
FAERY: An FPGA-accelerated Embedding-based Retrieval System

Chaoliang Zeng1∗ Layong Luo2 Qingsong Ning2 Yaodong Han2 Yuhang Jiang2 Ding Tang1∗

Zilong Wang1∗ Kai Chen1 Chuanxiong Guo2

1Hong Kong University of Science and Technology 2ByteDance

Abstract
Embedding-based retrieval (EBR) is widely used in recom-
mendation systems to retrieve thousands of relevant candi-
dates from a large corpus with millions or more items. A
good EBR system needs to achieve both high throughput and
low latency, as high throughput usually means cost saving
and low latency improves user experience. Unfortunately, the
performance of existing CPU- and GPU-based EBR are far
from optimal due to their inherent architectural limitations.

In this paper, we first study how an ideal yet practical EBR
system works, and then design FAERY, an FPGA-accelerated
EBR, which achieves the optimal performance of the prac-
tically ideal EBR system. FAERY is composed of three key
components: It uses a high bandwidth HBM for memory
bandwidth-intensive corpus scanning, a data parallelism ap-
proach for similarity calculation, and a pipeline-based ap-
proach for K-selection. To further reduce hardware resources,
FAERY introduces a filter to early drop the non-Top-K items.
Experiments show that the degraded FAERY with the same
memory bandwidth of GPU still achieves 1.21×-12.27×
lower latency and up to 4.29× higher throughput under a
latency target of 10 ms than GPU-based EBR.

1 Introduction

Recommendation systems have gained significant adoption in
many online services [11, 12, 18, 38]. To make a recommen-
dation from a large corpus containing millions of candidate
items, industrial large-scale recommendation systems are usu-
ally divided into two layers, namely retrieval and ranking,
as shown in Figure 1. Retrieval quickly selects thousands of
relevant items from the large corpus with simple algorithms,
while ranking utilizes sophisticated algorithms to sort the re-
trieval results more precisely, and then chooses dozens out of
the sorted items.

Real-world retrieval systems conduct multi-channel re-
trieval [26, 39, 43]: It leverages different strategies in sep-
arate channels to retrieve different candidates, which are
then merged and filtered to generate the final retrieval re-
sult. Among the multi-channel retrieval strategies, embedding-
based retrieval (EBR) gains increasing popularity [12, 18, 20,
25, 38, 42]. EBR represents user queries and candidate items

∗ This work is done while Chaoliang Zeng, Ding Tang, and Zilong Wang
are interns in ByteDance.

thousands dozens

Corpus Retrieval Ranking

End Results

…

> millions

Figure 1: A typical recommendation system. Retrieval selects
thousands of candidate items from a large corpus, and ranking
further chooses dozens from the retrieval results.

with semantic embedding vectors (embedding for short) using
representation learning [9], and converts the retrieval problem
into a similarity search problem in the embedding space. In
particular, an EBR algorithm, as shown in Listing 1, involves
scoring, which scans the corpus to get all items and calculates
a similarity score (e.g., via inner product) between every item
embedding and the given query embedding, and K-selection,
which returns the Top-K items based on their similarity scores.
The returned Top-K items of EBR are usually sorted [25, 42],
to simplify merging and filtering retrieval candidates from
multiple channels.

The performance of such EBR systems is important. On
the one hand, increasing the throughput of every EBR server
reduces the overall server cost, as fewer servers are required
to serve a target number of queries per second (QPS). On
the other hand, decreasing the latency of each EBR server
reduces the retrieval time, which can either shorten user’s
overall waiting time or leave more time for ranking compu-
tation to get better recommendation results [11]. Therefore,
latency-bounded throughput becomes a critical metric for
EBR systems.

To achieve high latency-bounded throughput, we charac-
terize the EBR algorithm shown in Listing 1 and derive a
practically ideal EBR hardware architecture (§2.2). Specifi-
cally, corpus scanning (line 3) is a memory-intensive operator
which requires both large external memory capacity and high
memory bandwidth. Similarity calculation (line 4) and K-
selection (line 6) are both compute-intensive. They should
match the memory bandwidth with a data-parallel architec-
ture across multiple operator instances. Moreover, to overlap
communications with computations among steps or operators,
both inside K-selection and the entire EBR data flow require
pipeline parallelism. Then, we extend the ideal architecture
to support batch queries, by sharing corpus scanning among
queries in a batch and providing separate compute pipelines

1 # Scoring
2 for i in corpus_size:
3 item_emb = corpus[i] # corpus scanning
4 scores[i] = sim_calc(user_emb, item_emb) # similarity calc
5 # K-selection
6 ret_items = topk(scores) # returns the sorted top_k items

Listing 1: Simplified EBR algorithm for a single user query.

to serve different queries in the batch in parallel. As a result,
the ideal architecture achieves the optimal query latency, and
scales the latency-bounded throughput linearly with the batch
size.

By comparing existing CPU- and GPU-based EBR with
the ideal architecture, we realize that, unfortunately, none of
the existing approaches achieve the optimal performance due
to their inherent architectural limitations (§2.3). First, despite
large memory capacity, CPU does not perform well in corpus
scanning due to low memory bandwidth, and fails to well
support the desired parallelism paradigms simultaneously
due to the limited number of cores. Second, although GPU
provides higher memory bandwidth and massive compute
cores for data parallelism, GPU is not optimized for pipeline
parallelism required by K-selection and the entire EBR data
flow due to explicit resource boundaries.

We observe that FPGA, a programmable hardware device
readily available in some hyper-scale cloud providers [10, 14,
41, 45], has all the desired properties of the practically ideal
EBR architecture. Some modern FPGAs are equipped with
large high bandwidth memory (HBM), ideal for corpus scan-
ning. Moreover, FPGAs provide sufficient on-chip memories
and fully programmable compute elements to enable appro-
priate parallelism paradigms for various operators (§2.4).

We exploit the above observations to design FAERY (§3),
an FPGA-Accelerated Embedding-based Retrieval sYstem,
which is an embodiment of the ideal EBR architecture and
achieves high performance. Specifically, FAERY stores the
corpus in FPGA’s HBM, which provides high bandwidth for
the memory bandwidth-intensive corpus scanning. FAERY
leverages a corpus manager to maximize the HBM bandwidth
utilization in runtime while preserving memory-efficient stor-
age and enabling online corpus update. FAERY follows the
ideal architecture to design similarity calculation with data
parallelism and K-selection with pipeline parallelism. Dif-
ferent from the ideal architecture, FAERY needs only a sin-
gle K-selection pipeline, and adds a filter in front of it to
significantly lower its throughput requirement, based on a
unique property observed in the K-selection pipeline. The fil-
ter optimization lowers the resource requirements of FAERY
compared with the ideal architecture by eliminating multiple
K-selection pipelines.

The above ideas make a single FPGA-based EBR accelera-
tor perform well. To further enhance its capabilities, multiple
such accelerator cards can be inserted into a FAERY server
(§4) and work together. When a corpus can fit into a single

card, we can scale the aggregate query throughput by repli-
cating the corpus among multiple cards. When the corpus
is too large to fit into a single card, we can shard it evenly
among multiple cards. FAERY supports both the replication
and sharding modes and leverages a software front-end to
dispatch queries and to merge retrieval results for multiple
accelerator cards.

We have implemented a fully functional FAERY prototype
with Xilinx FPGA cards (§5). Experiments (§6) show that
the degraded FAERY with the same memory bandwidth of
GPU achieves 1.21×-12.27× lower latency and up to 4.29×
higher throughput under a latency target of 10 ms than an
EBR system accelerated by Nvidia T4 GPU.

This paper makes the following contributions:

• We study the EBR algorithm from the first principles and
derive a practically ideal EBR architecture to achieve the
optimal query latency and to scale the latency-bounded
throughput linearly with the batch size, constrained by
hardware resources. We further identify the performance
bottlenecks of CPU- and GPU-based EBR using the ideal
EBR architecture as a reference (§2).

• We design FAERY, a domain specific accelerator (DSA) for
EBR. FAERY arranges its key components: corpus scan-
ning, similarity calculation, and K-selection in a perfect
pipeline, and accelerates these components using appropri-
ate data and/or pipeline parallelisms. FAERY is an embodi-
ment of the ideal EBR architecture, with balanced filtering
and buffering which matches the capability of parallel sim-
ilarity score calculations with a single K-selection pipeline,
based on a thorough analysis (§3 and §4).

• We implement FAERY using FPGA, evaluate its perfor-
mance, and quantify its advantages over CPU- and GPU-
based EBR systems, respectively (§5 and §6).

2 Background & Motivation

2.1 EBR Algorithms: KNN vs. ANN

EBR represents user queries and candidate items with em-
beddings, and converts the retrieval problem into a K-Nearest
Neighbor (KNN) or an Approximate Nearest Neighbor (ANN)
search problem in the vector space [20]. KNN-based EBR
searches the accurate k-nearest item embeddings from the
corpus, while ANN-based EBR retrieves the approximate
k-nearest item embeddings, by sacrificing accuracy for effi-
ciency using techniques such as indexing (e.g., IVF [34] and
HNSW [28]) and quantization (e.g., PQ [21]). The tradeoff
between accuracy and efficiency in various ANN algorithms
is well studied in [8].

CPU provides limited memory bandwidth and computing
power, so that it is challenging for CPU to perform KNN
search on a large corpus due to the tremendous costs of mem-
ory accesses and computations. As a result, ANN search is

⑥ Pipeline parallelism for the entire EBR data flow

③ Data parallelism① Large
external memory

② High memory bandwidth

…

M
erge

④ Data parallelism

step 1 … step n

⑤ Pipeline parallelism
K-selection

Emb

Emb
…

Emb

Emb
…

Emb

Emb
…

… …

k

k

k

Top-K

Scoring

Figure 2: A practically ideal EBR architecture with the batch
size of 1. It has the following properties: ¬ large external
memory for corpus store, high memory bandwidth for cor-
pus scanning, ® data parallelism for similarity calculation,
¯ data parallelism among multiple K-selection instances,
° pipeline parallelism within a K-selection instance, and ±
pipeline parallelism for the entire EBR data flow.

widely applied in CPU-based EBR in the industry. In contrast,
accelerators, e.g., GPU and FPGA, provide much higher mem-
ory bandwidth and computing power, so that KNN search is
usually adopted by these accelerators to trade memory band-
width and computing power for higher accuracy and thus
better recommendation quality.

To simplify discussion and comparison, we use the same
KNN search (shown in Listing 1) for EBR on all platforms
(CPU, GPU, and FPGA) in this paper, but our analysis re-
sults and acceleration ideas apply to ANN as well, as ANN
shares similar characteristics and bottlenecks with KNN, just
to different extents.

2.2 Practically Ideal EBR Architecture

To maximize latency-bounded throughput, an ideal architec-
ture should first achieve minimal latency for each individual
query (equivalent to maximal throughput with the batch size
of 1), and then scale the throughput linearly with increasing
batch sizes while preserving the consistent minimal latency.

In a theoretically ideal architecture, for each query, we do
similarity calculation with ALL item embeddings in paral-
lel and finish this operator in O(1) time, followed by a per-
fect K-selection to match the parallelism. This is obviously
impractical, as it requires millions of item accesses and mil-
lions of similarity calculation (e.g., inner product) operators
in parallel, not to mention the design challenge of K-selection
to match that extreme parallelism. A practically ideal EBR
should take into account both realistic hardware constraints
and the EBR characteristics which we discuss below.

Corpus scanning (line 3) is a memory-intensive operator.
The size of an industrial corpus is up to several GBs [19],
and scanning such a large corpus incurs millions of memory
accesses for a single query. Thus, corpus store and scanning
require large external memory and high memory bandwidth.

Similarity calculation (line 4) is a compute-intensive op-
erator, which calculates similarity scores between the user

External
memory

Scoring K-selection
Items Scores

Query

BS = 1

External
memory

Scoring K-selection
Items

Scores

Query 1

BS = N
(N > 1)

Result

Result for
query 1

Scoring K-selection
Scores

Query N
Result for
query N

…
Figure 3: A practically ideal EBR architecture with the batch
size of N, where the throughput scales linearly with the batch
size N, while the latency remains the same as shown in Equa-
tion 1.

query and all item embeddings. As the calculations for differ-
ent item embeddings are independent, an ideal architecture
should perform similarity calculation with data parallelism to
match the throughput of corpus scanning.

K-selection (line 6) is another compute-intensive operator.
To match the throughput of multiple similarity calculation
instances, K-selection requires data parallelism with multiple
instances as well. Inside a single instance, K-selection can be
realized by various algorithms [23, 33], among which a com-
mon practice is to partition this complex task into multiple
steps, and organizes them in a pipelined manner.

Based on these characteristics, a practically ideal EBR ar-
chitecture for optimal latency should have a large and high-
bandwidth memory for corpus store and scanning, appropriate
parallelisms for EBR operators to match their throughput to
the memory bandwidth, and a perfect overlap among commu-
nications and computations of operators in the entire pipeline
to minimize latency. Figure 2 describes a practically ideal
EBR architecture with the batch size of 1 and its desired
properties. The minimal query latency of this architecture is:

latency =
S
B
+C, (1)

where S is the corpus size, B is the external memory band-
width, and C is a constant delay, i.e., the pipeline latency,
which is the time it takes for the last embedding going through-
out the pipeline. Thus, the maximal throughput is 1/latency
queries per second (QPS) with the batch size of 1.

The ideal architecture can be extended to support batch
queries to increase latency-bounded throughput linearly, as
shown in Figure 3. The key is to share corpus scanning among
multiple queries in a batch (i.e., scan the corpus only once
in each batch), and process multiple queries with separate
compute pipelines in a data-parallel manner. In this way, the
latency remains constant as shown in Equation 1, and the
latency-bounded throughput scales linearly with the number
of batched queries. In practice, the batch size cannot be in-
creased unlimitedly due to resource constraints, and hence
the maximum latency-bounded throughput will be bounded
by the available hardware resource of the chosen platform.

ScoresItem
embeddings

Scoring

K-statesStates

K-selection

External Memory

Streaming Multiprocessors

kernel kernel

Step 1 Step 2 Step n

On-chip
memory

Compute
cores

Top-K
results

…

(a) GPU-based EBR (GPU-o,
K-selection with on-chip memory)

…
Scoring

K-selection

States

Streaming Multiprocessors

kernel kernel kernel kernel

Step 1

States

Step 2

States

Step n

States

ScoresItem
embeddings

External Memory

K-states 1 K-states 2 … Top-K
results

On-chip
memory

Compute
cores

(b) GPU-based EBR (GPU-e,
K-selection with external memory)

FPGA

Item
embeddings

fifo fifo

Top-K
results

K-selection

fifo
states

Scoring Step 1

states states

Step nScores K-states 1

…

External Memory

On-chip
memory

Compute
logic

(c) FPGA-baesd EBR

Figure 4: Comparison between GPU- and FPGA-based EBR architectures. (a) GPU-o is a GPU-based EBR that stores intermediate
states of K-selection in on-chip memory [23] and maintains corpus and scores in external memory. It suffers from heavy state
maintenance cost and small k values; (b) GPU-e is a GPU-based EBR that moves all intermediate states of K-selection to external
memory [33, 36], requiring multiple passes over the external memory; (c) is an FPGA-based EBR which stores only corpus in
external memory, traverses external memory only once, and keeps the computation and communication of other operators fully
on chip and in a streaming pipeline.

2.3 Existing EBR Architectures

Using the ideal EBR architecture as a reference, we analyze
existing CPU- and GPU-based EBR architectures, and show
that their performance are both sub-optimal due to inherent
architectural limitations.

2.3.1 CPU-based EBR

Datacenter CPUs are equipped with large DDR memory (hun-
dreds of GBs), able to store a very large corpus with millions
or more item embeddings. However, CPU-based EBR does
not perform well due to the following reasons.

Low memory bandwidth violates in Figure 2. The the-
oretical DDR memory bandwidth of a CPU is proportional
to the limited number (typically 2∼8) of DDR channels [3],
and the memory bandwidth utilization driven by a CPU is
not high. Taking the server used in our evaluations (§6) as an
example, a CPU with six DDR channels provides a theoretical
maximum bandwidth of 140.8 GB/s, and an empirical upper
bound of only 78 GB/s measured with Intel MLC [1]. The
low memory bandwidth (B) significantly increases the first
part (S/B) of Equation 1.

Limited number of CPU cores cannot support ®-± and
batch queries, simultaneously. A CPU contains dozens of
processor cores that can be flexibly used for data parallelism,
pipeline parallelism, and/or batch processing. However, due to
the limited number of cores, CPU-based EBR fails to support
all the above features well simultaneously, where the num-
ber of cores desired is the product of the number of memory
channels, the number of pipeline stages, and the batch size
as shown in Figure 2 and Figure 3. The poor support of data
parallelism and pipeline parallelism results in throughput mis-
match and imperfect overlapping among operators, leading to
an increase on the second part (C) of Equation 1 as well as a

sub-linear throughput increase with batch queries.

2.3.2 GPU-accelerated EBR

Compared with CPU, GPU provides high external memory
bandwidth (e.g., Nvidia T4 [2] provides 300 GB/s bandwidth
with GDDR6), and massive lightweight SIMT (Single Instruc-
tion Multiple Threads) cores optimized for data parallelism.
Although GPU provides a smaller memory capacity (e.g.,
16−80 GB in a typical GPU and 128−640 GB in a holistic
server with 8 GPU cards), the size is still large enough to store
the corpora in most recommendation services. For example,
given a typical embedding size of 256 bytes, 128 GB memory
can store more than 500M items that can meet the require-
ments of most recommendation systems [11,12,16,40]. These
strengths inspire the design of GPU-accelerated EBR [23, 46]
to achieve higher performance.

However, the performance of these GPU-based EBR sys-
tems are still sub-optimal, as GPU is not optimized for
pipeline parallelism. GPU consists of a large number of
streaming multiprocessors (SM), each of which contains ex-
clusive on-chip memory and compute cores. Communication
between SMs or kernels1 is only possible via external mem-
ory, and the available on-chip memories for a single SM are
very limited (e.g, 304 KB in Nvidia T4). These restrictions
make GPU-based EBR not perfectly pipelined, leading to an
increase on the second part (C) of Equation 1.

Inter-operator communication via external memory vio-
lates ±. Different EBR operators are organized as separate
kernels. The similarity scores generated by scoring kernels are
transmitted to the K-selection kernels via the external mem-
ory, as shown in Figure 4a and Figure 4b. The explicit kernel
boundaries make it difficult to exploit pipeline parallelism

1A kernel is a function executed on GPU, which realizes a data-parallel
portion of an application. An operator may consist of one or multiple kernels.

across EBR operators to overlap perfectly communication
and computation [24, 47].

Existing K-selection pipelines violate °. Existing GPU-
based K-selection algorithms can be classified into the fol-
lowing two categories.

K-selection with on-chip memory (e.g., WarpSelect [23]),
denoted as GPU-o, as shown in Figure 4a, fuses all K-
selection sub-steps into a single kernel to avoid cross-kernel
overhead, and keeps all K-states in on-chip memory. However,
maintaining all K-states on chip and executing these steps
in the SIMT cores introduce non-trivial computation over-
head (e.g., per-thread queue sorting, sorted queues merging,
and thread synchronization [23]), resulting in poor latency.
To show this overhead, we measure Faiss [23], which adopts
WarpSelect, with a 4M corpus and the same setting as §6.
The result shows that the K-selection operator consumes up to
80.4% of the total time. Moreover, given the limited on-chip
memory size of each SM, it fails to support a large k value,
i.e., at most 2048 in this setting.

K-selection with external memory (e.g., RadixSelect [33,
36]), denoted as GPU-e, as shown in Figure 4b, implements
different K-selection sub-steps as separate kernels, and trans-
mits intermediate data among kernels via the external memory.
As a result, the K-selection operator has to access the external
memory multiple passes (well studied in [33]), leading to sub-
optimal K-selection performance, which will become worse
with a larger batch size due to heavy bandwidth contention on
external memory. With the same setting mentioned above, the
query latency of RadixSelect is increased by 12.36× when
the batch size is increased from 1 to 16.

2.4 FPGA Opportunities

We observe that FPGA has the following properties that meet
the requirements of the ideal EBR architecture.

• Similar to GPU, high-end FPGAs are equipped with HBM
of large capacity (typically 8 to 32 GB). A typical HBM is
a stack of 32 parallel DRAM channels (versus up to 8 DDR
channels in a CPU), providing parallel memory accesses
and thus high bandwidth (460 GB/s), which fundamentally
eliminates the biggest memory bandwidth bottleneck in
CPU-based EBR.

• Unlike GPU with exclusive and small on-chip memories
for each SM, FPGA provides sufficient on-chip memories
(dozens of MB in total), which are accessible to all compute
elements. This could be leveraged to overcome the prob-
lems of GPU-based EBR as discussed in §2.3.2. Unlike
GPU with SIMT cores optimized only for data parallelism,
the massive compute elements and interconnects among
them in FPGA are fully programmable, so that they can be
orchestrated in any parallelism strategy (data parallelism
or pipeline parallelism).

Desired features in ideal arch. CPU GPU FPGA
large memory capacity 4 4 4

high memory bandwidth 4 4

data parallelism 4 4 4

pipeline parallelism 4 4

batch queries with low latency 4 4 4

Table 1: EBR architecture comparison among CPU, GPU,
and FPGA. 4 means perfect support, while4 means limited
support.

Table 1 summarizes the architecture comparison of CPU,
GPU, and FPGA for EBR. Based on FPGA’s advantages, we
can design an FPGA-based EBR pipeline similar to that in
Figure 4c: It traverses the HBM only once, passes intermedi-
ate data between operators via on-chip memory, and overlaps
communications with computations of operators via careful
pipeline designs. In this way, FPGA-based EBR has the po-
tential to approach the optimal performance (Equation 1). The
design details of such a system, named FAERY, are presented
in the following sections.

3 FAERY Accelerator

We design the FAERY accelerator by following the most de-
sired properties of the ideal EBR architecture, with some
additional optimizations. Figure 5 presents the architecture
of the FAERY accelerator, with a few major components in-
cluding HBM, corpus manager, similarity calculation, filter,
and K-selection. FAERY stores the corpus in HBM and uses
the corpus manager (§3.1) for corpus scanning and update.
FAERY applies data parallelism across multiple similarity
calculation units (§3.2), and pipeline parallelism within K-
selection (§3.3). Different from the ideal EBR architecture,
FAERY does not need multiple K-selection pipelines with
data parallelism, thanks to a new filter operator (§3.4) in-
serted before the K-selection pipeline to lower its throughput
requirement. This optimization lowers the resource overhead
compared with the ideal architecture. The above operators
are perfectly pipelined and overlapped, and the resulting data
streams are shown in §3.5.

3.1 Corpus Manager

FAERY stores the corpus in HBM and uses the corpus manager
to perform corpus scanning and update. The corpus manager
is designed to meet two objectives toward high bandwidth
utilization of HBM: maximizing single-channel performance
and maximizing multi-channel parallelism.

HBM Corpus Manager

Similarity Calculation

embemb

F
ilter

Scoring Unit

K-selection

1-1
M

erger

2-2
M

erger

K
-K

M
erger

…

query

DMA Engine
result

Horizontal
Buffer

Division

Embedding
Compaction

Corpus Store Corpus Scanning

embemb

embemb

embemb

embemb

Scoring Unit

Scoring Unit

Scoring Unit

Scoring Unit
Minimum value in running Top-K

Figure 5: FAERY accelerator architecture with the batch size of 1. It stores item embeddings in high bandwidth memory (HBM),
uses a corpus manager for corpus scanning and update, and applies appropriate parallelism paradigms for different key operators:
data parallelism for similarity calculation and pipeline parallelism for K-selection. A filter is added between the above two
operators to bridge their throughput mismatch and lower the resource requirement. The overall architecture is fully pipelined,
with computations and communications perfectly overlapped to minimize latency and maximize throughput.

B
W

 u
til

iz
at

io
n

(%
)

0

20

40

60

80

100

Burst size (B)
32 64 128 256

Figure 6: Bandwidth utilization of a single HBM channel with
different burst sizes. The utilization is over 90% when the
burst size is not smaller than 64 bytes.

3.1.1 Embedding Compaction to Maximize Single-
channel Performance

The bandwidth utilization of a single HBM channel is affected
by two factors: access pattern (sequential or random access)
and burst size (the number of bytes in a memory transaction).
Given the nature of brute-force KNN search, both corpus
scanning and corpus update perform sequential access, which
is more efficient than random access. We show in Figure 6 the
bandwidth utilization of a single HBM channel in sequential
access over various burst sizes. The result reveals that, to
achieve bandwidth utilization of over 90%, an ideal burst size
should be not smaller than 64 bytes and be a multiple of the
channel width of 32 bytes.

However, the size of embeddings could be smaller than 64
bytes, especially for those generated by quantization-aware
training [30, 31, 37]. It could also be not a multiple of the
channel width. To bridge the mismatch between the ideal
burst size requirement and the realistic embedding size, we
compact one or multiple embeddings into a burst, whose size
might not be exactly a multiple of the embedding size, leaving

Corpus buffer 1 Corpus buffer 2

Channel ID
A

dd
re

ss
Channel ID

A
dd

re
ss

(a) Horizontal division. (b) Vertical division.

Figure 7: HBM can be divided into two buffers in two ways.
(a) Horizontal division: divide buffers based on address, which
preserves all memory channels and maximum memory band-
width for each buffer. (b) Vertical division: divide buffers
based on channel ID, which halves the number of available
channels and the memory bandwidth for each buffer.

some unused bytes in a burst. To minimize the waste, we
choose an ideal burst size with minimal unused bytes.

3.1.2 Horizontal HBM Division to Maximize Multi-
channel Parallelism

To support the online corpus update, the corpus manager
partitions HBM into two corpus buffers: a runtime buffer
to store the latest corpus and serve queries, and an update
buffer reserved for update. Upon receiving a new corpus from
the host, the corpus manager stores it into the update buffer,
and then switches the EBR pipeline to scan corpus from that
buffer for new queries. In this way, the runtime buffer and
update buffer switch roles after each update.

HBM can be partitioned into two corpus buffers in two
ways, horizontally or vertically, as shown in Figure 7. The
horizontal division is chosen, as it keeps all the available
HBM channels and thus the maximum memory bandwidth

for each buffer, while the vertical division loses half channels
and thus half memory bandwidth for each buffer.

During corpus update, the HBM write caused by update
and HBM read caused by query, may contend for HBM mem-
ory bandwidth with horizontal division. Such contention is
negligible. Considering that the realistic HBM bandwidth is
414 GB/s (90% utilization of a typical 460 GB/s HBM), and
corpus update is bounded by the PCIe Gen3 x16 bandwidth
(16 GB/s), the update (HBM write) throughput over the total
HBM throughput is less than 4%. Moreover, given that corpus
update happens much less frequently than query, update can
be further throttled to minimize its impact to query. Other
update methods will be discussed in §7.

3.2 Similarity Calculation
Similarity calculation receives multiple item embeddings
from multiple HBM channels simultaneously. In order to
match the bandwidth of HBM, we apply data parallelism in
similarity calculation, where multiple scoring units (SU) are
instantiated to work in parallel, and each performs similar-
ity calculation, e.g., inner product, between a separate item
embedding and the given query embedding. The number of
parallel SUs required is the product of the total number of
HBM channels and the maximum number of item embeddings
inside a channel width, which may contain more than one item
embedding due to the embedding compaction (§3.1.1).

3.3 K-selection
There exist multiple different K-selection architectures [27,29,
44], suitable for different scenarios. In the context of recom-
mendation systems, the value of k is from a few thousand to
dozens of thousands in realistic EBR [16, 25], so K-selection
in FAERY aims to achieve both high performance and high
scalability in supporting a large value of k. To this end, we
choose an existing K-selection pipeline [29] based on bottom-
up merge sort for the following two reasons.

First, the bottom-up merge sort allows processing input
scores in a streaming manner to avoid storing the entire scores
before computing. In contrast, some algorithms incapable
of streaming processing, e.g., RadixSelect [36], inevitably
need external memory to store the entire scores of a large
size. Leveraging external memory to cache the scores should
be avoided, as it will not only reduce the available storage
space for the corpus, but also interfere with the performance
of corpus scanning due to bandwidth contention.

Second, pipeline parallelism within K-selection is
compute-efficient and scalable, e.g., the chosen K-selection
pipeline [29] requires only O(logk) comparators. In contrast,
some data-parallel K-selection architectures [27, 44] use a
large number of parallel comparators to process a batch of
input scores at a time. The number of parallel comparators
required by this method is O(p∗ k), where p is the batch size

C
M
P

C
M
P

1-merger 2-merger

top4-merger

C
M
P

4-sorter

input output

Current Top-4

New Top-4

Figure 8: An example of the 4-selection pipeline in [29].

of input scores. Such design is not scalable, especially for k
in the order of thousands.

Pipeline parallelism within K-selection. Figure 8 illus-
trates a K-selection pipeline where k = 4. The K-selection
pipeline in [29] contains a series of i-mergers and a final topk-
merger. An i-merger merges two sorted lists with length i into
a sorted list with length 2i, followed by a 2i-merger in the
pipeline. The pipeline starts at a 1-merger, and log2k sequen-
tial i-mergers form a k-sorter. At the end of the pipeline, a
topk-merger merges the output of the k-sorter with the current
sorted Top-K to generate a new running Top-K. All modules
process data in a streaming manner, and the latency of such a
pipeline is k+ log2k clock cycles [29].

The above K-selection pipeline processes one score every
clock cycle, which is slower than the throughput of scores gen-
erated by similarity calculation with data parallelism. Accord-
ing to the ideal architecture shown in Figure 2, K-selection
can simply match the throughput with multiple K-selection
pipelines, i.e., instantiating multiple K-selection pipelines
in parallel, each processing different scores, followed by a
merger at the end to get the final Top-K from multi-channel
sorted Top-K. However, a single K-selection pipeline is much
more resource-hungry than a single scoring unit. Instantiat-
ing multiple K-selection pipelines to match the throughput
of the multi-channel similarity calculation is not resource-
efficient, especially when supporting a large k and a large
batch size. Based on an important observation on the K-
selection pipeline, we address the throughput mismatch prob-
lem in a resource-efficient way by introducing a new operator:
filter (§3.4).

3.4 Filter
The K-selection pipeline maintains inside a running Top-K
(e.g., the current Top-4 in Figure 8), which continuously up-
dates the Top-K for all the past scores until the current point.
We observe that, if the input score to K-selection is not greater
than the minimum score of the running Top-K, the input won’t
change the internal running Top-K and thus can be dropped.
Based on this observation, we design a filter to early drop
non-Top-K scores, which significantly reduces the number
of scores sent to K-selection. Figure 9 shows the through-
put model of FAERY, where corpus scanning and similarity
calculation are designed with data parallelism to match the
HBM throughput, K-selection only provides a single pipeline
to save resources, and the filter bridges the throughput mis-

Filter K-selection
HBM, Corpus scanning
& Similarity calculation

Figure 9: Throughput model of FAERY. Corpus scanning
and similarity calculation are designed to fully match the
HBM bandwidth, followed by a filter to early drop most of
scores generated by similarity calculation, thus significantly
lowering the throughput requirement of K-selection.

match between the multi-channel similarity calculation and
the single-channel K-selection.

Let x (x> 1) denote the number of scores generated by simi-
larity calculation per clock cycle. The throughput of similarity
calculation is x scores per clock cycle, and the throughput of
K-selection is one score per clock cycle, so that the through-
put mismatch is (x− 1)/x. We define filtering efficiency as
the number of scores (m) dropped by the filter over the total
number of scores (n), i.e., m/n. As long as m/n≥ (x−1)/x,
the design will work well without performance degradation.

In practice, the recall ratio of EBR (the ratio of the retrieved
items to the total items, i.e., k : n) is usually very low, e.g.,
1 : 1000. The majority of scores will be early dropped by
the filter, and the filtering efficiency will be high enough to
bridge the throughput gap. We analyze the average filtering
efficiency as follows.

Filtering efficiency. Given that n >> k in practice, we can
derive the filtering efficiency using a simplified model. As-
suming the input scores follow a random distribution, and
the running Top-K values are already generated from all the
previous scores when the dropping decision for a score is
made, the probability of the ith (i > k) score dropped by the
filter follows

p(i) =
i− k

i
. (2)

The expected number of scores dropped by the filter follows

m = ∑
n
i=k+1 p(i) = ∑

n
i=k+1

i− k
i

. (3)

As a result, the average filtering efficiency is

e =
m
n
=

∑
n
i=k+1

i−k
i

n

= 1− k
n
− k

n ∑
n
i=k+1

1
i

> 1− k
n
− k

n
ln(n).

(4)

Given a typical setting in practice where k = 1024, n = 106,
the filtering efficiency is larger than 98%. In our implementa-
tion (§5), x is 4, and the throughput mismatch is 3/4 = 75%.
This shows that the filtering efficiency is much higher than the

……

…

Result (Final Top-K)

…

Time

………

………

…

Corpus scanning

Query

Similarity calculation

Filter

K-selection

Running Top-K

Figure 10: The perfect overlap of data streams in FAERY.

throughput mismatch in practice, and thus the filter enables
K-selection to match the throughput of similarity calculation
with just one pipeline, reducing resource consumption.

Buffer to absorb bursts. Although the filter balances good
performance and low resource cost in practice, it can fail to
drop any scores in the worst case when all the input scores
are sorted ascendingly. Since the item embeddings are stored
randomly in HBM, the probability that such worst case hap-
pens is very low. However, we do have a buffer in the filter
to absorb two types of temporal bursts. The initial burst is
built up while the filter is processing the first y scores of every
new query, when the drop probability (p(i), i < y) of score
i is lower than the throughput mismatch (x− 1)/x between
similarity calculation and K-selection. Based on Equation 2, y
is (k∗x). The other type of burst is occasional score sequences
in which all scores are larger than the minimum of the running
Top-K. The size of this burst is variable but should be small
given the increasing drop probability shown in Equation 2.

3.5 Perfect Overlap of FAERY Data Streams

As described in the above sections, all operators work in a
streaming manner, i.e., all operators start processing as soon as
the data begin to stream in, and the communications between
operators are perfectly overlapped with computations. As a
result, the data streams in this architecture exhibit a perfect
overlap, as shown in Figure 10. Upon receiving a query, the
corpus manager starts corpus scanning and gets a multi-stream
of embeddings from 32 HBM channels, followed by similarity
calculation and filter streams in the subsequent cycles. The
filter operator early drops most of scores, so that a single
stream of scores is sent to K-selection. As scores begin to
stream into K-selection, the running Top-K is updated, and it
is output as the final Top-K result soon after the last score is
injected into the K-selection pipeline.

Batch is supported in FAERY in the same way as the ideal
architecture (Figure 3). The data streams of multiple queries
start at the same point. Therefore, the latency remains the
same, and the throughput scales linearly with the batch size.

Host

…

Front-end

Dispatcher

Merger

Query

Result

PCIe

Manager
New

Corpus

Similarity
Calculation

HBM
(Corpus)

K-selection

Runtime
Buffer

Update
BufferCorpus Manager

Similarity
Calculation

HBM
(Corpus)

K-selection

Runtime
Buffer

Update
BufferCorpus Manager

FAERY Accelerator

C
orpus

Scanning
C

orpus
Scanning

FAERY Accelerator

Figure 11: FAERY server architecture. A FAERY server hosts
multiple FAERY accelerators to increase either the query
throughput or the supported corpus size. A software front-end
on the host CPU dispatches user queries to multiple accel-
erators, merges retrieval results from them, and updates the
corpus on the fly.

4 FAERY Server

Figure 11 presents the FAERY server architecture, which in-
cludes a software front-end on the host CPU and multiple
FAERY accelerators inserted in server PCIe slots.

Multiple FAERY accelerators can work together to enhance
the capabilities of a single accelerator in two modes: replica-
tion and sharding. In the replication mode, these accelerators
store separate replicas of the same corpus and serve different
queries simultaneously to increase the query throughput. In
the sharding mode, multiple accelerators store different shards
of the same corpus and serve the same query simultaneously
to increase the supported corpus size. The front-end running
in the host CPU is responsible for query dispatching via a
dispatcher module and result merging via a merger module in
the above two modes.

When there is a new corpus received by the server, a man-
ager module in the software front-end handles this update
request. It determines whether corpus replicating or sharding
is needed based on the working mode listed above, and then
sends the corpus replicas (or shards) to the corresponding
accelerators via PCIe. The corpus manager in each FAERY
accelerator stores the update corpus in the update buffer and
switch buffer roles as described in §3.1.2.

5 Implementation

We build a fully functional prototype of FAERY using FPGAs.
The FPGA accelerator is built with Xilinx VU35P FPGA [4],
which contains an HBM of 8 GB capacity, 32 memory chan-
nels, and 460 GB/s bandwidth. We implement the FAERY
pipeline described in Figure 5 using the hardware program-
ming language SystemVerilog. In the following part, we dis-

cuss several implementation details using this FPGA with a
typical setting: One embedding contains 128 elements of 2
bytes each (i.e., the embedding size is 256 bytes), k is 1024,
and the prototype runs at a clock frequency of 400 MHz,
which matches the HBM bandwidth. An ASIC implemen-
tation of FAERY with the same HBM bandwidth but higher
clock frequency (e.g., 1 GHz), could not provide significant
performance improvement, as the end-to-end performance is
mainly determined by the HBM bandwidth.

Corpus manager. Since the embedding size is 256 bytes,
the burst size can be set to 256 bytes based on the embedding
compaction strategy, resulting in no waste on both storage
space and read bandwidth. Based on the measurement, the
achievable HBM bandwidth is 414 GB/s, with 90% utilization
of the theoretical upper bound of 460 GB/s. Given that the
HBM has 32 memory channels of 32-byte width, the corpus
scanning reads 1024 (32∗32 = 1024) bytes from HBM every
clock cycle, almost catching up with the HBM bandwidth
at 400 MHz (1024∗400/1000 = 409.6 GB/s), and outputs 4
(1024/256 = 4) embeddings per clock cycle on average. To
support online corpus update, horizontal division keeps half
of the 8 GB HBM space (i.e., 4 GB) for the runtime corpus,
which supports up to 16M item embeddings in a single FPGA.

Similarity calculation. To match the throughput of 32 paral-
lel HBM channels, similarity calculation is implemented with
32-channel SUs in parallel. Each SU performs inner product
calculation, which consists of three stages. The first stage per-
forms element-wise multiplications between the item and the
query. Given that an HBM channel width (32 bytes) contains
16 elements (each 2 bytes) of an embedding, it requires 16
parallel multipliers in this stage to sustain the HBM channel
bandwidth. In the second stage, it conducts a summation of
the results in the first stage with an accumulation tree, which
has log216 = 4 layers. The summation result is finally added
to the computing score in the last stage. Therefore, the latency
of similarity calculation is 6 (1+4+1 = 6) cycles, and the
throughput of similarity calculation with 32 parallel SUs (i.e.,
4 scores per clock cycle) matches exactly the throughput of
corpus scanning (i.e., 4 item embeddings per clock cycle).

K-selection. K-selection is implemented based on an existing
pipeline [29], whose latency is k+ log2k clock cycles. For
k = 1024, the latency is 1034 cycles. This fully pipelined
K-selection can process one score per clock cycle. Different
from the ideal architecture, a single K-selection pipeline is
required in FAERY, with the filter to bridge the throughput
mismatch between similarity calculation and K-selection.

Filter. Since similarity calculation generates four scores per
cycle, while K-selection only processes one score per cycle,
the filter must drop at least 3/4 of the scores on average to
bridge their speed gap. Based on the analysis in §3.4, the
filtering efficiency in this setting is higher than 98% and thus
greater than 3/4. To absorb bursts, the filter buffer is set to
store at most 8192 (2∗k∗x, where x= 4 and k = 1024) scores,

Per-query resources Common resources
LUT 7.31% 11.05%
FF 6.98% 14.78%

BRAM 13.05% 10.66%
DSP 8.6% 0.07%

Table 2: Breakdown of FAERY resource consumption (batch
size = 1). Per-query resources increase linearly with the batch
size, while common resources remain unchanged.

slightly larger than the initial burst size (k ∗ x) derived in §3.4
to reduce approximation error in the analysis. This buffer is
implemented with only 8 Block RAMs (BRAMs), consuming
less than 0.2% of the total FPGA memory resources. With
both the high filtering efficiency and the sufficient buffer,
the filter works well to bridge the throughput mismatch and
to absorb temporal bursts, and we observe no performance
loss with the above setting. Compared with the ideal archi-
tecture shown in Figure 2, FAERY with the filter and a sin-
gle K-selection pipeline, can save 32% on-chip memories
and 27% compute resources by eliminating the other three
K-selection pipelines and a four-port merger [35] per query
compute pipeline.

Batch support. FAERY supports batch queries as described
in Figure 3. Despite the performance advantages, the resource
requirements of batch queries increase with the batch size. As
a result, the maximum batch size supported in our prototype
is determined by the available resources in the Xilinx VU35P
FPGA. The resources are consumed by two types of com-
ponents: per-query compute pipelines (similarity calculation,
K-selection, and filter) exclusive for each query, and common
modules (corpus manager and PCIe DMA) shared among
batch queries. Table 2 breaks down the resource consumption
of a FAERY accelerator with the batch size of 1 into per-query
resources and common resources. Based on this result, the
upper bound of the batch size is 6 in the Xilinx VU35P FPGA.
However, this FPGA chip is composed of multiple dies, so
that timing closure is challenging when the resource utiliza-
tion is high or cross-die routing is congested. We end up with
an implementation with a batch size of 3, to balance good
batch performance and easy timing closure.

6 Evaluation

We evaluate the performance of the FAERY implementation,
and compare it with CPU- and GPU-based EBR, respectively.
Our results reveal that:
• FAERY approaches the optimal query latency, and achieves

98.09×-118.99× and 1.85×-18.81× lower latency than
CPU- and GPU-based EBR, respectively. The degraded
FAERY with the same memory bandwidth of GPU still
achieves 1.21×-12.27× lower latency than GPU-based
EBR.

• In terms of latency-bounded (≤ 10 ms) throughput, FAERY
and the degraded FAERY outperform GPU-based EBR by
1.33×-6.58× and 0.87×-4.29×, respectively, while CPU-
based EBR fails to meet the 10 ms latency target.

• FAERY achieves 1.66×-8.20× higher energy efficiency
and 1.31×-6.46× higher cost efficiency than GPU-based
EBR.

• A FAERY server with two accelerators provides 2× higher
query throughput in the replication mode, and 2× higher
corpus capacity in the sharding mode with less than 1.1%
increase in latency.

6.1 Experiment Setup

Baseline. We compare FAERY with Faiss [23], an open-
source similarity search library that supports both CPU and
GPU. The K-selection implementation in Faiss GPU is
WarpSelect, a heap-based algorithm using on-chip memory,
as shown in Figure 4a, denoted as GPU-o. We further replace
the Faiss K-selection implementation with an algorithm using
external memory, as shown in Figure 4b, denoted as GPU-e.
We choose RadixSelect implemented in [33], which reports
the best performance when k is greater than 512, compared
to other algorithms. Both GPU-o and GPU-e use fp16 for
embeddings and fp32 for scores.

Platforms. FAERY is evaluated on a server with two 8-core
Intel Xeon Silver 4110 CPUs. CPU-based EBR is evaluated
on a server with two 16-core Xeon Gold 5218 CPUs and
192 GB memory. We choose Nvidia Tesla T4 GPU [2] in
GPU-based EBR, as the T4 GPU shares a similar cost to
the Xilinx VU35P FPGA (cost comparison will be discussed
in §6.2.4). The CUDA version is 11.2 and the Tensor Core
acceleration is enabled. T4 GPU is equipped with 16 GB
GDDR6 of 300 GB/s bandwidth. To bridge the difference
of memory bandwidth between FPGA (460 GB/s) and GPU
(300 GB/s), we also evaluate a degraded FAERY, denoted as
FAERY-d, by throttling its HBM bandwidth to 300 GB/s.

Corpus. We use the synthetic corpus, with randomly gen-
erated 128-dimensional item embeddings of 2 bytes each di-
mension, and retrieve k = 1024 items for each query. We use
synthetic random corpora to verify the generality of FAERY,
which by design, is not sensitive to any specific workload.

In the following, we first evaluate the performance of a sin-
gle accelerator (§6.2). Many important applications contain
a moderate corpus. For example, the YouTube video corpus
contains tens of millions of items [40], and the Google play
application corpus contains one million items [11]. The cor-
pus of these applications could fit into the HBM of a single
card based on the current FAERY implementation (§5). Then,
we show the performance of a FAERY server with two acceler-
ators (§6.3) to demonstrate FAERY’s capability in supporting
either higher query throughput or a larger corpus by adding
cards.

Ideal
FAERY
FAERY-d
GPU-o
GPU-e
CPU

La
te

nc
y

(m
s)

1

101

102

103

#items in the corpus
1M 3M 5M 7M 9M

Figure 12: Query latency compari-
son among different EBR architectures
(batch size = 1, latency is in log scale).

FAERY
FAERY-d
GPU-o
GPU-e
CPU

1e3

Th
ro

ug
hp

ut
 (Q

PS
)

0
1
2
3
4
5

Latency (m
s)

1

102

104

#items in the corpus
1M 3M 5M 7M 9M

Figure 13: Query throughput compari-
son among different EBR architectures
(Corresponding latency is also shown).

FAERY
FAERY-d
GPU-e

1e3

La
te

nc
y-

bo
un

de
d

th
ro

ug
hp

ut
 (Q

PS
)

0

1

2

3

4

5

#items in the corpus
1M 3M 5M 7M 9M 11M 13M 15M

Figure 14: Comparison of latency-
bounded throughput, where CPU and
GPU-o fail to meet the latency target
(≤ 10 ms), and thus are not shown.

6.2 Single-accelerator Performance

6.2.1 Latency

We compare the query latency among different EBR architec-
tures in Figure 12. Average latency is used as the metric, as
latency distribution in each of these architectures doesn’t show
significant variance due to the deterministic execution flow of
KNN. The query latency of the ideal architecture is calculated
based on Equation 1, where S is N ∗256 bytes, N is the num-
ber of items in the corpus, B is the maximum HBM bandwidth
460 GB/s, and C is the FAERY pipeline latency 2.6 us. The
query latency of FAERY approaches the optimal latency of the
ideal architecture, with only 1.13×-1.16× increases, which re-
sults from non-full (∼ 90%) memory bandwidth utilization as
measured in Figure 6. Both FAERY and FAERY-d consistently
outperform CPU and GPU in query latency with different cor-
pus sizes. Compared with CPU, FAERY significantly reduces
the average latency (98.09×-118.99× lower) due to its high
memory bandwidth and appropriate parallelism paradigms
for different operators. Compared with GPU, FAERY achieves
9.48×-18.81× and 1.85×-2.44× lower latency than GPU-
o and GPU-e, respectively. Even if we degrade the FAERY
memory bandwidth to that of GPU T4 (300 GB/s), FAERY-d
also achieves 6.18×-12.27× and 1.21×-1.59× lower latency
than GPU-o and GPU-e, respectively. This verifies that even
with the same memory bandwidth, FAERY-d still outperforms
GPU-based EBR, because the poor pipeline support of GPU
leads to a significant increase of the second part (C) in Equa-
tion 1, as detailed in §2.3.2.

6.2.2 Throughput

We compare the maximum throughput and its correspond-
ing latency among different EBR architectures in Figure 13.
Batch queries are used in all architectures to achieve the max-
imum throughput. Both FAERY and FAERY-d are evaluated
with the batch size of 3, the same as that in the implementa-
tion. Although the throughput of CPU- and GPU-based EBR
systems can be improved by increasing the batch size, we only

show the results with the batch size up to 1024, because fur-
ther increasing the batch size leads to marginal improvement.
GPU-o consistently outperforms FAERY in throughput by
1.04×-1.44×, and FAERY-d by 1.60×-2.21×, with a large
batch size but a much higher query latency (ranging from
212 ms to 1339 ms with different corpus sizes). In contrast,
both FAERY and FAERY-d keep low query latency as that of
batch size 1 when increasing the batch size. The throughput
of GPU-e does not increase significantly with larger batch
sizes, due to heavy contention on external memory bandwidth
in K-selection among multiple queries. As a result, GPU-e
achieves only 59%-78% (91%-119%) of the FAERY (FAERY-
d) throughput, but has a much higher latency (ranging from
18 ms to 102 ms). FAERY outperforms CPU in throughput
by 2.60×-3.45× even when the CPU-based EBR runs with
a large batch size. Moreover, CPU suffers form the worst
latency.

6.2.3 Latency-bounded Throughput

Latency-bounded throughput is a critical metric for EBR,
as retrieval is a typical real-time service with strict require-
ments on the response time. For example, the response time is
within 10 ms in the Taobao production retrieval [15, 25], and
the query serving time of the entire recommendation pipeline
(retrieval + ranking) is on the order of 10 ms in the Google
application recommendation [11]. In this paper, we set the
upper bound of the retrieval latency to 10 ms, and compare
the latency-bounded throughput among different EBR archi-
tectures.

Since CPU and GPU-o fail to meet the latency target in
any condition, we only compare FAERY and GPU-e in Fig-
ure 14. The latency target prevents GPU-e from using a large
batch size, which increases per-query latency significantly
due to the contention on memory bandwidth. In contrast,
FAERY follows the ideal architecture for batch queries, main-
taining constantly low latency when increasing the batch size,
as discussed in §2.2. When the number of items in the cor-
pus ranges from 1M to 7M, FAERY achieves 1.33×-6.58×

FAERY
GPU-e

En
er

gy
 e

ffi
ci

en
cy

 (Q
PS

 /
W

at
t)

0
10
20
30
40
50
60
70
80

#items in the corpus
1M 3M 5M 7M 9M 11M 13M 15M

Figure 15: Comparison of energy effi-
ciency among different EBR accelera-
tors.

FAERY
GPU-e

1e2

C
os

t e
ffi

ci
en

cy
 (Q

PS
 /

$)

0
1
2
3
4
5
6
7
8
9
10

#items in the corpus
1M 3M 5M 7M 9M 11M 13M 15M

Figure 16: Comparison of cost effi-
ciency among different EBR accelera-
tors.

1 card 2 cards
1e3

Replication Mode Sharding Mode

Th
ro

ug
hp

ut
 (Q

PS
)

0

1

2

3

4

5

#items in the corpus
5M 10M 15M 20M 25M 30M

Figure 17: Throughput of a FAERY
server with two cards.

higher latency-bounded throughput than GPU-e. However,
FAERY-d achieves only 87% of the GPU-e latency-bounded
throughput with the small corpus size of 1M, as GPU-e can
leverage a large batch size (64 in GPU-e vs. 3 in FAERY-d)
to boost the throughput with moderate memory bandwidth
contention when the corpus size is small. As the corpus size
increases from 3M to 7M items, FAERY-d exhibits its ad-
vantages in latency-bounded throughput and achieves 1.46×-
4.29× higher latency-bounded throughput than GPU-e. When
the number of items is larger than 7M, GPU-e fails to meet
the latency target in any batch size, while FAERY-d can in-
crease the corpus size until 9M items under latency target,
and FAERY supports up to 15M items.

6.2.4 Energy & Cost Efficiency

The GPU and FPGA used in the evaluation have different
architectural advantages and disadvantages, e.g., the GPU has
lower memory bandwidth (300 GB/s vs. 460 GB/s), but much
higher computing power (130 TOPS vs. 18.6 TOPS for INT8)
than the FPGA. In addition to using the degraded FAERY with
300 GB/s memory bandwidth in a direct comparison between
FPGA and GPU in terms of latency and throughput, we con-
sider both energy efficiency (performance per watt) and cost
efficiency (performance per dollar), as yet another fair metrics
to compare the efficiency between totally different hardware
architectures. We use the latency-bounded throughput mea-
sured in Figure 14 as the performance reference.

Energy efficiency. Based on the measurement, FAERY is 57
Watt and GPU-e is 71 Watt during serving. The above power
consumption does not vary significantly with different corpus
sizes. Given these power consumption and throughput data,
Figure 15 shows the result of energy efficiency (QPS/Watt),
where FAERY consistently outperforms GPU-e with 1.66×-
8.20× higher energy efficiency.

Cost efficiency. As the concrete cost numbers are confiden-
tial, we normalize the costs of GPU, FPGA, and server used in
the evaluation to 1, 1.1, and 4.4, respectively. With these cost
units, the normalized costs of the FAERY and GPU servers are
5.5 (=1.1+4.4) and 5.4 (=1+4.4), respectively. Based on these

normalized costs and the latency-bounded throughput data,
Figure 16 shows the result of cost efficiency (i.e., QPS/(cost
unit)), where FAERY provides 1.31×-6.46× higher cost effi-
ciency than GPU-e.

6.2.5 Summary

Table 3 summarizes the EBR performance comparison among
different processors, and reveals that each processor has its
unique advantages for EBR. FAERY, an FPGA-based EBR,
achieves the lowest latency, the highest latency-bounded
throughput, and the highest energy and cost efficiency com-
pared with CPU and GPU. Compared with CPU, FPGA’s
performance gain results from the high memory bandwidth
provided by HBM and massive programmable compute ele-
ments to enable appropriate parallelism paradigms and batch
processing. FPGA outperforms GPU due to the fully pipelined
design with perfectly overlapping communications with com-
putations of operators, and a programmable architecture that
supports efficient K-selection. All these advantages make
FAERY not only approach the optimal latency, but also achieve
linear-scaling throughput when increasing the batch size.
CPU-based EBR supports the largest corpus size, thanks to
the large capacity of CPU DDR memory. GPU-based EBR
achieves the highest raw throughput without latency bound
with a very large batch size, thanks to its massive compute
cores.

6.3 Multi-accelerator Performance

We evaluate a FAERY server with two accelerators. Figure 17
shows the aggregate query throughput with different corpus
sizes. When the corpus can fit into a single card (i.e., the num-
ber of items is not larger than 16M), we replicate the corpus
in the two cards to double the query throughput, as shown in
the left part of Figure 17. When the corpus size is larger than
the memory capacity of a single card, we evenly shard the
corpus between the two cards, and thus the supported corpus
size is extended up to 32M items, i.e., 2× the HBM capacity
of a single card, as shown in the right part of Figure 17. In the

Corpus size
in bytes

Normalized
latency

Normalized
throughput

Normalized
latency-bounded

throughput (< 10 ms)

Normalized
energy efficiency

Normalized
cost efficiency

CPU > 100 GB 98.09-118.99 0.290-0.385 - - -
GPU 16-80 GB 1.85-18.81 0.593-1.440 0.152-0.752 0.122-0.602 0.155-0.763

FPGA (FAERY-d) 8-32 GB 1.53 0.652 0.652 - -
FPGA (FAERY) 8-32 GB 1 1 1 1 1

Table 3: Summary of performance comparison among different EBR processors.

sharding mode, the software front-end in CPU has to merge
the two Top-K results from the two cards and yield the final
Top-K, introducing an extra latency of less than 15 us, i.e.,
1.1% of the total query latency.

7 Discussion

System lessons. While we focus on FPGA-accelerated EBR
in this paper, we believe FPGA is a promising choice for not
only EBR acceleration in specific, but also domain specific ac-
celerator (DSA) in general. First, FPGAs are readily available
for DSA in several hyper-scale cloud providers [10,14,41,45].
Second, FPGAs are inherently capable of faithfully imple-
menting DSA systems such as FAERY, MicroRec [22], and
Tiara [41]. These systems are memory and compute bounded,
so they can benefit from customized parallelism and pipelin-
ing with optimized memory accesses provided by FPGAs.

Most FPGA-based architectures can be baked into custom
ASICs for higher performance and efficiency. In FAERY, the
query latency and throughput are mainly limited by the mem-
ory bandwidth, so an ASIC implementation with the same
memory bandwidth would not significantly improve the per-
formance. However, an ASIC version of FAERY can achieve
higher energy efficiency. Nonetheless, it will require a signifi-
cant volume to amortize the high non-recurring engineering
(NRE) cost for higher cost efficiency.

Online update. The online update approach described in
§3.1 minimizes the degradation of the total query throughput
(QPS) during the update, by taking half of the HBM mem-
ory in each card as update buffer. We further note that there
are other ways for online update from a distributed system
perspective. In a typical production EBR system, there are
multiple corpus replicas distributed across multiple FAERY
servers for reliability and load balancing purposes. The on-
line update in this case can be performed by taking off one
replica at a time for updating while keeping the others online.
This approach may achieve higher memory utilization, but
experience higher update time and lower QPS than our update
approach during the update process.

Support new models. In addition to the online corpus up-
date, FAERY is able to change the pipeline structure on the
fly to adapt to new models. Given the relatively stable EBR

pipeline structure, including corpus scanning, similarity calcu-
lation, and K-selection, we are able to use the same hardware
code to support different EBR pipeline variants with just dif-
ferent parameters (e.g., embedding size, data type, k). When a
new model requires a change of the pipeline structure, we can
simply change parameters in the code, generate a hardware
image, and then load the image into FPGA on the fly.

Accelerate ANN-based EBR. Although FAERY is designed
to accelerate KNN-based EBR, it can be extended to ac-
celerate ANN to achieve higher throughput by sacrificing
retrieval accuracy. Indexing-based ANN algorithms, e.g.,
IVF [34] and HNSW [28], leverage an index layer before
corpus scanning to reduce the number of accessed items per
query. Quantization-based ANN algorithms, e.g., PQ [21]
and OPQ [17], leverage a codebook to compact the corpus.
FAERY can support both ANN variants by maintaining the
index layer or the cookbook in FPGA on-chip memory. Most
of the other operators are the same, and their designs can be
shared among KNN- and ANN-based FAERY.

Use FAERY for other services. Although FAERY is a DSA
for retrieval in recommendation systems, we believe a similar
idea can be applied to vector search in general, which is a
fundamental part of many applications [13, 20, 25] that use
semantic embedding vectors to represent contents (articles,
images, audios, videos, etc.) and perform searches. These
applications share a similar data flow to that described in this
paper, but their characteristics vary. Interesting future work is
to extend FAERY to accelerate a generic vector search service
(such as Microsoft Vector search [5] and Google Vertex AI
Matching Engine [6]).

8 Related Work

CPU- and GPU-based EBR systems have been discussed in §2.
Existing FPGA-based similarity searches [27,44] were not de-
signed for EBR, and thus not suitable. They leveraged massive
parallel comparators to perform K-selection, whose resource
consumption is unbearable for k being a few thousand in EBR.
Moreover, they did not optimize the efficiency of corpus scan-
ning, as they either did not leverage the high bandwidth of
HBM [44] or failed to achieve high bandwidth utilization [27].
There are other kinds of work that accelerated specific ANN

algorithms, e.g., HPQ [7] for quantization-based ANN and
QuickNN [32] for indexing-based ANN. They are orthogonal
to FAERY that focuses on optimizing the entire EBR pipeline
as a whole, including corpus scanning, similarity calculation,
and K-selection.

9 Conclusion

FAERY is a domain specific accelerator (DSA) for embedding-
based retrieval (EBR). The components of FAERY: corpus
scanning, similarity calculation, and K-selection are arranged
using the appropriate parallel techniques as required by an
ideal EBR architecture. As a result, FAERY does not have
the shortcomings and performance penalties of existing CPU-
and GPU-based EBR approaches. FAERY not only provides
both low latency and high throughput compared with CPU-
based EBR, but also outperforms GPU-based EBR in terms
of latency-bounded throughput.

Acknowledgments

We thank our anonymous reviewers and shepherd Christo-
pher Rossbach for their insightful comments. We also thank
Hong Zhang and Lixin Zheng for all technical discussions
and valuable comments. This work is supported in part by
the Key-Area Research and Development Program of Guang-
dong Province (2021B0101400001), an HKUST-ByteDance
Research Project, and the Hong Kong RGC TRS T41-603/20-
R, GRF 16213621 and GRF 16215119.

References

[1] Intel memory latency checker (mlc).
https://www.intel.com/content/www/
us/en/developer/articles/tool/
intelr-memory-latency-checker.html.

[2] T4 tensor core datasheet. https://www.nvidia.com/
content/dam/en-zz/Solutions/Data-Center/
tesla-t4/t4-tensor-core-datasheet-951643.
pdf.

[3] Theoretical maximum memory bandwidth for
intel® core™ x-series processors. https:
//www.intel.com/content/www/us/en/
support/articles/000056722/processors/
intel-core-processors.html.

[4] Ultrascale+ fpga product tables and product se-
lection guide. https://www.xilinx.com/
support/documentation/selection-guides/
ultrascale-plus-fpga-product-selection-guide.
pdf.

[5] Vector search - microsoft ai lab. https:
//www.microsoft.com/en-us/ai/
ai-lab-vector-search.

[6] Vertex ai matching engine overview. https:
//cloud.google.com/vertex-ai/docs/
matching-engine/overview.

[7] Ameer MS Abdelhadi, Christos-Savvas Bouganis, and
George A Constantinides. Accelerated approximate
nearest neighbors search through hierarchical product
quantization. In 2019 International Conference on Field-
Programmable Technology (ICFPT), 2019.

[8] Martin Aumüller, Erik Bernhardsson, and Alexander
Faithfull. Ann-benchmarks: A benchmarking tool for
approximate nearest neighbor algorithms. In Interna-
tional conference on similarity search and applications,
2017.

[9] Yoshua Bengio, Aaron Courville, and Pascal Vincent.
Representation learning: A review and new perspectives.
IEEE transactions on pattern analysis and machine in-
telligence, 2013.

[10] Adrian M Caulfield, Eric S Chung, Andrew Putnam,
Hari Angepat, Jeremy Fowers, Michael Haselman,
Stephen Heil, Matt Humphrey, Puneet Kaur, Joo-Young
Kim, et al. A cloud-scale acceleration architecture. In
2016 49th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO), 2016.

[11] Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal
Shaked, Tushar Chandra, Hrishi Aradhye, Glen Ander-
son, Greg Corrado, Wei Chai, Mustafa Ispir, et al. Wide
& deep learning for recommender systems. In Proceed-
ings of the 1st workshop on deep learning for recom-
mender systems, 2016.

[12] Paul Covington, Jay Adams, and Emre Sargin. Deep
neural networks for youtube recommendations. In Pro-
ceedings of the 10th ACM conference on recommender
systems, 2016.

[13] Miao Fan, Jiacheng Guo, Shuai Zhu, Shuo Miao, Ming-
ming Sun, and Ping Li. Mobius: towards the next gener-
ation of query-ad matching in baidu’s sponsored search.
In Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining,
2019.

[14] Daniel Firestone, Andrew Putnam, Sambhrama Mund-
kur, Derek Chiou, Alireza Dabagh, Mike Andrewartha,
Hari Angepat, Vivek Bhanu, Adrian Caulfield, Eric
Chung, et al. Azure accelerated networking: Smart-
nics in the public cloud. In 15th USENIX Symposium on
Networked Systems Design and Implementation (NSDI
18), 2018.

https://www.intel.com/content/www/us/en/developer/articles/tool/intelr-memory-latency-checker.html
https://www.intel.com/content/www/us/en/developer/articles/tool/intelr-memory-latency-checker.html
https://www.intel.com/content/www/us/en/developer/articles/tool/intelr-memory-latency-checker.html
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/tesla-t4/t4-tensor-core-datasheet-951643.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/tesla-t4/t4-tensor-core-datasheet-951643.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/tesla-t4/t4-tensor-core-datasheet-951643.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/tesla-t4/t4-tensor-core-datasheet-951643.pdf
https://www.intel.com/content/www/us/en/support/articles/000056722/processors/intel-core-processors.html
https://www.intel.com/content/www/us/en/support/articles/000056722/processors/intel-core-processors.html
https://www.intel.com/content/www/us/en/support/articles/000056722/processors/intel-core-processors.html
https://www.intel.com/content/www/us/en/support/articles/000056722/processors/intel-core-processors.html
https://www.xilinx.com/support/documentation/selection-guides/ultrascale-plus-fpga-product-selection-guide.pdf
https://www.xilinx.com/support/documentation/selection-guides/ultrascale-plus-fpga-product-selection-guide.pdf
https://www.xilinx.com/support/documentation/selection-guides/ultrascale-plus-fpga-product-selection-guide.pdf
https://www.xilinx.com/support/documentation/selection-guides/ultrascale-plus-fpga-product-selection-guide.pdf
https://www.microsoft.com/en-us/ai/ai-lab-vector-search
https://www.microsoft.com/en-us/ai/ai-lab-vector-search
https://www.microsoft.com/en-us/ai/ai-lab-vector-search
https://cloud.google.com/vertex-ai/docs/matching-engine/overview
https://cloud.google.com/vertex-ai/docs/matching-engine/overview
https://cloud.google.com/vertex-ai/docs/matching-engine/overview

[15] Cong Fu, Chao Xiang, Changxu Wang, and Deng Cai.
Fast approximate nearest neighbor search with the navi-
gating spreading-out graph. In Proceedings of the VLDB
Endowment, 2019.

[16] Weihao Gao, Xiangjun Fan, Chong Wang, Jiankai Sun,
Kai Jia, Wenzhi Xiao, Ruofan Ding, Xingyan Bin, Hui
Yang, and Xiaobing Liu. Deep retrieval: Learning a
retrievable structure for large-scale recommendations.
In arXiv preprint arXiv:2007.07203, 2021.

[17] Tiezheng Ge, Kaiming He, Qifa Ke, and Jian Sun. Op-
timized product quantization. In IEEE transactions on
pattern analysis and machine intelligence, 2013.

[18] Mihajlo Grbovic and Haibin Cheng. Real-time person-
alization using embeddings for search ranking at airbnb.
In Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining,
2018.

[19] Udit Gupta, Carole-Jean Wu, Xiaodong Wang, Maxim
Naumov, Brandon Reagen, David Brooks, Bradford Cot-
tel, Kim Hazelwood, Mark Hempstead, Bill Jia, et al.
The architectural implications of facebook’s dnn-based
personalized recommendation. In 2020 IEEE Inter-
national Symposium on High Performance Computer
Architecture (HPCA), 2020.

[20] Jui-Ting Huang, Ashish Sharma, Shuying Sun, Li Xia,
David Zhang, Philip Pronin, Janani Padmanabhan,
Giuseppe Ottaviano, and Linjun Yang. Embedding-
based retrieval in facebook search. In Proceedings of
the 26th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, 2020.

[21] Herve Jegou, Matthijs Douze, and Cordelia Schmid.
Product quantization for nearest neighbor search. In
IEEE transactions on pattern analysis and machine in-
telligence, 2010.

[22] Wenqi Jiang, Zhenhao He, Shuai Zhang, Thomas B
Preußer, Kai Zeng, Liang Feng, Jiansong Zhang, Tongx-
uan Liu, Yong Li, Jingren Zhou, et al. Microrec: efficient
recommendation inference by hardware and data struc-
ture solutions. In Proceedings of Machine Learning and
Systems, 2021.

[23] Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-
scale similarity search with gpus. In arXiv preprint
arXiv:1702.08734, 2017.

[24] Gwangsun Kim, Jiyun Jeong, John Kim, and Mark
Stephenson. Automatically exploiting implicit pipeline
parallelism from multiple dependent kernels for gpus.
In Proceedings of the 2016 International Conference on
Parallel Architectures and Compilation, 2016.

[25] Sen Li, Fuyu Lv, Taiwei Jin, Guli Lin, Keping Yang, Xi-
aoyi Zeng, Xiao-Ming Wu, and Qianli Ma. Embedding-
based product retrieval in taobao search. In Proceedings
of the 27th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, 2021.

[26] Jianxun Lian, Fuzheng Zhang, Xing Xie, and
Guangzhong Sun. Towards better representation
learning for personalized news recommendation: a
multi-channel deep fusion approach. In IJCAI, 2018.

[27] Alec Lu, Zhenman Fang, Nazanin Farahpour, and Les-
ley Shannon. Chip-knn: A configurable and high-
performance k-nearest neighbors accelerator on cloud
fpgas. In 2020 International Conference on Field-
Programmable Technology (ICFPT), 2020.

[28] Yu A Malkov and Dmitry A Yashunin. Efficient and
robust approximate nearest neighbor search using hier-
archical navigable small world graphs. In IEEE trans-
actions on pattern analysis and machine intelligence,
2018.

[29] Naoyuki Matsumoto, Koji Nakano, and Yasuaki Ito. Op-
timal parallel hardware k-sorter and top k-sorter, with
fpga implementations. In 2015 14th International Sym-
posium on Parallel and Distributed Computing, 2015.

[30] Yuriy Mishchenko, Yusuf Goren, Ming Sun, Chris
Beauchene, Spyros Matsoukas, Oleg Rybakov, and Shiv
Naga Prasad Vitaladevuni. Low-bit quantization and
quantization-aware training for small-footprint keyword
spotting. In 2019 18th IEEE International Conference
On Machine Learning And Applications (ICMLA), 2019.

[31] Hieu Duy Nguyen, Anastasios Alexandridis, and
Athanasios Mouchtaris. Quantization aware training
with absolute-cosine regularization for automatic speech
recognition. In Interspeech, 2020.

[32] Reid Pinkham, Shuqing Zeng, and Zhengya Zhang.
Quicknn: Memory and performance optimization of kd
tree based nearest neighbor search for 3d point clouds.
In 2020 IEEE International Symposium on High Perfor-
mance Computer Architecture (HPCA), 2020.

[33] Anil Shanbhag, Holger Pirk, and Samuel Madden. Effi-
cient top-k query processing on massively parallel hard-
ware. In Proceedings of the 2018 International Confer-
ence on Management of Data, 2018.

[34] Josef Sivic and Andrew Zisserman. Video google: A
text retrieval approach to object matching in videos. In
Proceedings Ninth IEEE International Conference on
Computer Vision, 2003.

[35] Wei Song, Dirk Koch, Mikel Luján, and Jim Garside.
Parallel hardware merge sorter. In 2016 IEEE 24th An-
nual International Symposium on Field-Programmable
Custom Computing Machines (FCCM), 2016.

[36] Elias Stehle and Hans-Arno Jacobsen. A memory
bandwidth-efficient hybrid radix sort on gpus. In Pro-
ceedings of the 2017 ACM International Conference on
Management of Data, 2017.

[37] Shyam A Tailor, Javier Fernandez-Marques, and
Nicholas D Lane. Degree-quant: Quantization-aware
training for graph neural networks. In arXiv preprint
arXiv:2008.05000, 2020.

[38] Jizhe Wang, Pipei Huang, Huan Zhao, Zhibo Zhang, Bin-
qiang Zhao, and Dik Lun Lee. Billion-scale commodity
embedding for e-commerce recommendation in alibaba.
In Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining,
2018.

[39] Ruobing Xie, Zhijie Qiu, Jun Rao, Yi Liu, Bo Zhang, and
Leyu Lin. Internal and contextual attention network for
cold-start multi-channel matching in recommendation.
In IJCAI, 2020.

[40] Xinyang Yi, Ji Yang, Lichan Hong, Derek Zhiyuan
Cheng, Lukasz Heldt, Aditee Kumthekar, Zhe Zhao,
Li Wei, and Ed Chi. Sampling-bias-corrected neural
modeling for large corpus item recommendations. In
Proceedings of the 13th ACM Conference on Recom-
mender Systems, 2019.

[41] Chaoliang Zeng, Layong Luo, Teng Zhang, Zilong
Wang, Luyang Li, Wenchen Han, Nan Chen, Lebing
Wan, Lichao Liu, Zhipeng Ding, et al. Tiara: A scal-
able and efficient hardware acceleration architecture for
stateful layer-4 load balancing. In 19th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 22), 2022.

[42] Han Zhang, Songlin Wang, Kang Zhang, Zhiling Tang,
Yunjiang Jiang, Yun Xiao, Weipeng Yan, and Wen-Yun
Yang. Towards personalized and semantic retrieval: An
end-to-end solution for e-commerce search via embed-
ding learning. In Proceedings of the 43rd International
ACM SIGIR Conference on Research and Development
in Information Retrieval, 2020.

[43] Heng-Ru Zhang, Fan Min, Zhi-Heng Zhang, and Song
Wang. Efficient collaborative filtering recommendations
with multi-channel feature vectors. In International
Journal of Machine Learning and Cybernetics, 2019.

[44] Jialiang Zhang, Soroosh Khoram, and Jing Li. Effi-
cient large-scale approximate nearest neighbor search

on opencl fpga. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2018.

[45] Teng Zhang, Jianying Wang, Xuntao Cheng, Hao Xu,
Nanlong Yu, Gui Huang, Tieying Zhang, Dengcheng He,
Feifei Li, Wei Cao, et al. Fpga-accelerated compactions
for lsm-based key-value store. In 18th USENIX Con-
ference on File and Storage Technologies (FAST 20),
2020.

[46] Weijie Zhao, Shulong Tan, and Ping Li. Song: Approxi-
mate nearest neighbor search on gpu. In 2020 IEEE 36th
International Conference on Data Engineering (ICDE),
2020.

[47] Zhen Zheng, Chanyoung Oh, Jidong Zhai, Xipeng Shen,
Youngmin Yi, and Wenguang Chen. Versapipe: a versa-
tile programming framework for pipelined computing
on gpu. In 2017 50th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), 2017.

	Introduction
	Background & Motivation
	EBR Algorithms: KNN vs. ANN
	Practically Ideal EBR Architecture
	Existing EBR Architectures
	CPU-based EBR
	GPU-accelerated EBR

	FPGA Opportunities

	Faery Accelerator
	Corpus Manager
	Embedding Compaction to Maximize Single-channel Performance
	Horizontal HBM Division to Maximize Multi-channel Parallelism

	Similarity Calculation
	K-selection
	Filter
	Perfect Overlap of Faery Data Streams

	Faery Server
	Implementation
	Evaluation
	Experiment Setup
	Single-accelerator Performance
	Latency
	Throughput
	Latency-bounded Throughput
	Energy & Cost Efficiency
	Summary

	Multi-accelerator Performance

	Discussion
	Related Work
	Conclusion

