A brief comparison of ETAC
and previous DAC is stated in Table I. Compared with DAC,
ETAC considers the malfunctioning cases during its design
and does not involve any human efforts, and therefore the
total configuration time of ETAC can be much shorter than
DAC if malfunctions exist.

To realize the above idea, in ETAC framework, we first
abstract the physical topology into a conceptual graph and
remove the malfunctions from the graph, and then we math-
ematically formulate address auto-configuration problem into
induced subgraph isomorphism problem [16]. To seek a quick
solution to the problem, we further propose a Subgraph
Mapping Algorithm (SMA) that leverages the characteristics
of data center topology. After that, we extensively evaluate
our design on representative data center structures with various
malfunction scenarios. Our evaluation results suggest that
ETAC framework could efficiently realize mapping for large-
scale data center structure under different error patterns.

It is worth noting that for generic graphs, induced subgraph
isomorphism problem2 is NP-complete [16], while graph iso-
morphism problem is in the low hierarchy of class NP3 [15].
Therefore, the abstracted problem of ETAC is intrinsically
different from the graph isomorphism in DAC and is of
greater hardness. Specifically, we make the following main
contributions in this paper.

• To the best of our knowledge, we are the first to define the
problem of configuring the address in the malfunctioning
data centers and propose a framework called ETAC
to solve the problem. We further propose a solution
to this problem by formulating it to induced subgraph

2Without confusion, we use “subgraph isomorphism” and “induced sub-
graph isomorphism” interchangeable in this paper.

3It is not NP-complete unless the polynomial time hierarchy collapses to
its second level.

TABLE I
A COMPARISON BETWEEN ETAC AND DAC.

Framework Error-tolerance Manual Efforts
DAC not considered involved
ETAC considered not involved

TABLE II
TABLE OF NOTATIONS.

Notations Descriptions
Gb/Gm/Gs the blueprint/physical/device graph
Ωb(i)/Ωs(i) atoms for blueprint/device graph and i is the index number

Ψb/Ψs atoms group for blueprint/device graph
Vb(k)/Vs(k) injected vertexes after the k − th step search on Gb/Gs

isomorphism problem mathematically. With such a for-
mulation, ETAC could obtain the mapping between well-
functioning devices and addresses/logical IDs.

• Although the generic induced subgraph isomorphic prob-
lem is NP-complete, we design a practical subgraph
mapping algorithm exploiting the features in existing data
center structures and properties of the induced subgraph
to configure the addresses for devices that are free from
malfunctions. The algorithm is efficient: even if the DCN
is in a scale of hundreds of thousands devices, it could
accomplish the mapping within 5 minutes.

• The troublesome and time-consuming manual process is
removed from the framework of the auto-configuration
process. Therefore, the total configuration time of the
well-functioning devices can be significantly reduced in
ETAC compared with previous work.

The rest of the paper is organized as follows. Section II
presents the problem statement and Section III proposes
the subgraph mapping algorithm to solve the key subgraph
isomorphic problem. We validate our design via extensive
experiments and simulations in Section IV and summarize
the related work in Section V. Eventually in Section VI, we
conclude the paper.

II. PROBLEM OVERVIEW

To accomplish the task to automatically configure all the
devices that are not involved in malfunctions, we have two
graphs as input: one is a blueprint graph and the other is a
physical graph. The blueprint of the data center network is as-
sumed to be known in advance, which defines the connections
of the servers and switches, and labels each machine with
a proper address or logical ID. The physical graph reflects
the real connections among the machines in the data center,
and it can be collected using Physical topology Collection
Protocol (PCP) proposed in [2]. As an example, Figure 1
(a) is a blueprint, and characters A − H in the figure are
the addresses or logical IDs that should be configured to
the physical machines in the corresponding locations; while
Figure 1 (b) is the physical graph with physical device ID of
1− 8. In this example, we assume that there is a missing link
between node4 7 and 8 in the physical topology as indicated

4In this paper, we use the terms vertex and node interchangeably.

A

C

B

 E F G H

D

1

2 3

4 5 6

 (a) (b) (c)

1

2

4 7 5 6

3

8

Fig. 1. The graph: (a) is the blueprint; (b) is the raw physical graph (i.e.,
physical graph); (c) is device graph with error nodes removed(i.e., device
graph).

by a dotted line between node 7 and 8.
When using DAC [2] to configure the address in a malfunc-

tioning data center, the processing framework is as shown in
Figure 2 (a). A manual correction process of the malfunctions
is required by DAC and this process delays the configurations
of most of the devices that are in right places. Considering
the example in Figure 1 (a), the malfunctioning detection will
report the locations of errors, since there is a missing link
between node 7 and 8 in the physical graph (the detection
method is proposed in [2]). Only after all the malfunctions
being corrected by a manual process, all the devices can
get configured in a batch. This process forces most of the
machines, even in their right places, to wait for a relatively
long manual correction period.

In this paper, we construct a different ETAC framework,
which is depicted in Figure 2 (b). Rather than waiting for the
manual correction after the detection of malfunctions as what
DAC does, ETAC first generates a third graph called device
graph, which excludes the corresponding malfunctioning links
and nodes. Please note that we just remove the malfunctions
in the abstracted graph (e.g., Figure 1 (b)) to generate the
device graph (e.g., Figure 1 (c)) and there is no human labors
at changing the real wiring connections between devices.
Continuing the example in Figure 1 (a) and (b), we now have
the device graph in Figure 1 (c). All the interconnections
between devices in Figure 1 (c) are guaranteed to be in
accordance with the design in the blueprint, and thus Figure 1
(c) is an induced subgraph of Figure 1 (a). The next step in
the proposed system is to find the injection from the well-
functioning nodes in Figure 1(c) to the blueprint in Figure 1
(a), namely {1 − 6} → {A − H}. Such a mapping problem
is the key component of the proposed system and we have
developed a Subgraph Mapping Algorithm to solve it. In fact,
it is a induced subgraph isomorphism problem mathematically.
With the notations in Table II, we give the formal definition
of the problem.

Denote Gb =< Vb, Eb > as the blueprint graph (Figure 1
(a)) and Gm =< Vm, Em > as the physical graph (Figure 1
(b)). Suppose subset Ve ⊂ Vm includes all malfunctioning
nodes. By removing Ve and edges Ee connected to Ve(Ee =

{e = ij|i ∈ Ve or j ∈ Ve}) from Vm and Em, we obtain the
device graph Gs =< Vs, Es >=< Vm\Ve, Em\Ee >. Gs, is an
induced subgraph to Gb. Our task is to find a mapping from
Vs to Vb, which is called the induced subgraph isomorphism
problem.

Definition 1: A graph G1 =< V1, E1 > is isomorphic

to a subgraph of a graph G2 =< V2, E2 > , denoted by
G1
∼= S2 ⊆ G2, if there is an injection f : V1 → V2 such

that, for each pair of vertices vi, vj ∈ V1, (vi, vj) ∈ E1, if and
only if (f(vi), f(vj)) ∈ E2. Such an injection is called induced
subgraph isomorphism.

Although speed-up techniques in DAC [2] successfully
solve the graph isomorphism problem, it is not applicable to
use them for the induced subgraph isomorphism problem we
aim to solve in this paper. As we mentioned above, the two
problems are intrinsically different. The potential isomorphism
conditions, which greatly prune the search space for isomor-
phism problem, are not true any more for the induced subgraph
isomorphism problem. For example, a possible mapping be-
tween the blueprint and the device graph must have the same
degree; however, for the subgraph isomorphism problem, the
degree of a node in the device graph can be less than the
degree of its mapped node in the blueprint. Let us revisit
Figure 1 again, Node C in Figure 1 (a) is the mapped node
of Node 2 in Figure 1(c), but the degree of these two nodes
are not the same. Besides the degree metric, the subgraph
isomorphism problem violates many other conditions in the
isomorphism problem and increases the search space a lot. In
addition, many speed-up techniques for graph isomorphism,
which require complete information of isomorphic graphs, are
not applicable for induced subgraph isomorphism either, in
case of even one node removal. Therefore, new techniques
should be investigated for the induced subgraph isomorphism
problem.

In the past 40 years, the induced subgraph isomorphism
problem has been studied by many researchers. For general
graph, the induced subgraph isomorphism is a generaliza-
tion of both the maximum clique problem and maximum
independent set problem, which is NP-complete [16]. Such
complexity is intolerable for data center network, which has
tens of thousands of nodes. We devise an algorithm, which
leverages some features of data center networks and induced
subgraph properties. Based on a general framework for graph
structural information discovery, we have achieved an induced
subgraph isomorphism mapping algorithm to be presented in
the next section.

III. SUBGRAPH MAPPING ALGORITHM

In this section, we propose the Subgraph Mapping Algo-
rithm (abbreviated as SMA) to map the devices that are not
involved in malfunctions to the addresses/ID in the blueprint.
We will first describe the top level algorithm of SMA and
the challenges. With an analysis on the properties of the
algorithm, we further present the detailed methods to guarantee
the correctness and to accelerate the algorithm.

A. Top level algorithm

Before delving into the details, we first present the symbols
used in this section. For a graph G =< V,E >, a partition of
vertex set V is a group of k subsets Ψ = {Ω(i)|i = 0...k − 1},
where Ω(i) is set of vertices (Ω(i) ⊆ V), ∀i, j, Ω(i) ∩ Ω(i) =

Φ and ∪
i

Ω(i) = V . It is worth noting in our definition that
Ω(i) can be empty sets. For the ease of presentation, Ω(i) is

Remove

malfunction subgraph

mapping

Configure

devices

Blueprint

(b) ETAC

Malfunction

found

 Blueprint

 graph

 Physical

 graph
No

Malfunction

Manual

correction

(a) DAC

Configure all

devices

Malfunction

detection

Malfunction

found

 Blueprint

 graph

 Physical

 graph
No

Malfunction

Configure all

devices

Malfunction

detection

Fig. 2. The framework of DAC and ETAC.

named as an atom, i of Ω(i) is called the index and Ψ is
called an atom group in the rest of the paper. Similarly, we
use Ψs = {Ωs(i)|i = 0...k − 1} and Ψb = {Ωb(i)|i = 0...k − 1}
to describe the partitions in Gs =< Vs, Es > and Gb =<

Vb, Eb >, respectively.
The basic idea of SMA is a kind of “divide and conquer”

search algorithm. It recursively partitions the graph (both Gb

and Gs) into smaller atoms until each vertex in Gs finding its
injection/mapping in Gb or a wrong partition of the graph in
previous steps is detected. In the former case, the algorithm
stops as successfully obtaining the solution; while in the
latter case, the algorithm backtracks to the previous steps and
partitions the graph in another direction. In each recursive
step of the algorithm, the number of atoms Ωs(i) in Ψs and
the number of Ωb(i) in Ψb are the same. If each element in
Ωs(i) can be potentially mapped to an element in Ωb(j), we
set i = j and call Ωs(i) and Ωb(i) a corresponding atom
pair. In each step, SMA partitions on corresponding atom
pairs of the two graphs. Finally, SMA partitions all non-empty
atoms Ωs(i) in Ψs to single-element atoms, and each non-
empty single-element atom Ωs(i) is then injected to an single-
element Ωb(i). Thus, we can then configure the addresses of
the vertices in Gs according to the addresses/ID in blueprint. It
is clear that the key problems of SMA are how to partition the
graph and how to decide whether the decomposition is in the
right direction. Decomposition and refinement operations are
designed to solve these two key issues. The top level algorithm
is stated in Algorithm 1 and the description of decomposition
and refinement operation is articulated below.

• Decomposition: Given an element v in a non-empty
and non-single device graph atom Ωs(i), such atom is
decomposed into Ωs(i)\{v} and {v}. Other atoms remain
unchanged in partition Ψs. Correspondingly, there will
be an u in Ωb(i) decomposing Ωb(i) into Ωb(i)\{u} and
{u}. For each newly emerging single-element atom in {v}
and its corresponding {u}, we call such a v → u relation
a “pair”. The principle to select u and v in order to
accelerate the algorithm will be discussed in the following
subsections.

• Refinement: This operation is only triggered after de-
composition. For the pair v → u, v will split every
other non-single atom Ωs(j) into two parts according
to whether elements in that atom are connected to v or
not. Similar operation is also conducted for u. If there
are emerging new pairs (corresponding single-element

atoms), the split operation continues until there are no
new-emerging pairs. During the split process, refinement
will judge whether current corresponding partition is
valid. Details of the judgment will be explained later.

Algorithm 1 SMA(Ψs,Ψb)
1: if the non-empty atoms in Ψs are all single-element ones

and are mapped to single-element atoms in Ψb then
2: obtain the mapping and exit;
3: else
4: select a vertex v ∈ Ωs(i); //Ωs(i) is not a single-element

atom
5: for each vertex u ∈ Ωb(i) do
6: decomposition(Ψs,Ψb, v, u);
7: if refinement(Ψs,Ψb)== true then
8: SMA(Ψs,Ψb);
9: end if

10: end for
11: end if

It is worth noting that empty-set atom should be allowed
for decomposition and refinement operations. During the re-
finement, it is possible that an empty atom might be split
out in the refinement process. For pair v → u, it is possible
that v is connected to all elements v0, ...vt in a certain atom
Ωs(j), while u is connected to part of elements in Ωb(j) (i.e.,
u is connected to u0, ...ut, but not connected to ut+1, ...ur),
because essentially edge set Es of induced subgraph Gs is
a subset of Eb (edge set of Gb). Therefore, Ωs(j) is split
as {v0...vt} and empty set ∅. Ωb(j) is split as {u0, ...ut} and
{ut+1, ...ur}. {v0, ...vt} is corresponding to {u0, ...ut} and ∅ is
corresponding to {ut+1, ...ur}. Similar situation is also applied
for decomposition if Ωs(i) only has one element, while Ωb(i)

has multiple ones. In this case, the decomposition on the single
element of Ωs(i) will incur an empty-set atom.

The framework of Algorithm 1 is a general structure, which
is applicable for many structural graph problems (like induced
subgraph isomorphism, graph isomorphism, and symmetric
finding [5]). Based on the general structure, to support specific
efficient induced subgraph isomorphism, SMA needs to exploit
methodologies to validate the correctness of induced subgraph
mapping and to accelerate the search process.

A

C

B

 E F G H

D

1

2 3

4 5 6

[1 2 3][4 5 6]

[ABCD][EFGH] !
!

[2][1 3][4 5 6]

[A][BCD][EFGH] !
!

Backtrace (Theorem 3)!

[2][1 3][4 5 6]

[C][ABD][EFGH] !
!

[2][3][1][4][5 6]

[C][D][AB][EF][GH] !
!

[2][3][1][4][5 6]

[C][D][AB][EF][GH] !
!

[2][3][1][4][5][6]

[C][D][AB][EF][G][H] !
!

[2][3][1][][4][][5][6]

[C][D][A][B][E][F][G][H] !
!

P1(decompose 2/A)!

P2(split by 2/A)!

P3

(decompose 2/C)!
P4

(split by 2/C)!
P5

(split by 3/D)! P6(decompose 5/G)!

P7(split by 5/G and 6/H)!

[2][3][1][][4][5][6]

[C][D][A][B][EF][G][H] !
!
P8(split by 1/A)!

Fig. 3. A walk-through example of Subgraph Mapping Algorithm.

B. Properties analysis
In this subsection, we study the theoretic foundations for

us to guarantee correctness and to speed up the algorithm.
Applications and examples for these theorems are stated in
the next three subsections.

The Subgraph Mapping Algorithm is essentially a search-
based algorithm. We denote the depth of search as step, each
of which comprises of two operations: decomposition and
refinement. If an atom Ωs(i) in Ψs and its corresponding
atom Ωb(i) in Ψb are both single-element atoms, we call the
two atoms a mapped node pair. We denote all the mapped
node pairs before the k−th step as Vs(k)→ Vb(k). Regarding
specific injection of v in Vs(k) to u in Vb(k), we represent it
as f(v) = u.

The following Theorem 1 is a guarantee of the correctness
of the algorithm.

Theorem 1: For every step (e.g., k−th step) in the algo-
rithm, if there are x new-emerging mapped pairs {vi →
ui|i = 0...x − 1} brought by the decomposition or refinement
operation in the current step, we denote potential Vs(k + 1) as
Vs(k) ∪ {v0...vx−1} and Vb(k + 1) as Vb(k) ∪ {u0...ux−1}. The
validity of the new-emerging pairs lies in the requirement: for
every vi(i = 0...x − 1) and every v′ in Vs(k + 1), (vi, v

′) = 1

if and only if (ui, f(v′)) = 1 (we denote (x, y) = 1 if x, y
is connected and denote f as the injection relation). If the
algorithm performs under such a requirement at every step,
the final result of mapping is correct.

Proof:
Denote k as the number of step in the algorithm. We

first demonstrate that before every step of search, the graph
constructed by Vs(k) and Vb(k) are isomorphic.

For k = 0, the set Vs(k) and Vb(k) are both empty set.
Hence, isomorphism is fulfilled.

Suppose when k = t, the graph constructed by set Vs(t) and
Vb(t) are isomorphic. In other words, for every vp, vq ∈ Vs(t),
(vp, vq) = 1 in Gs if and only if (f(vp), f(vq)) = 1 in Gb.

In the t−th step, suppose there are x newly emerging
pairs {vi → ui|i = 0...x − 1}. As stated in the description
of Theorem, Vs(t+ 1) is Vs(t) ∪ {v0...vx−1} and Vb(t+ 1) is
Vb(t)∪{u0...ux−1}. For every vp, vq ∈ Vs(t+ 1), if either vp or
vq ∈ {vi|i = 0...x−1}, according to the statement of Theorem,
(vp, vq) = 1 if and only if (f(vp), f(vq)) = 1. Otherwise,

both vp and vq ∈ Vs(t). Therefore, the supposition guarantees
that (vp, vq) = 1 if and only if (f(vp), f(vq)) = 1. Therefore,
based on the supposition at k = t, For every vp, vq ∈ Vs(t+ 1),
(vp, vq) = 1 if and only if (f(vp), f(vq)) = 1. When k = t+ 1,
the graph constructed by set Vs(t+ 1) is isomorphic to the
graph constructed by Vb(t+ 1).

Therefore, for any step i in the algorithm, the graph con-
structed by Vs(i) and Vb(i) are isomorphic. Of course, in the
final step i final of algorithm, the partitions of Vs are all
single-element atoms. The graphs constructed by Vs(i final)

and Vb(i final) are also isomorphic. Hence, the correctness
of SMA is proved.

In the proof of Theorem 1, to support the correctness, we
leverage the properties of the induced subgraph. Furthermore,
the proof stated also demonstrates that the constructed graph
at each step of search is isomorphic to each other.

Apart from Theorem 1 which suffices correctness, we also
investigate some necessary conditions. To better leverage the
properties provided by the induced subgraph and sparsity of
data center structures, we present the following Theorems,
which are necessary conditions for the correctness of the
algorithm.

Theorem 2: During any stage in the algorithm, for any
Ωs(i) and corresponding Ωb(i), |Ωs(i)| ≤ |Ωb(i)|.(|Set| denote
the cardinality of the Set.)

Proof:
Suppose there is a stage in the algorithm, in which a Ωs(i)

and it corresponding Ωb(i) have the relation: |Ωs(i)| > |Ωb(i)|.
However, if there exists a valid one-to-one injection f from
elements in Ωs(i) to elements in Ωb(i), |Ωs(i)| = |{f(v)|v ∈
Ωs(i)}| ≤ |Ωb(i)|, contradicting to the supposition.

Theorem 2 is a natural and obvious conclusion: the device
graph atoms should not be larger than their corresponding
blueprint atoms.

Theorem 3: During any stage in the algorithm, for any
newly emerging pair v → u, denote Ts(v) as the set of the in-
dex number of Ωs(i) connected to v (Formally, Ts(v) = {i|∃t ∈
Ωs(i) and (t, v) = 1} and Tb(u) as the set of the index number
of Ωb(i) connected to u(Tb(u) = {i|∃t ∈ Ωb(i) and (t, u) = 1}).
The following statement should hold: Ts(v) ⊆ Tb(u).

Proof:
For any step in the algorithm, if Ωs(i) and Ωb(i) are

corresponding atoms and such corresponding relation could
finally reach a correct mapping relation, each element v′ in
Ωs(i) will be mapped to an element f(v′) in Ωb(i).

Therefore, suppose there is a stage in the algorithm, a new
pair v → u emerges and the statement in Theorem does
not hold. Therefore, there must be an Ωs(i) and Ωb(i), v
is connected to some elements v′ in Ωs(i), while u is not
connected to any elements in Ωb(i). However, if current step
could finally reach a correct mapping, there would be an f(v′)

in Ωs(i). Furthermore, according to the definition of induced
subgraph isomorphism, if (v, v′) = 1, then (u, f(v′)) = 1,
contradicting with the status that u is not connected to any
elements in Ωb(i).

Theorem 3 is primarily used for checking whether the
newly emerging pairs are valid or not during refinement,
supplementing Theorem 1. Intuitively, if the pair v → u is
correct, the nodes connected to v should be mapped to a subset
of nodes connected to u. Therefore, the subset relations on
atom level should also hold.

C. Correctness and acceleration in Refinement operation

For each refinement operation, it needs to return true or
false. The three Theorems are utilized for the return value
of that judgment. As stated above, Theorem 1 guarantees
that such judgment is valid, i.e., true judgments could finally
bring about a correct mapping. Theorem 2 and Theorem 3
are primarily used for pruning based on some properties
provided by the induced subgraph, i.e., any violations of the
two Theorems will make the judgment return false.

Moreover, Theorem 3 can be better exploited for sparse
graphs. First, for sparse graphs, the cardinality of Ts(v)

and Tb(u) should be comparatively smaller and reduces the
complexity of the judgment on this. Second, sparse graph will
incur more opportunities of pruning via Theorem 3. These
facts are obviously good news for data center structures, which
are usually sparse graphs.

D. Acceleration in Decomposition operation

In line 4 of Algorithm 1, we need to select a node from a
non-single atom in Gs. Actually a strategic selection of such
node is much more effective than a random selection, although
the latter one would not affect the correctness of algorithm.
Our strategy is based on a priority rule. The neighboring nodes
to the currently mapped nodes are given higher priority for
selection.

Such strategy derives from an in-depth understanding of
Theorem 1. As has been discussed above, Theorem 1 actually
guarantees that at any steps in the algorithm, the two graphs
constructed by the nodes which are currently mapped are
isomorphic. Therefore, if current isomorphism can not be
met, it is impossible that the final result is correct. However,
connectivity at the current mapped nodes greatly influences
whether Theorem 1 is effectively used for pruning or not.
We use the two graphs in Figure 3 to clarify this point. For
example, a current mapping is f(1) = C, f(2) = B, f(6) = G.
It is obvious that such mapping is wrong at a glance. However,
Theorem 1 will still consider current mapping is acceptable,

because graphs constructed by {1, 2, 6} and {C,B,G} are
isomorphic (actually these nodes are connectionless with each
other). Comparatively, the isomorphism brought by f(1) =

A, f(2) = C, f(4) = E is much more indicative because these
nodes({1, 2, 4} and {A,C,E}) are connected, which makes the
current isomorphism more indicative and effective.

Hence, we employ this strategy to build on the efficiency
of our algorithm.

E. A walk-through example of the algorithm

To give a clear understanding of Subgraph Mapping Algo-
rithm(SMA), a illustration is given in Figure 3. The solid-
line arrow represents the decomposition operation and the
dotted-line represents the split in refinement operation. P1-P8
is the sequence of procedures of this algorithm. The initial
state is presented in the left-top corner: Ψs = {Ωs(i)|i =

0, 1} = {{1, 2, 3}, {4, 5, 6}}, Ψb = {Ωb(i)|i = 0, 1} =

{{A,B,C,D}, {D,E, F,G}}. The initial state is according to
the classification of servers and switches. Please note that the
judgment of refinement is performed at all splits, but in this
example we just select some for illustration purpose. In most
steps, there can be several possible selection of decomposition
and refinement; while in this example, we use some typical
one for better illustration of the algorithm.

Suppose in P1, we first select 2 in Gs and A in Gb to de-
compose Ψs/Ψb with 2→ A. P2 uses the newly emerging pair
2 → A to split other non-single atoms. Here, we demonstrate
how Theorem 3 is applied. Now, Ψs = {{2}, {1, 3}, {4, 5, 6}}
and Ψb = {{A}, {B,C,D}, {E,F,G,H}}. We find that in Gs,
2 is connected 3 and 4, which belong to Ωs(1)({1, 3}) and
Ωs(2)({4, 5, 6}) respectively. In contrast, in Gb, A is connected
to E and G, which belong to Ωb(2)({E,F,G,H}). Thus,
Ts(2) = {1, 2} * Tb(A) = {2}, which violates Theorem 3. In
this case, the judgment of refinement is returned as false and
the algorithm is backtracked in P2.

In P3, decomposition using 2 → C is operated with a new
selection C in Gb. The following split is conducted in P4 and
it is operated based on whether the elements in non-single
atoms are connected to the single-element atom. For Ψb, C is
connected to D,E, F . Accordingly, {A,B,D} is split to {D}
and {A,B}. {E,F,G,H} is split to {E,F} and {G,H}. Similar
operation is conducted on Ψs. During split in P4, a new pair
3→ D emerges. Consequently, the refinement continues in P5
by using 3 → D to split other non-single atoms. In this split,
no atoms changes and we come to P6.

In P6, a new step of decomposition comes and we needs to
first select an element in Gs. With the strategic vertex selection
to get the neighboring vertices first, 5, which is connected to
currently mapped 3, is selected. Decomposition using 5 → G

is operated.
In P7, there are two newly emerging single-element atom

pairs (5 → G and 6 → H). We use this procedure to
explain how Theorem 1 is leveraged. Before this operation,
the mapping relation is that f(2) = C and f(3) = D,
we check whether f(5) = G and f(6) = H is allowed.
(5,3)=1 and (f(5), f(3)) = (G,D)=1 as well. (6,3)=1 and
(f(6), f(3)) = (H,D) = 1 too. Therefore, we could make sure

TABLE III
THE STRUCTURES FOR EVALUATIONS.

FatTree(n) VL2(nr, np) BCube(n, k) DCell(n, k)
F(20)= 2500 V(10,100)=27650 B(5,4)=6250 D(4,2)=525
F(40)=18000 V(20,100)= 52650 B(6,4)=14256 D(2,3)=2709
F(60)=58500 V(40,100)= 102650 B(7,4)=28812 D(3,3)=32656
F(80)=136000 V(60,100)= 152650 B(8,4)=53248 D(4,3)=221025

that graph made by nodes {2, 3, 5, 6} in Gs and graph made
by nodes {C,D,G,H} in Gb are isomorphic to each other.
Therefore, Theorem 1 judges the status before current split
as valid. The split is done like stated before. Please note that
empty-set atom is split to maintain the corresponding relation
of atoms.

Finally, after the split in P8, all the non-empty atoms in Ψb

are all single-element ones and then mapped to single-element
atoms.

IV. EVALUATION

A. Settings

We perform the evaluations of SMA algorithm under differ-
ent settings, which vary from data center network structures,
sizes, the number of malfunctions and malfunction patterns.
First, we investigate the relationship between the calculation
time of SMA and the structure/scale of the data center. Second,
we study the effect of the changes in the numbers of the
malfunctions on the calculation time. Third, we study whether
the locations of the malfunctions would affect the performance
of the algorithm.

Four state-of-the-art data center network structures are used
in the experiments, i.e., FatTree [1], VL2 [6], BCube [7]
and DCell [8]. The number of nodes with detailed parameter
settings in these four structures is illustrated in Table III.

Two performance metrics are investigated, which are the
calculation time and the consumed memory. These perfor-
mance data is collected from the server, which has a Xeon
3.0GHz eight-core CPU, 8GB DRAM, 2TB disk. The pro-
gramming language we use is C.

To the best of our knowledge, we are the first one to realize
the induced subgraph mapping goal for data center address
configuration. Until now, there is no efficient algorithm, which
could configure thousand-scale malfunctioning data center in
minutes. We have test brute-force induced subgraph mapping
algorithm, which could not configure a 2709-scale data center
within one hour. Therefore, we just present our results, which
is quick enough practically.

B. Performance vs. scale

In this experiment scenario, we set the number of malfunc-
tions to be 50 and evaluate the performance on all the 16 kinds
of data center structures in Table III. To perform the evaluation,
we first randomly generate the malfunctioning points and then
activate the SMA. With each data center structure, the same
“malfunctioning generating” and “SMA calculation” progress
are repeated 100 times.

Figure 4 depicts the average calculation time of SMA under
different structures/scales of the data centers. We observe from

the figure that the calculation time increases as the scale
of data center enlarges. However, the increase of slope is
not very dramatic. In addition, all the specific experiment
cases can be completed within 300 seconds, even when the
number of nodes reaches 221,025 in DCell(4,3). Therefore, we
argue that the average calculation time of Subgraph Mapping
Algorithm is acceptable for real applications. Besides the
average calculation time of Subgraph Mapping Algorithm, we
also list the maximum (Tu), as well as the minimum (Tl)
calculation time in 100 times experiments within the 95%
confidence interval in Table IV. The unit of the calculation
time in the Table IV is second. We can observe that the
results for FatTree and VL2 are relatively stable and the larger
fluctuation for BCube or DCell is also in an acceptable scope.

The maximum memory size (M in the table with unit of
MB) is also illustrated in Table IV. We find that the larger
the data center is, the larger memory size is required. The
maximum memory consumptions in this evaluation scenario
are 27.2MB, 26.4MB, 7.6MB and 24.4MB, respectively for
FatTree, VL2, BCube and DCell.

C. Performance vs. error number

In this scenario, we test the performance of Subgraph
Mapping Algorithm in the case that the number of malfunc-
tioning nodes changes. The number of the malfunctioning
nodes varies from 10 to 50, and the malfunctioning devices are
randomly selected in the physical graph. Instead of performing
experiments under all the 16 structures in Table III, we select
four medium-size data center structures for experiment. They
are FatTree(60) with 58500 nodes, DCell(3,3) with 32656
nodes, VL2(20,100) with 52650 nodes and BCube(8,4) with
53248 nodes. The calculation time of Subgraph Mapping
Algorithm is shown in Figure 5. Each point in the figure is the
average value over 100 times experiments. The maximum and
minimum value of the calculation time among the 100-time
iterations within 95% confidence interval is also recorded. The
results demonstrate that the average calculation time is only
slightly affected by the number of malfunctioning nodes for a
fixed-size data center.

Also, we study the fluctuation of the calculation time. Over
FatTree and VL2, the calculation time is about 12s and 17s
respectively, with almost no fluctuation5 when the number of
malfunctioning nodes increases from 10 to 50. The fluctuation
for BCube or DCell is comparatively larger, however, we still
consider that it is within the acceptable range. For example, the
calculation time of BCube(8,4) ranges from 41.60s to 72.96s
with its average to be 46.67s. The maximal calculation time
is no more than the twice of the average calculation time.

Aside from the performance results of calculation time, the
memory consumptions in this evaluation are 12.6MB, 10.1MB,
7.6MB and 3.8MB over FatTree, VL2, BCube and DCell,
respectively.

5In Figure 5, the maximum and minimum point is almost overlapped with
the average point.

5 10 15

x 10
4

0

50

100

150

200

data center size

c
a

lc
u

la
ti
o

n
 t

im
e

/s

10
2

10
4

10
6

10
−2

10
0

10
2

10
4

data center size

c
a

lc
u

la
ti
o

n
 t

im
e

/s

5 10 15

x 10
4

0

50

100

150

data center size

c
a

lc
u

la
ti
o

n
 t

im
e

/s

1 2 3 4 5 6

x 10
4

0

20

40

60

80

data center size

c
a

lc
u

la
ti
o

n
 t

im
e

/s

VL2

DCell

FatTree

BCube

Fig. 4. The average calculation time of Subgraph Mapping Algorithm under different structures/scales of the data centers when the number of malfunctions
is fixed to 50.

TABLE IV
MEMORY SIZE AND FLUCTUATION OF CALCULATION TIME UNDER DIFFERENT DATA CENTERS STRUCTURES WITH 50 MALFUNCTIONS.

FatTree VL2 BCube DCell
Tl Tu M Tl Tu M Tl Tu M Tl Tu M

F(20) 0.04 0.04 0.6 V(10, 100) 3.33 3.35 5.4 B(5, 4) 0.61 1.01 1.0 D(4, 2) 0.01 0.01 0.16
F(40) 1.73 1.76 3.7 V(20, 100) 12.49 12.60 10.0 B(6, 4) 3.17 5.48 2.0 D(2, 3) 0.02 0.03 0.47
F(60) 17.35 17.50 12.6 V(40, 100) 48.44 48.89 18.8 B(7, 4) 12.53 21.67 4.3 D(3, 3) 2.70 4.39 3.6
F(80) 91.42 93.18 27.2 V(60, 100) 108.05 109.06 26.4 B(8, 4) 41.60 72.96 7.6 D(4, 3) 123.21 247.95 24.4

D. Performance vs. malfunction patterns

In the previous evaluation, the malfunction locations are
randomly generated in a data center structure. To better
understand whether the SMA is generic for all possible mal-
function locations, we evaluate the performance by restricting
the malfunctions to specific locations. In other words, we
categorize errors into different patterns and investigate the
possible performance variations.

To better categorize the malfunction patterns, we first clas-
sify the data center networks into switch-centric ones (i.e.,
VL2 and FatTree) and server-centric ones (i.e., BCube and
DCell) [4]. For switch-centric data centers, there are usually
clear “layers”. The switches are usually in a hierarchical struc-
ture. For example, FatTree has four layers (cores, aggregations,
edges and servers) and VL2 structure is also a four-layer
structure, which involves intermediate switches, aggregate
switches, ToR switches and servers. For server-centric data
centers, there are usually no such clear layers for switches or
servers.

First, we investigate switch-centric data center structures

with malfunctions on different adjacent layers. For FatTree,
we denote layer one as server, layer two as edge, layer three
as aggregation and layer four as core. For VL2, we use layer
one to layer four to differentiate server, ToR, aggregate and
intermediate switch. We use FatTree(60) with 58500 nodes
and VL2(20,100) with 52,650 nodes to carry out six groups
of evaluations, i.e., three over FatTree and three over VL2. In
each of the group, we fix 50 malfunctions across two adjacent
layers over FatTree or VL2 and repeat the experiment for 100
times. The calculation time of the experiments is illustrated in
Table V. In Table V, Tl, Ta and Tu (with second as unit) are the
minimum, average and maximum of the calculation time over
100 times of the experiments within 95% confidence interval.
Again, the fluctuation on the calculate time is small.

For server-centric data center structure, we analyze how
different proportions of error switches affect the performance.
We denote α as the number of malfunctions that is in switches
to all malfunctions. We use BCube(8,4) with 52,650 nodes
and DCell(3,3) with 32,656 nodes as the data center structure.
Also, in this experiment, the total number of the malfunctions

10 20 30 40 50
0

10

20

30

40

malfunction number

c
a

lc
u

la
ti
o

n
 t

im
e

/s

FatTree

10 20 30 40 50
0

5

10

15

20

25

malfunction number

c
a

lc
u

la
ti
o

n
 t

im
e

/s

VL2

10 20 30 40 50
0

50

100

malfunction number

c
a

lc
u

la
ti
o

n
 t

im
e

/s

BCube

10 20 30 40 50
0

2

4

6

8

malfunction number

c
a

lc
u

la
ti
o

n
 t

im
e

/s

DCell

Fig. 5. The average calculation time with different malfunction numbers.

TABLE V
THE CALCULATION TIME FOR FATTREE AND VL2 WITH DIFFERENT

MALFUNCTION PATTERNS.
layer FatTree(60) VL2(20, 100)

Tl Ta Tu Tl Ta Tu

1-2 17.36 17.40 17.49 12.51 12.55 12.60
2-3 16.91 17.03 17.15 12.07 12.10 12.14
3-4 17.30 17.37 17.57 12.24 12.43 12.62

is 50. The average calculation time over 100 experiments
is shown in Figure 6. The time fluctuation is again in an
acceptable range.

From Table V, we find that the location of errors for switch-
center data center does not affect the average calculation time
much. The average performance on calculation time is almost
the same for the three error patterns in FatTree or VL2. In
Figure 6, we find that concerning server-centric data centers
as BCube and DCell, the proportion of error switches also
does not affect the calculation time. The average calculation
time of SMA is about 47s over BCube(8,4) and is 3s about
over DCell(3,3) under different proportions of error switches.
Besides, the memory size consumed is bounded by 12.6MB,
9.9MB, 7.6MB and 3.8MB for FatTree(60), VL2(20,100),
BCube(8,4), DCell(3,3), respectively.

V. RELATED WORK

The most related work of ETAC is DAC [2]. DAC malfunc-
tion handling module detects the malfunction-related devices,
but it waits for all of them to be corrected before configuring
the whole data center network. Correcting the malfunctions

0 20 40 60 80 100
0

50

100

150

α

c
a

lc
u

la
ti
o

n
 t

im
e

/s

BCube

0 20 40 60 80 100
0

2

4

6

8

10

α

c
a

lc
u

la
ti
o

n
 t

im
e

/s

DCell

Fig. 6. The calculation time(s) for BCube(8,4) and DCell(3,3) with different
malfunction patterns.

is a manual process and is time consuming. In contrast, our
idea is to configure the devices of correct part and let them
work first. Such simple idea involves non-trivial algorithm
design and makes substantial practical benefits. DAC mapping
algorithm leverages graph isomorphism theory, while our
ETAC algorithm focuses on induced subgraph isomorphism
problem.

PortLand [11] and DCZeroconf [9] also consider address
configuration in the context of data center networking. Port-
Land introduces a distributed location discovery protocol

(LDP) for its PMAC address assignment. LDP assumes a
multi-rooted multi-level tree topology to decide the levels
of switches and then encodes this information in PMAC
addresses, but it does not apply to other structures such as
BCube [7] or DCell [8]. Furthermore, it does not consider the
cases when the data center has malfunctions. DCZeroconf is a
fully automatic address configuration mechanism to eliminate
the burden of manual configurations on the IP addresses of
servers and switches in data centers, however, it can not be
used for non-IP data centers.

DHCP [12] is a well-known automatic configuration pro-
tocol widely used on IP networks. DHCP employs a central
database for keeping track of the IP addresses that have been
assigned to the network. When a new server comes, the central
server will assign a new, unused IP to this server to avoid
the address conflict. Zeroconf [13] could also be used for
assigning IP addresses automatically. Different from DHCP,
Zeroconf does not require a central DHCP server to avoid IP
address conflicts. The Zeroconf enabled host first randomly
picks an address and validates its availability by broadcasting
queries to the network. The address will be reserved for the
host if no reply shows that the address has already been
occupied; otherwise the host randomly selects another address
and repeats the validation process. By default, the address pool
maintained in the DHCP server or the Zeroconf host does not
have locality of topology embedded and is not able to work
directly in data center network environments where addresses
are topology-meaningful.

VI. CONCLUSION

In this paper, we study the automatic configuration on the
addresses of the devices in data center networks with malfunc-
tioning nodes and links. In malfunctioning data centers, previ-
ous related work configures all the devices simultaneously af-
ter a manual malfunction correction process being completed.
We argue that such a manual correction period is not necessary
for the devices that are not involved in any malfunctions
and we aim to get these devices configured and started to
work first. To achieve this purpose, we have first proposed a
ETAC framework to auto-configure the addresses of devices
insides a DCN with or without malfunctions and then we have
modeled the mapping problem between the addresses to be
configured and the physical devices as the induced subgraph
isomorphic problem in mathematical formulation. In addition,
we have developed an efficient induced subgraph mapping
algorithm to solve the problem. By exploiting the structure
characteristics of data center networks and properties of the
induced subgraph, ETAC and its corresponding the mapping
algorithm successfully find the solution within tens of seconds
even for a data center network with scale of hundreds of
thousands of devices. Also, the memory cost of the mapping
algorithm is also quite limited. Again for a data center network
that has more than hundreds of thousands of devices, the
mapping program only occupies less than 30MB memory size.

REFERENCES

[1] M. Al-Fares, A. Loukissas, and A. Vahdat. A scalable, commodity data
center network architecture. In SIGCOMM’08, pages 63–74, New York,
NY, USA, 2008. ACM.

[2] K. Chen, C. Guo, H. Wu, J. Yuan, Z. Feng, Y. Chen, S. Lu, and W. Wu.
Generic and automatic address configuration for data center networks.
In SIGCOMM, 2010.

[3] K. Chen, C. Hu, X. Zhang, K. Zheng, Y. Chen, and A. Vasilakos. Survey
on routing in data centers: insights and future directions. IEEE Network,
25(4):6 –10, july-august 2011.

[4] K. Chen, C. Hu, X. Zhang, K. Zheng, Y. Chen, and T. Vasilakos.
Routing in data centers: Insights and future directions. In IEEE Network
Magazine - Special Issue on Cloud, 2011.

[5] P. Darga, K. Sakallah, and I. Markov. Faster symmetry discovery
using sparsity of symmetries. In 45th ACM/IEEE Design Automation
Conference, pages 149 –154, june 2008.

[6] A. Greenberg, N. Jain, S. Kandula, C. Kim, P. Lahiri, D. Maltz, P. Patel,
and S. Sengupta. Vl2: A scalable and flexible data center network. In
SIGCOMM, 2009.

[7] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian, Y. Zhang, and
S. Lu. Bcube: A high performance, server-centric network architecture
for modular data centers. In SIGCOMM, 2009.

[8] C. Guo, H. Wu, K.Tan, L.Shi, Y.Zhang, and S.Lu. Dcell: A scalable and
fault tolerant network structure for data centers. In SIGCOMM, 2008.

[9] C. Hu, M. Yang, K. Zheng, K. Chen, X. Zhang, B. Liu, and X. Guan.
Automatically configuring the network layer of data centers for cloud
computing. IBM Journal of Research and Development, 2011.

[10] R. H. Katz. Tech Titans Building Boom. IEEE SPECTRUM, Feb. 2009.
[11] R. N. Mysore, A. Pamboris, N. Farrington, N. Huang, P. Miri, S. Rad-

hakrishnan, V. Subramanya, and A. Vahdat. Portland: A scalable fault-
tolerant layer 2 data center network fabric. In SIGCOMM, 2009.

[12] R.Droms. Dynamic host configuration protocol. In RFC 2131, 1997.
[13] B. A. S. Cheshire and E. Guttman. Dynamic configuration of ipv4 link-

local addresses, August 2002. Zeroconf Working Group of the Internet
Engineering Task Force (www.zeroconf.org).

[14] S.Ghemawat, H.Gobioff, and S.-T. Leung. The google file system. In
SOSP, 2003.

[15] Wikipedia. The graph isomorphism problem. ”http://en.wikipedia.org
/wiki/Graph isomorphism problem.”.

[16] Wikipedia. The induced subgraph isomorphism problem. ”http://
en.wikipedia.org/wiki/Induced subgraph isomorphism problem”.

[17] H. Wu, G. Lu, D. Li, C. Guo, and Y. Zhang. Mdcube: a high performance
network structure for modular data center interconnection. In CoNEXT
’09, pages 25–36, New York, NY, USA, 2009. ACM.

