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Recommender systems typically require the revelation of users’ ratings to the recommender server, which

will subsequently use these ratings to provide personalized services. However, such revelations make users

vulnerable to a broader set of inference attacks, allowing the recommender server to learn users’ private at-

tributes, e.g., age and gender. Therefore, in this paper, we propose an efficient federated matrix factorization

method that protects users against inference attacks. The key idea is that we obfuscate one user’s rating to

another such that the private attribute leakage is minimized under the given distortion budget, which bounds

the recommending loss and overhead of system efficiency. During the obfuscation, we apply differential pri-

vacy to control the information leakage between the users.We also adopt homomorphic encryption to protect

the intermediate results during training. Our framework is implemented and tested on real-world datasets.

The result shows that our method can reduce up to 16.7% of inference attack accuracy compared to using no

privacy protections.
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1 INTRODUCTION

The recommender system has become an indispensable component in our lives to provide per-

sonalized services, e.g., suggesting movies and music. A recommender system typically requires

collecting users’ ratings in one place, then performing analysis and predictions. However, the
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rating information is very private because it represents users’ preferences and indicates users’ pri-

vate attributes, such as age and gender. To this end, the privacy-preserving recommender system

has become a hot research topic.

One of the most widely used recommendation technologies ismatrix factorization (MF) [23],

which decomposes the rating matrix into two low-dimensional matrices, capturing the latent fac-

tors of users and items. Numerous works have proposed privacy-preserving MF algorithms to ad-

dress the privacy issues. These works can be categorized into encryption-based methods [20, 26],

differential privacy (DP) based methods [5], and federated learning (FL) based methods [7]. The

encryption-based methods protect users’ privacy by encrypting the data before uploading it to the

service providers. However, they usually require two non-colluding service providers (i.e., a recom-

mendation server and a crypto-service provider), which are hard to find in the real world and thus

have relatively low practicality. The encryption-based methods also sustain large time overhead

brought by complex computation under ciphertext or circuits. The differential privacy based meth-

ods protect privacy byminimizing the probability of identifying any user’s data. It takes a trade-off

between recommending accuracy and privacy. However, the differential privacy based methods

cannot offer confidentiality of users’ rating values and rating item set by definition, and thus are

vulnerable to inference attacks. Federated learning methods protect privacy by keeping users’ data

locally and performing joint model training between all the users. The exchanged intermediate re-

sults are protected by the homomorphic encryption, thus they guarantee data confidentiality.

In this paper, we focus on federated matrix factorization because of its following strengths:

• Compared with other technologies, federated learning avoids collecting users’ data in one

place, thus it is easier to satisfy privacy-preserving regularizations (e.g., GDPR).

• Compared with the encryption-based methods, which need two non-colluding servers, the

federated solution only requires one semi-honest server, thus it has more practicality.

• FL has good expandability, making it more flexible. For example, we can apply both homo-

morphic encryption and differential privacy in FL to get a more secure solution.

The first secure federatedmatrix factorization is proposed by Chai et al. [7]. They proved that the

gradients leak private data. Thus, it is necessary to adopt the homomorphic encryption to enhance

the confidentiality of rating values. Two schemes are proposed in their paper: FullText and PartText:

• FullText: Users upload gradients for all the items. The gradients of non-rated items are set

to zero to avoid affecting the recommending accuracy. The server cannot specify the zero

gradients because the numbers are all encrypted using homomorphic encryption.

• PartText: Users only upload gradients for the rated items.

However, neither the proposed FullText nor PartText solution is practical, they show a polar-

ization of performance between efficiency and privacy preservation. The FullText solution leaks

nothing to the server, however, it brings a large time overhead. The PartText solution minimizes

the time consumption, however, it leaks the rated item set, which can be used by the adversary to

attack users’ private attributes.

To this end, we propose an efficient and inference-attack-safe federated matrix factoriza-

tion solution, called EIFedMF. EIFedMF is much faster than FullText and can protect users against

attribute inference attacks compared with PartText. The key idea is that we learn an obfuscation

function to obfuscate users’ uploading item set, such that the mutual information between the up-

loaded information and the private attribute is minimized under a data distortion budget, which

bounds the utility of the obfuscation results.

Apart from the problem of learning the obfuscation function itself, the federated learning setting

also brings lots of challenges to us:
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• Most machine learning algorithms require that the data should be collected in one place,

thus it cannot be directly used in our system. We need to transfer some of them into the

federated setting to build our system.

• Homomorphic encryption is indispensable in our system to protect users’ private data, and

it brings challenges to our system design because the type of homomorphic encryption’s

supported operation is limited (e.g., it cannot compare two ciphertexts or compute their

absolute values).

In summary, we made the following contributions:

(a) To the best of our knowledge, this is the first efficient federated matrix factorization frame-

work that can protect users against attribute inference attacks. Compared with existing se-

cure MF works, EIFedMF is more practical, i.e., faster than FullText and safer than PartText .
(b) We propose an obfuscation based method to protect users against inference attacks in the

federated matrix factorization. EIFedMF is well accommodated into the federated learning

setting and does not bring any new private data leakage.

(c) We implement the proposed method and evaluate it on real-world datasets. The evaluation

results show that our method can reduce the inference attack accuracy by up to 16.7% com-

pared with PartText solution, and only brings 2.4% recommendation loss (i.e., root mean

square error), thus it guarantees the recommending utility. Compared with FullText solu-
tion, our method can significantly improve the system efficiency by reducing about 40%∼50%
number of uploading items.

2 PRELIMINARIES

In this section, we briefly introduce some technologies that are closely related to our work, which

are homomorphic encryption, federated matrix factorization, and oblivious transfer.

2.1 Homomorphic Encryption

Homomorphic encryption (HE) is one of the proudest technologies in cryptography, and its

study can be traced back to the 1970s. Briefly, HE allows computations directly to run on cipher-

text without decryption. A typical application of HE is private cloud computing. We say an HE

algorithm is homomorphic over operation "�" if the following equation holds [1]:

[[m1]]� [[m2]] = [[m1 �m2]] ∀m ∈ M
Where [[m]] is the ciphertext ofm,M is the set of all possible messages.

Because of HE’s nice homomorphic property, it is also widely used in federated learning to

protect the exchanged intermediate results between different parties. In this paper, we use the

CKKS [8] encryption schema, which supports both homomorphic addition and multiplication in a

limited depth.

2.2 Federated Matrix Factorization

Matrix factorization based recommender system is first introduced in the work of Koren et al. [23],

and stochastic gradient decent (SGD) is used to train the model. Given the rating information

ri j : (i, j ) ∈ M, Equation (1) shows the loss function of matrix factorization and Equations (2)–(5)

are the parameter updating formulas using SGD.

min
U ,V

1

M
(ri, j − 〈ui ,vj 〉)2 + λ | |U | |22 + μ | |V | |22 (1)

uti = u
t−1
i − γ �ui F (U t−1,V t−1) (2)

vti = v
t−1
i − γ �vi F (U t−1,V t−1) (3)
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�ui F (U ,V ) = −2
∑
j :(i, j )

vj (ri j − 〈ui ,vj 〉) + 2λui (4)

�vj F (U ,V ) = −2
∑
i :(i, j )

ui (ri j − 〈ui ,vj 〉) + 2λvj (5)

whereU ∈ Rn×d is the user profile, V ∈ Rm×d is the item profile, λ and μ are small positive values

to rescale the penalizer, j : (i, j ) means all the items that evaluated by user-i, i : (i, j ) means all the

users that have evaluated item-j.

Federated matrix factorization allows users to jointly train the model while keep rating data

locally. Users send the intermediate results (i.e., gradients) to the server instead of sharing raw

rating data. Algorithm 1 shows the procedure of federated matrix factorization.

ALGORITHM 1: Federated Matrix Factorization with HE (PartText)

Initialize: Server initializes V and holds the public key, Users initialize U and hold the secret key

Output: Converged U and V

Server keeps latest [[V ]] for all users’ download

User local update:

Download {[[vj ]]|j ∈ (i, j )} from server

Decrypt and get {vj |j ∈ (i, j )}
Local updates: uti = u

t−1
i − γ �ui F (U t−1,V t−1)

Gradienti j = −2γui (ri j − 〈ui ,vj 〉) + 2λvj
Encrypt and send {[[−λGradienti j ]]|j ∈ (i, j )} to the server, where λ is the learning rate

Server update:

Receive {[[−λGradienti j ]]|j ∈ (i, j )} from user-i

Update : [[vtj ]] = [[vt−1j ]] + [[−λGradienti j ]] for j : (i, j )

2.3 Oblivious Transfer

Oblivious transfer (OT) is a secure computation protocol in which a sender transfers one of the

potentially many pieces of data to a receiver and guarantees that the sender remains oblivious

about which piece of data is transferred. A typical OT protocol is 1-out-of-2 oblivious transfer,

which assumes that the sender has two messages and wants to send one of them to the receiver.

In this paper, we use the 1-out-of-n oblivious transfer, which can be naively implemented by

doing n times of 1-out-of-2 OT. And we adopt the protocol of Naor et al. [25], which reduces the

complexity of 1-out-of-n OT from O (n) to O (loдn).

3 PROBLEM FORMULATION

In this section, we introduce the security definition of our system, demonstrate the issues of exist-

ing solutions in detail, and formulate our problem.

3.1 Security Definition

In this paper, we assume that all the participants, including the server and users, are semi-honest.

By definition, the server and users could be compromised by an adversary, but they will follow the

prescribed protocol correctly. We also assume that the server does not collude with any user.

3.2 Neither PartText nor FullText is Practical

According to Algorithm 1, which is exactly the PartText setting, each user uploads the encrypted

gradients which are subsequently used by the server to update the item vectors.We can notice that,
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Fig. 1. Neither FullText nor PartText is a good choice.

although the gradients are encrypted, there is still some information leakage. The server knows

which items are rated by a particular user. Such information leakage is not trivial because it could

make users vulnerable to a broader set of inference attacks [34].

By contrast, FullText setting requires the gradients uploading for all the items. If one item is

not rated by the user, then encrypted zero gradients will be used. The zero gradients cannot be

discriminated by the server because HE algorithms (e.g., Paillier [27]) exploit random numbers

in the encryption, making the ciphertext look very different, even if the raw data are the same.

And the random numbers can be removed by the secret key during decryption. Actually, such

property exists as long as the HE is secure against chosen-plaintext attack (CPA) which is the

basic requirement of HE algorithms [14].

Figure 1 illustrates the problem of FullText and PartText. FullText is safe but highly inefficient,

and PartText is efficient but makes the users vulnerable to inference attacks.

3.3 Problem Formulation

The comparsion in Section 3.2 shows that a new solution is urgently required to balance the effi-

ciency and privacy preservation in federated MF. Assume we have n users,m items, and the rating

information ri j : (i, j ) ∈ M. To better model the information leakage, we denote X ∈ {0, 1}n×m as

the rating-pair matrix, where the value of xi j is:

xi j =

{
1, i f (i, j ) ∈ M
0, otherwise

(6)

Algorithm 2 shows the users’ local update function according to the rating-pair matrix X .

Problem Formulation: Because of HE’s nice property, the server cannot discriminate the en-

crypted zero gradients from the encrypted normal gradients in Algorithm 2. Thus, the only leaked

information is the rating-pair matrix X . Given the initial rating-pair matrix X , which contains the
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Fig. 2. Framework overview.

ALGORITHM 2: User Update According to Rating-pair Matrix X

User-i’s local update:

Download {[[vj ]]|where xi j = 1} from server

Decrypt and get {vj |where xi j = 1}
LocalGradient ← {0}d , where d is the dimensionality of user and item vector

for j ∈ {j |where xi j = 1} do
if (i, j ) ∈ M then

LocalGradient ← LocalGradient ⊕ −2vj (ri j − 〈ui ,vj 〉)
RemoteGradienti j ← −2γui (ri j − 〈ui ,vj 〉) + 2λvj

else

RemoteGradienti j ← {0}d
end if

end for

Local updates: uti = u
t−1
i − γ (LocalGradien + 2λui )

Encrypt and send {[[−λRemoteGradienti j ]]|where xi j = 1} to the server, where λ is the learning rate

real users’ rating pairs, we want to obfuscate X to X̂ , such that X̂ protects users against inference

attacks, and the distortion between X̂ and X is also bounded to maintain the utility of X̂ .

4 METHOD

In this section, we introduce EIFedMF to protect users against the inference attacks. The key idea

is that we learn an obfuscation function to obfuscate users’ rating-pair matrix, such that the mu-

tual information between the distorted result and the private attribute is minimized given the

data distortion budget, which guarantees the utility of the obfuscated data. During learning the

obfuscation function, we use methods like clustering to reduce the problem complexity. Figure 2

shows the framework of EIFedMF. Briefly, we first perform a federated clustering according to the

rating-pair matrix. Then, the server learns the obfuscation function between the clusters by solv-

ing a constrained convex optimization problem. Eventually, all the users run a secure probabilistic

obfuscating protocol to generate obfuscation results.

4.1 Reduce the Information Leakage

Definition 4.1. The average information leakage of a set of input X regarding a private target Y
is given by the I (X ;Y ), which is the mutual information between X and Y [11, 34].
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In order to protect users against inference attacks, we want to reduce the mutual information

between the obfuscated rating-pair matrix X̂ and users’ private attribute Y (e.g., gender):

I (X̂ |Y ) =
∑

x̂ ∈X̂ ,y∈Y
p (x̂ ,y)loд

(
p (x̂ ,y)

p (x̂ )p (y)

)
(7)

Given the rating-pair matrix X , we use an obfuscation function pX̂ |X to generate X̂ . Then the

joint probability p (x̂ ,y), and the marginal probability p (x̂ ) can be represented as:

pX̂ ,Y (x̂ ,y) =
∑
x ∈X

pX̂ |X (x̂ |x )pX ,Y (x ,y)

pX̂ (x̂ ) =
∑

x ∈X ,y∈Y
pX̂ |X (x̂ |x )pX ,Y (x ,y)

(8)

Combined with the above joint and marginal probability, the mutual information between the

obfuscated rating-pair matrix X̂ and the private attribute Y is:

I (X̂ ;Y ) =
∑

x̂ ∈X̂ ,y∈Y

⎡⎢⎢⎢⎢⎣

∑
x ∈X

pX̂ |X (x̂ |x )pX ,Y (x ,y)
⎤⎥⎥⎥⎥⎦

· loд �
	

∑
x ′ ∈X pX̂ |X (x̂ |x ′)pX ,Y (x

′,y)
p (y) ·∑x ′′ ∈X ,y′ ∈Y pX̂ |X (x̂ |x ′′)pX ,Y (x ′′,y ′)



�

(9)

For a given dataset with privacy attribute Y , we can empirically determine pY (y) and pX ,Y (x ,y).

By minimizing the mutual information between the X̂ and Y , the information leakage is reduced.

Thus, we do not specify the inference attack methods, and any kind of inference attack should be

rendered weak on X̂ .

4.2 Bound the Data Distortion

To guarantee the obfuscation results’ utility in providing personalized recommendations and con-

troling the system’s efficiency overhead, we bound the data distortion between X̂ and X . Since

X ∈ {0, 1}n×m and X̂ ∈ {0, 1}n×m , the discrepancy between X and X̂ can be categorized into two

situations:

• xi j = 0, x̂i j = 1: User-i did not give a rating score for item-j because xi j = 0, but needs to

upload encrypted zero gradients for item-j because x̂i j = 1. It brings efficiency overhead

because users need to encrypt extra zero gradients and upload them to the server.

• xi j = 1, x̂i j = 0: User-i rated item-j because xi j = 1, but does not need to upload gradients

for item-j because x̂i j = 0. Such obfuscation brings recommending loss because the rating

information for item-j is discarded.

The recommendation loss can be quantified by the amount of discarded data (i.e., where xi j = 1

and x̂i j = 0), and it increases when more data are dismissed. The efficiency overhead can be

evaluated by measuring the number of increased items for which users need to provide gradients.

Given one user’s rating-pair vector xi and the obfuscated x̂i , we use Equation (10) to measure the

recommendation loss, and use Equation (11) to quantify the time consumption overhead.

distr ec (xi , x̂i ) =
| |xi | | − | |xi − x̂i | |xi>x̂i

| |xi | | (10)

distef f (xi , x̂i ) =
| |x̂i | | − | |xi | |
| |xi | | (11)
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where | | · | | is the L1-norm operation, | | · | |cond is the L1-norm of elements at positions where cond
is True. For example, if a = [1, 0,−1, 1], then | |a | |a>0 = 2.

4.3 Obfuscation Function Learning

Combining the optimization target of reducing the mutual information between the obfuscated

rating-pair matrix X̂ and the private data Y , and the constraint of bounding the data distortion

between X̂ and X to maintain the utility, we can learn an obfuscation function pX̂ |X through the

following constrained optimization:

minpX̂ |X I (X̂ ;Y )

s .t . 0 ≤ pX̂ |X (x̂ |x ) ≤ 1∑
x̂

pX̂ |X (x̂ |x ) = 1

EX̂ ,X (distr ec (x , x̂ )) ≤ α

EX̂ ,X (distef f (x , x̂ )) ≤ β

(12)

Where α and β are two hyperparameters controlling the utility of X̂ in recommendation and

efficiency.

Theoretically, if we have n users andm items, we could obfuscate each user’s rating-pair vector

x into 2m possible x̂ according to the permutations and combinations theory, e.g., if we have two

items, then x̂ ∈ {[0, 0], [0, 1], [1, 0], [1, 1]}. The complexity of learning the obfuscation function

pX̂ |X is o(n · 2m ), which is too complicated because a real-world recommender system usually has

lots of users and items.

To reduce the problem complexity, we turn to obfuscate one user’s rating-pair vector to the one

of another user instead of going through all 2m possible results. Then the complexity of finding an

optimal pX̂ |X reduces from o(n · 2m ) to n2.

Although the problem is largely simplified to O (n2), it’s complexity still grows quadratically

with the number of users. To further reduce the complexity, we cluster the users into a limited

and fixed number of groups. Then we learn the obfuscation function between clusters instead

of individual users. Specifically, we first cluster users into k sets according to their rating pairs

(i.e., the rating-pair matrix X ). Then we learn the obfuscation function between different groups

of users using the cluster centroids S = {s0, s1, . . . , sk }. The learning problem is represented in

Equation (13).

minpŜ |S I (Ŝ ;Y )

s .t . 0 ≤ pŜ |S (ŝ |s ) ≤ 1∑
ŝ

pŜ |S (ŝ |s ) = 1

EŜ,S (distr ec (s, ŝ )) ≤ α

EŜ,S (distef f (s, ŝ )) ≤ β

(13)

It has been proved by Calmon et al. [11] that the constrained optimization in Equation (12) is a

convex optimization problem, so is the problem in Equation (13). We solved the optimization using

a dual minimization procedure, which is similar to the Arimoto-Blahut algorithm [9], by starting

at a fixed marginal probability pX̂ , solving the convex optimization, and updating the marginal

probability at each step.

4.3.1 Federated Clustering. User clustering is indispensable in EIFedMF to reduce the optimiza-

tion complexity. However, existing clustering methods require the data to be collected in one place,
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which cannot satisfy the requirements of privacy preservation. Thus, we propose a federated clus-

tering algorithm to meet our requirement. In particular, EIFedMF is based on the k-means [33]

algorithm.

ALGORITHM 3: Federated k-means Algorithm

Initialize: Server holds the public key, initializes cluster centersC ∈ {0, 1}K×M , where K is the number of

clusters andM is the number of items. Users hold the secret key.

Output: Converged cluster centers C .
Server send encrypted centers [[C]] to all users

forUseri ← User1 toUserN do

Download [[C]] and decrypt

Decide local cluster label дi = arдminj | |xi −Cj | |22
Prepare a one-hot-vector for counting the number of users in each cluster: Di = {0}K , Di [дi ]← 1

Encrypt and upload [[Di ]]

end for

Server: Compute [[D]] =
∑
i [[Di ]], and return [[D]] to all users

forUseri ← User1 toUserN do

Download [[D]] and decrypt

Compute local contribution on cluster center: Ci ← {0}k×M , Ci [дi ]← xi
D[дi ]

Encrypt and upload [[Ci ]]
end for

Server: Compute the new centers [[C]]← ∑N
i=1[[Ci ]]

Repeat the algorithm until the cluster centers are converged, which can be monitored by a selected user,

who will also send the final cluster centers to the server.

Algorithm 3 shows the federated k-means algorithm, which guarantees that the server only

learns the final converged cluster centers. The users’ cluster labels are only known to themselves.

After obtaining the cluster centers, the server will solve the convex optimization in Equation (13)

and send the obfuscation function pŜ |S to each user.

4.4 Probabilistic Obfuscation

Since the obfuscation function is learned based on clusters, we still need to fill in the gap between

clusters and users to perform obfuscation on individual users. The key idea is that we firstly ob-

fuscate one user from his own cluster s to another cluster s ′, then randomly select one user’s data

from cluster s ′ as the obfuscation result.

However, the above solution brings two kinds of information leakage: (1) Users’ data are directly

sent to the others, which brings serious privacy data leakages. (2) The server could inspect the

mapping of obfuscation results (e.g., user-i finally picked user-j’s data), because there is usually

no direct connection between users in the recommender system and their inner communication

needs the server as an assistant, who could see the result of random selection and trace it back to

the real user of the obfuscated data.

In order to solve the above privacy issues, we use differential privacy (DP) and oblivious

transfer (OT) to design a secure model for each user to obtain the obfuscation result safely. And

it contains the following three steps:

• Step 1: All the users add DP noise to local data xi getting x
′
i , then encrypt and send [[x ′i ]] to

the server.

• Step 2: Get the local cluster si , obfuscate to another cluster ŝ according to the obfuscation

funtion pŜ |S .
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• Step 3: Perform a 1-out-of-n OT with the server to randomly get a user-r from cluster ŝ , then
use x ′r as the obfuscation result.

Next, we will introduce how the DP and OT are fitted into the system to reduce the information

leakage.

4.4.1 Hide Users Through Differential Privacy. We model the random selection as a funcrework

for better clarity.tion f , then add noise to the output of f inside each cluster. Such that the ran-

domized output on each cluster satisfies the definition of ϵ-differential privacy (ϵ-DP). And the

probability that we can specify whether the cluster containers one particular user is bounded.

Theorem 4.2. Denote dateset D as a subset of users’ data from one cluster. Based on D, we build
dataset D ′ by randomly drop or add one user from the same cluster. Denote function f : D → Di

as the random pick function. Define function A(D) = ( f (D) + N ) mod 2, where N ∈ {0, 1}m is

discreate noise. And we generate N using Equation (14), where 1 ≤ i ≤ m. We set b =
Δf
ϵ
,Δf =

maxx ∈D,y∈D′
∑m

i=1 |xi − yi |, then function A satisfies the definition of ϵ-DP.

Pr (Ni = 0) =
1

1 + e−
1
b

, Pr (Ni = 1) =
e−

1
b

1 + e−
1
b

(14)

Proof. Assume f (D) = (x1, . . . ,xm )T and f (D ′) = (y1, . . . ,ym )T . DenoteO = (z1, . . . , zm ) as a
possible output of function A. Then we have:

Pr [A(D) = O] =
m∏
i=1

1

1 + e−
ϵ
Δf

e−
ϵ
Δf |xi−zi |

Pr [A(D ′) = O] =
m∏
i=1

1

1 + e−
ϵ
Δf

e−
ϵ
Δf |yi−zi |

Pr [A(D) = O]

Pr [A(D ′) = O]
=

∏m
i=1

1

1+e
− ϵ
Δf
e−

ϵ
Δf |xi−zi |

∏m
i=1

1

1+e
− ϵ
Δf
e−

ϵ
Δf |yi−zi |

=

m∏
i=1

e−
ϵ
Δf ( |xi−zi |− |yi−zi |)

= eϵ ·
∑m
i=1

( |yi −zi |−|xi −zi |)
Δf

(15)

According to the triangle inequality |a + b | − |a | ≤ |b |, we have:
Pr [A(D) = O]

Pr [A(D ′) = O]
= eϵ ·

∑m
i=1

( |yi −zi |−|xi −zi |)
Δf

≤ eϵ ·
∑m
i=1

( |yi −xi |)
Δf ≤ eϵ

(16)

Thus, A satisfies the definition of ϵ-DP.
Algorithm 4 shows the method of jointly compute Δf among different users, while it keeps the

data confidentiality. The challange is that | · | operation is not supported in existing HE algorithms,

thus, we cannot just encrypt all the data and let the server do the computation. Given data x ,y from
two users, we want to compute

∑m
i=1 |xi −yi |. Our idea is splitting the computation into two steps

(i.e., one step at the server, one step at the users) and using random shuffle to avoid information

leakage:
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ALGORITHM 4: Apply DP Noise (Compute Δf )

Initialize: ϵ
Output: Δf for each user

for i ← 1 to N do

Useri encrypts [[xi ]] and cluster [[дi ]], send them to server

end for

for i ← 1 to N do

for j ← 1 to N do

Server computes [[Di j ]] = [[xi ]] − [[x j ]]
Server random shuffles [[Di j ]] � [[Di j ]] is a vector

end for

Server random shuffles [[Di ]] together with [[д]]
Server sends [[Di ]] and [[д]] to useri

end for

for i ← 1 to N do

Useri decrypts [[Di ]] and [[д]], Δf ← 0

for j ← 1 to N do

for k ← j + 1 to N do

if дj = дk = дi then � дi is the cluster of useri
dist =

∑m
d=1
|Dd

jk
|

if Δf < dist then Δf = dist
end if

end if

end for

end for

Useri gets Δf , and applies DP noise locally

end for

ALGORITHM 5: Secure Random Select Using OT

for i ← 1 to N do

Useri encrypt [[xi ]] and cluster [[дi ]], send them to server

end for

Server hold [[xi ]] as the messages and send [[д]] to all the users

for i ← 1 to N do

Useri decrypt [[д]] and random select one index bi such that дbi = дi .
Using bi , useri performs an 1-out-of-n OT with the server, and get xbi .

end for

• Step 1: Server compute [[d]] = [[x]] − [[y], random shuffles [[d]] and sends it to the corre-

sponding user. Here [[d]] ∈ {0, 1}m , and the random shuffle prevents user x from recovering

user y’s data through y = x − d .
• Step 2: User decrypts [[d]], and computes

∑m
i=1 |di |. Assuming the current user holds x , it

cannot recover y because [[d]] is already shuffled by the server.

4.4.2 1-out-of-n OTwith the Server. In order to blind the serverwithwhich user is finally chosen

as the obfuscation result, we use 1-out-of-n oblivious transfer technology which guarantees that

the server learns nothing about the users’ choices and the users only learn the data he chooses.

Algorithm 5 shows the detail of the method.
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4.5 Privacy Analysis

Privacy-preservation is an essential requirement for federated learning frameworks. Thus, the

framework should be carefully designed to minimize private data leakage. The federated matrix

factorization is a typical horizontal federated learning scenario in which the adversary is the semi-

honest server. Thus, the framework needs to protect the users from the server. Here we analyze

the privacy-preservation of EIFedMF by summarizing what information the server receives and

how much knowledge the server can learn.

As shown in Figure 2, EIFedMF has a workflow of three parts to select a set of uploading items

such that the efficiency and privacy protection regarding the inference attacks are jointly opti-

mized. Next, we list the valid information (i.e., the information in plain-text and the encrypted

messages are excluded) that the server receives in the EIFedMF’s workflow:

• Part 1 Federated KMean Clustering: The only valid information that the server receives is

the cluster centers. The cluster centers leak no private information because it represents the

character that belongs to a group of users, which is not private because privacy is defined

as information that could be linked to a natural person.

• Part 2 Obfuscation Function Learning: In this step, the server learns the obfuscation func-

tion based on the clusters’ centers. Thus, the valid information that the server learns is the

obfuscation function, which contains no more knowledge than the cluster centers because

the functions are derived from them. Since the cluster centers leak no private information,

the obfuscation function also leaks nothing private.

• Part 3 Probabilistic Obfuscating: During the probabilistic obfuscation, end-to-end privacy-

preserving techniques, e.g., homomorphic encryption and oblivious transfer, are adopted.

Thus, the server gets no valid message and learns zero knowledge about users’ private data.

It is worth noting that each user randomly picks another user’s data as obfuscation in this

step, and we have used differential privacy to guarantee that the privacy leakage between

users is bounded.

To summarize, EIFedMF can protect the users from inference attacks, and leaks no private infor-

mation during the obfuscating items selection process. Meanwhile, EIFedMF can protect the users

from inference attacks.

5 EVALUATION

5.1 Experiment Settings

We evaluate EIFedMF on two real-world datasets. The first dataset is collected from MovieLens

that contains ratings of 1,682 movies made by 943 users,1 and we focus on protecting users’ gender,

age, and occupation in this dataset. Another dataset is the users’ check-in records at different POIs

(point of interest) in NYC [35–37]. The POIs are treated as items, and users’ gender needs to be

protected in this dataset. The raw dataset contains check-in records made by 18,201 users at more

than 500K POIs. We choose the top 10,000 POIs with the highest number of visiting records and

users with more than 50 visiting records. After the preprocessing, the CheckIn dataset contains

records of 10,000 POIs made by 9,233 users.

Table 1 shows the processing of attribute labels. Some attributes are naturally discrete, such as

gender, and we directly use them as attribute labels. Some attributes are continuous, such as age,

and we manually transfer them into discrete values.

In the federated user clustering, we set the k = 10 (i.e., the number of clusters) for both Movie-

Lens and CheckIn datasets. The α and β in Equation (13) are set to 0.3 and 1.0, respectively. We

1https://www.kaggle.com/prajitdatta/movielens-100k-dataset.
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Table 1. Processing of Attributes

Attribute #Classes Values

Gender 2 {Male, Female}

Age 5 { ≤18, (18, 30], (30, 40], (40, 50], 50< }

Occuption 21 administrator, artist, doctor, etc.

set ϵ = 0.01 when applying the differential privacy. We use SEAL-CKKS encryption [8, 28] as the

homomorphic encryption method, and the poly modulus degree is set to 8192. The bandwidth of

the communication is 1 Gb/s. All the experiments are performed on a Linux server with 3.6GHz

8-core CPU and 32GB RAM. The programming language is Python, and we use SEAL-Python2 in

the implementation, which is a python binding for the Microsoft SEAL library.

It is worth noting that EIFedMF protects users from inference attacks through an optimization

that reduces the mutual information between the uploaded items and a certain private target (i.e.,

one attribute). In reality, users usually have more than one private attribute. EIFedMF can be ex-

tended to a multi-attribute version by incorporating all the attributes in the optimization, in which

different targets can be equally treated or assigned different weights. Herewe consider two settings

of optimization targets in the evaluation.

• (EIFedMF-Single) Protect a single attribute, e.g., gender.

• (EIFedMF-All) Protect all the attributes in one dataset, e.g., gender, age, and occupation.

To demonstrate the effectiveness of EIFedMF, we compare with the following baselines in the

evaluation:

• PartText Solution (PT) [7]: Users use real rating-pair without any protection.

• FullText Solution (FT) [7]: Users use full rating-pair matrix, i.e., uploading gradients for

all items.

• Random Increase (RI-α ) [34]: Users randomly pick α percent of non-rated items as obfus-

cation to resist the inference attacks.

• Random Flip (RF-β) [34]: Users randomly flip the values of the expose matrix X with

probability β .

5.2 Evaluation on Privacy-preservation

To evaluate the privacy-preservation of EIFedMF, we have performed inference attack experiments

using three types of machine learning models: Naive Bayesian (NB), support vector machine

(SVM), and gradient boosting decision tree (GBDT). A 10-fold cross-validation is used, and the

average results are reported in Table 2. A solution yields better privacy preservation if it has lower

inference attack accuracy.

Compared with PartText, which has no protection to inference attacks, EIFedMF significantly

reduces the inference attack accuracy. In particular, EIFedMF reduces the inference attack accuracy

by 16.7% compared with PartText regarding the MovieLen’s age attribute when the adversaries use

the GBDT attack model. Furthermore, compared with the other three baselines, i.e., RI, RF, and NB,

EIFedMF consistently yields lower attack precision, which shows the effectiveness of EIFedMF.We

also observe the NB is a relatively weak attack model compared with SVM and GBDT, thus easier

to defense, e.g., the RI and RFmethods do a good job in resisting the NB attack but not that effective

when dealing with SVM and GBDT models. In fact, none of the baseline methods is effective when

attack using the SVM model, but EIFedMF can reduce SVM’s attack accuracy up to 10%.

2https://github.com/Huelse/SEAL-Python.
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Table 2. Inference Attack Accuracy

Attribute Model FT PT RI-0.1 RI-0.3 RI-0.5 RI-0.7 RI-0.9 RF-0.1 RF-0.3 RF-0.5 RF-0.7 RF-0.9
EIFedMF
Single

EIFedMF
All

MovieLens
Gender

NB
0.588

0.696 0.671 0.687 0.683 0.693 0.711 0.656 0.666 0.664 0.685 0.647 0.575 0.614
SVM 0.722 0.711 0.711 0.711 0.711 0.711 0.711 0.711 0.711 0.711 0.711 0.662 0.654
GBDT 0.733 0.711 0.700 0.699 0.699 0.689 0.705 0.704 0.690 0.701 0.710 0.640 0.640

MovieLens
Age

NB
0.277

0.421 0.408 0.418 0.384 0.405 0.418 0.397 0.380 0.361 0.389 0.393 0.289 0.300
SVM 0.449 0.424 0.419 0.418 0.418 0.418 0.423 0.418 0.418 0.418 0.421 0.380 0.349
GBDT 0.476 0.441 0.407 0.403 0.390 0.396 0.431 0.401 0.355 0.404 0.420 0.335 0.309

MovieLens
Occupation

NB
0.094

0.209 0.192 0.193 0.186 0.190 0.207 0.189 0.172 0.160 0.211 0.197 0.104 0.111
SVM 0.231 0.209 0.208 0.208 0.208 0.208 0.209 0.208 0.208 0.208 0.209 0.186 0.173
GBDT 0.192 0.212 0.183 0.175 0.179 0.164 0.193 0.193 0.164 0.191 0.183 0.132 0.117

NYC CheckIn
Gender

NB
0.582

0.688 0.664 0.666 0.670 0.673 0.704 0.649 0.661 0.662 0.673 0.702 0.608 —
SVM 0.710 0.703 0.703 0.703 0.703 0.703 0.703 0.703 0.703 0.703 0.703 0.661 —
GBDT 0.721 0.675 0.700 0.698 0.698 0.678 0.681 0.699 0.699 0.700 0.682 0.653 —

The lower the attack accuracy, the better privacy preservation. The lowest two attack results are bolded.

The FullText solution leaks no extra private data to the semi-honest server, thus is naturally

free from inference attacks. However, the server still can make random guesses based on some

prior knowledge, e.g., 70% of the users are male. Table 2 shows the attack accuracy using random

guess in FullText, which could be treated as the lower bound of the inference attack accuracy.

Compared with FullText, EIFedMF achieves comparable privacy preservation, and the inference

attack accuracy is only 4.2% higher on average. Although FullText achieves the best protection

against inference attacks, it enforces users to upload gradient for all items, which is very low

efficient and not practical. We compare EIFedMF with FullText regarding efficiency in Section 5.4,

and the results show that EIFedMF is much more efficient than FullText.

5.3 Evaluation on Data Utility

EIFedMF guarantees the data utility by setting a data distortion budget between the real data and

the obfuscation results during the optimization. To evaluate the data utility, we have built a matrix-

factorization-based recommender system and use the recommendation error to evaluate the data

utility. Root mean square error (RMSE) is used as the metric. Briefly, 10-fold cross-validation

is used in the matrix factorization, 90% of the data are used for training, and 10% for testing. The

average results are presented in Table 3.

The FullText and PartText have no data utility loss, since all the rated items are uploaded. Com-

pared with FullText and PartText, the recommendation error of EIFedMF is about 2.4% larger, i.e.,

2.4% of data utility loss. The baseline method RI has no utility loss because it only uploads more

zero gradients for the unrated items and leaves the rated items untouched. The baseline method

RF also brings utility loss, which increases with the flipping probability. It is worth noting that al-

though RI and RF with flipping probability smaller than 0.5 have better data utility than EIFedMF,

they cannot protect the users against inference attacks very well, especially when using strong

attack models, such as GBDT and SVM. In contrast, EIFedMF reduces up to 16.7% attack accuracy

compared with PartText and only brings 2.4% utility loss.

Figure 3 shows the recommendation error of EIFedMF under different privacy budgets, i.e.,

when there is no privacy protection and ϵ = 10, 1, 0.1, 0.01. Compared with no privacy protec-

tion, EIFedMF does bring some utility loss but significantly enhances privacy. We can observe that

EIFedMF’s recommendation error firstly shows a small increase, then slightly fluctuates with the

decrease of ϵ . Thus, the value of ϵ , changing from 10 to 0.01, does not significantly influence the

EIFedMF’s data utility. One reason is that the DP noise added on the data is only semi-decided

by ϵ , and another factor Δf is usually very large in recommender application due to the users’

heterogeneity making the data utility less sensitive to ϵ .

ACM Transactions on Intelligent Systems and Technology, Vol. 13, No. 4, Article 59. Publication date: June 2022.



Efficient Federated Matrix Factorization Against Inference Attacks 59:15

Table 3. Recommendation Error (RMSE) on MovieLens

Method FT PT RI-(0.1 ∼ 0.9) RF-0.1 RF-0.3 RF-0.5 RF-0.7 RF-0.9
EIFedMF
Gender

EIFedMF
Age

EIFedMF
Occupation

EIFedMF
All

RMSE 0.950 0.950 0.950 0.953 0.960 0.974 1.014 1.223 0.975 0.974 0.975 0.973

The lower the error, the better the data utility.

Fig. 3. Data utility under different privacy budgets onMovieLens data. The lower the recommendation error

(RMSE), the higher the utility.

5.4 Evaluation on Efficiency

The federated matrix factorization basically has two procedures: (1) determining which items’ gra-

dients should be uploaded, i.e., uploading real encrypted gradients for rated items and encrypted

zero gradients for non-rated items, (2) performing a standardized secure federated matrix factor-

ization training [7], in which multiple clients jointly update a group of global item vectors.

The first step (i.e., selecting the items) in FullText and PartText are relatively simple, which con-

sequently brings disadvantages to the second step. FullText requires the users to upload gradients

for all items, which brings large efficiency overhead to the second step. PartText only lets the users

upload the rated items, which leaks too much information and makes the users vulnerable to a

broader set of inference attacks in the second step. EIFedMF mainly focuses on optimizing the

item selection process in step 1, such that the efficiency is improved compared with FullText and

the leaked information is less than PartText.

The efficiency evaluation of EIFedMF should include both step 1 and step 2, however, we will

show that the time consumption in step 1 of EIFedMF is much less than step 2. Thus, we only

compare the efficiency on step 2. According to the framework presented in Figure 2, EIFedMF has

a workflow of three parts in step 1, in which the federated clustering costs the most time because

it requires multi-rounds training to find the cluster centers. However, in the federated KMeans

clustering (i.e., Algorithm 3), each user only uploads a single vector in each round of training. In

step 2, each user will need to upload a group of item vectors (i.e., an encrypted matrix) which costs

much more time compared with step 1. To simplify the comparison, we only consider step 2 (i.e.,

the most time-consuming step in federated matrix factorization) in the efficiency evaluation.

In the second step of federated matrix factorization, the time consumption is linearly correlated

with the number of uploading items. Thus, we compare the averaged number of uploading items

between EIFedMF, FullText , and PartText solutions. Figure 4 shows the results. EIFedMF can re-

duce 49.8% and 39.7% numbers of uploading items compared with FullText solution in MovieLens

and CheckIn datasets, respectively. Thus, the system efficiency is significantly improved.
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Fig. 4. Efficiency evalution.

6 DISCUSSION

6.1 Generality of Our Method

In the recommender system, the users’ rating matrix is usually very sparse. The recommender

system needs to train the machine learning model using the non-empty values in the user rating

matrix, which are formed as a list of user-item rating pairs. Most of the existing recommender

system studies [10, 12, 18, 21, 32, 38] adopt the user and item profiles in the modeling or explore

higher-order features [16] to improve the model performance. During training, these models are

usually partially updated using each data record. The user and item latent vectors are updated

when there exist rating records. The weights of higher-order features are updated when the cor-

responding rating values are not empty. Consequently, if we put these models in the federated

learning scenario, all users jointly update one global model. They will face the same issue with

FedMF [7], in which the users are not required to update the whole model to improve efficiency,

but the server could perform an inference attack on users according to which parts of the model

are updated.

As we mentioned in Section 5.4, EIFedMF has two steps: (1) determining which items’ gradients

should be uploaded, and (2) performing a standardized secure federated matrix factorization train-

ing. EIFedMF mainly enhances the system in the first step by carefully selecting a group of items

such that the efficiency and privacy protection are jointly optimized. The second step (i.e., the fed-

erated matrix factorization training) of EIFedMF is untouched and inherited from [7]. Thus, the

first step of EIFedMF is not strictly coupled with FedMF [7], and could be easily combined with

other models [10, 12, 16, 18, 21, 32, 38] to protect users from inference attacks in the federated

learning scenario.

6.2 EIFedMF’s Technical Selection

To avoid private data leakage, we have adopted different privacy-preserving techniques in

EIFedMF: homomorphic encryption, differential privacy, and oblivious transfer. Next, we will elab-

orate on why these three techniques are needed and whether they are substitutable.

• Homomorphic Encryption: In the federated KMeans clustering of EIFedMF, the users jointly

update the cluster centers, duringwhichmany pieces of private information are submitted to

the server, by which the information is aggregated to produce the new cluster centers. Thus,

HE is adopted in EIFedMF to conceal the private data. HE is not the only choice here and

could be substituted by other privacy-preserving aggregation methods, e.g., SecureAggrega-

tion [6]. Compared with HE, the SecureAggregation has lower computation complexity but
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brings large communication overhead. In practice, these two techniques could be chosen ac-

cording to the system resources, i.e., choose HE if the system has rich computing resources

and choose SecureAggregation if the system has rich networking resources.

• Differential Privacy: During the probabilistic obfuscation, all users randomly select data from

another cluster as the obfuscation results to protect themselves from inference attacks, which

means that one user’s item visiting records could be leaked to another user. Although the

obfuscation results are randomly selected from clusters (i.e., a group of users), the users that

receive the results still have a chance to link that information to a natural person. Thus, we

have proposed to use differential privacy to bound the probability of specifying whether one

user is inside one cluster or not from the obfuscation results. To the best of our knowledge,

differential privacy cannot be substituted because it is the only technique to theoretically

bound the privacy data leakage regardless of adversaries’ prior knowledge when revealing

the raw data is necessary.

• Oblivious Transfer: The oblivious transfer is adopted in EIFedMF to blind the server with

users’ obfuscation process, i.e., the mapping between users and the obfuscation results. If

the server knows the mapping correlation, e.g., user-i finally uses user-j’s visiting records

as obfuscation result, then the server can directly use user-i’s information to attack user-

j. Thus, according to the scenario, the oblivious transfer is the ideal technique to keep the

obfuscating process oblivious to the server.

7 RELATEDWORKS

The privacy-preserving recommender system is currently a hot research topic, a lot of works have

demonstrated the importance of protecting users’ privacy in the RecSys [3, 15, 19, 31]. Koren et al.

[23] first applied matrix factorization into the recommender system, and it helped them win the

Netflix competition. Afterward, lots of variational models were proposed to improve the precision

and robustness, such as SVD++ [22], CMN [13], etc. Thus, many works focus on privacy issues

in MFRecSys because MF is one of the most fundamental and essential methods in the recom-

mender system. Existing works in secure matrix factorization can be categorized into three types:

encryption methods, differential privacy methods, and federated methods.

Encryption methods: Data encryption is a traditional and intuitive method to protect users’

privacy. Sungwook et al. [20] proposed a fully homomorphic encryption (FHE) secure matrix

factorization framework. To reduce the large time consumption overhead, they merged FHE with

2-party computation (2PC). Thus, their framework requires a crypto-service provider (CSP)

to work with the recommender server. Although the time efficiency is significantly improved, a

trusted CSP is hard to find in reality, and the recommender server may collude with CSP which

brings new privacy concerns. Shahriar et al. [4] proposed a secure framework for collaborative

filtering using a combination of AHE and 2PC. In their framework, AHE works for the addition

operation, and 2PC handles the multiply computation. They also require a trusted third party

because of 2PC, thus has similar implementation problem and the new privacy concerns. Valeria

et al. [26] proposed a secure matrix factorization framework using homomorphic encryption and

garbled circuits, and they also require a trusted CSP in the system.

Compared with existing encryption methods [4, 20, 26], our framework does not require a third

party, only a central recommender server is needed.

Differential privacy: Apart from encryption methods, differential privacy (DP) methods also

have broad applications in the recommender system [5, 24, 29, 30]. DP protects users’ privacy by

adding noise into the rating data, which shows undesirable reduction in recommendation accuracy.

Moreover, DP also can not ensure users’ data confidentiality. Our solution also utilizes differential

privacy to hide the users during the obfuscation.
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Federated methods: Federated machine learning (FML) is a new technique for solving the

data isolation problems. It enables different parties to do data mining tasks on their joint data

without revealing any party’s data to the others. FML is tailored for solving the privacy issues in

the recommender system. Users are different parties and they try to build a recommender system

without leaking personal data. Some pioneering works already show the feasibility of federated

matrix factorization [2, 7]. Researchers in [2] built a distributed matrix factorization (DMF)

system,where users directly send the intermediate results to the server. Afterwards, [7] proved that

the intermediate results in DMF leaks users’ privacy, and they applied HE to avoid the information

leakage. However, neither of them considered the attribute inference attack issue. The server can

still attack the users’ attributes even after theHE is applied. To fill in this research gap, we propose a

noval attribute-preserving federated matrix factorization framework that can protect users against

attribute inference attacks.

8 CONCLUSION AND FUTURE WORK

Privacy protection is a fundamental problem in the recommender system. In this paper, we focus

on federated matrix factorization, which is one of the most widely used technologies in recom-

mender systems. We propose an obfuscation based method to protect users against inference at-

tacks in the federated matrix factorization. Briefly, we learn an obfuscation function to obfuscate

users’ rating-pair matrix such that the mutual information between the obfuscated result and the

private attribute is minimized under a certain distortion budget, which guarantees the utility of

the obfuscation result. Our method is more practical compared with existing federated matrix fac-

torization works [7]. In particular, it is more efficient than the FullText solution and safer than the
PartText solution. We implement and test our method on real-world datasets. The results show

that our method can reduce the inference attack accuracy by up to 16.7%, while maintaining the

recommending performance and only brings 2.4% recommending loss.

In the future, we will continue working on the following problems to improve the practicality

of our solution:

Extend to other models:Wewill verify the generality of the proposed privacy-preserving method,

e.g., when using the deep learning models (e.g., DeepFM [17]). Intuitively, most federated learning

scenarios that adopt matrix factorization technology will meet the inference attack issues, and our

proposed privacy-preserving method could be applied to solve such problems.

Against more power attack models:When the server knows more data, e.g., users’ social network,

more powerful attack models could be applied. Thus, protecting users’ privacy against these pow-

erful models will be one of our essential research problems.

Stragglers and Dropouts: Recommender systems usually have a lot of users. The training process

of federated matrix factorization is distributed and asynchronous, and a large number of users will

bring notable system uncertainty. For example, some users may have a poor internet connection

or insufficient computing power such that their update frequency is lower than others, and we

call these users stragglers. The situation could be worse when some users are offline due to some

reasons (e.g., out of battery), and we call the offline users dropouts. Stragglers and dropouts will

affect the model’s training convergence. Thus, we want to improve our method to minimize such

influences.
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