
Secure Federated Matrix Factorization

Di Chai1,2,∗ , Leye Wang3,∗ , Kai Chen1 , Qiang Yang1,4

1Hong Kong University of Science and Technology, China; 2Clustar, China
3Peking University, China; 4WeBank, China

dchai@connect.ust.hk, leyewang@pku.edu.cn, kaichen@cse.ust.hk, qyang@cse.ust.hk
∗equal contribution, ranked alphabetically

Abstract

To protect user privacy and meet law regulations,
federated (machine) learning is obtaining vast in-
terests in recent years. The key principle of feder-
ated learning is training a machine learning model
without needing to know each user’s personal raw
private data. In this paper, we propose a secure
matrix factorization framework under the federated
learning setting, called FedMF. First, we design
a user-level distributed matrix factorization frame-
work where the model can be learned when each
user only uploads the gradient information (instead
of the raw preference data) to the server. While
gradient information seems secure, we prove that
it could still leak users’ raw data. To this end, we
enhance the distributed matrix factorization frame-
work with homomorphic encryption. We imple-
ment the prototype of FedMF and test it with a real
movie rating dataset. Results verify the feasibility
of FedMF. We also discuss the challenges for ap-
plying FedMF in practice for future research.

1 Introduction
With the prevalence of government regulations and laws on
privacy protection in the big data era (e.g., General Data
Protection Regulation1), privacy-preserving machine learn-
ing has obtained rapidly growing interests in both academia
and industry. Among various techniques to achieve privacy-
preserving machine learning, federated (machine) learning
(FL) recently receives high attention. The original idea of
FL was proposed by Google [Konečnỳ et al., 2016], which
targets at learning a centered model based on the personal
information distributed at each user’s mobile phone. More
importantly, during model training, no user’s raw personal
information is transferred to the central server, thus ensur-
ing privacy protection. Also, the learned privacy-preserving
model can be proved to hold almost similar predictive power
compared to the traditional model learned on users’ raw data.
This highlights the practicality of FL as little predictive ac-
curacy is sacrificed, especially compared to other accuracy-

1https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32016R0679R(02)

lossy privacy-preserving mechanisms such as differential pri-
vacy [Dwork, 2011].

Starting from the original Google paper, many researchers
have been devoted to this promising and critical area. Re-
cently, a nice survey paper on FL has been published [Yang
et al., 2019]. While many research works have been done
on FL, a popular machine learning technique, matrix factor-
ization (MF) [Koren et al., 2009], is still under-investigated
in FL. Since MF is one of the prominent techniques widely
employed in various applications such as item recommenda-
tion [Koren et al., 2009] and environment monitoring [Wang
et al., 2016], we highly believe that studying MF under FL is
urgently required. This work is one of the pioneering research
efforts toward this direction.

Taking recommendation systems as an example, two types
of users’ private information are leaked in traditional MF [Ko-
ren et al., 2009]: (i) users’ raw preference data, and (ii)
users’ learned latent feature vectors. As revealed by pre-
vious studies, either raw preference data or latent features
can leak users’ sensitive attributes, e.g., age, relationship sta-
tus, political views, and sex orientations [Yang et al., 2016;
Kosinski et al., 2013]. This highlights the importance of pro-
tecting users’ private information during MF. Prior studies
have studied privacy-preserving MF in two main types:

(1) Obfuscation-based methods obfuscate users’ prefer-
ence raw data before releasing it to the central server so as to
ensure a certain level of privacy protection (e.g., differential
privacy) [Berlioz et al., 2015]. The pitfall is that obfuscation
inevitably leads to the loss of predictive power of the learned
latent feature vectors. Hence, these methods usually need to
make a trade-off between privacy protection and model per-
formance.

(2) Encryption-based methods use advanced encryption
schemes such as homomorphic encryption for implementing
privacy-preserving MF [Kim et al., 2016]. While they usu-
ally do not need to sacrifice predictive power for privacy pro-
tection, they commonly require a third-party crypto-service
provider. This makes the system implementation complicated
as such a provider is not easy to find in practice.2 Moreover,
if the crypto-service provider colludes with the recommenda-
tion server, then no user privacy protection can be preserved

2Some studies suggest that governments can perform this role,
but this is still not the case in reality now [Kim et al., 2016].

[Kim et al., 2016; Nikolaenko et al., 2013].
This research proposes a novel FL-based MF framework,

called FedMF (Federated Matrix Factorization). FedMF em-
ploys distributed machine learning and homomorphic encryp-
tion schemes. In brief, FedMF lets each user compute the
gradients of his/her own rating information locally and then
upload the gradients (instead of the raw data) to the server
for training. To further enhance security, each user can
encrypt the gradients with homomorphic encryption. With
FedMF, two shortcomings of the traditional obfuscation- or
encryption-based methods can be addressed: (i) no predictive
accuracy is lost as we do not obfuscate data; (ii) no third-party
crypto-service provider is required as each user’s device can
handle the secure gradient computing task.

In summary, we have the following contributions:
(1) To the best of our knowledge, we design the first

FL-based secure MF framework, called FedMF, which can
overcome the shortcomings of traditional obfuscation- or
encryption-based mechanisms as aforementioned.

(2) To implement FedMF, first, we design a user-level dis-
tributed matrix factorization framework where the model can
be learned when each user only uploads the gradient informa-
tion (instead of the raw preference data) to the server. Though
gradient information seems secure, we prove that it could still
leak users’ raw data to some extent3. Then, we enhance the
distributed matrix factorization framework with homomor-
phic encryption to increase security.

(3) We implement a prototype of FedMF (the code will be
published in https://github.com/Di-Chai/FedMF). We test the
prototype on a real movie rating dataset. Results verify the
feasibility of FedMF.

It is worth noting that, similar to FedMF, [Ammad-ud-din
et al., 2019] tried to develop a federated collaborative filter-
ing system. However, [Ammad-ud-din et al., 2019] directly
let users upload their gradient information to the server. As
we will prove in this paper, gradients can still reveal users’
original preference data. Hence, a more secure system like
FedMF is required to rigorously protect users’ privacy.

2 Preliminaries
In this section, we briefly introduce two techniques closely
related to our research, horizontal federated learning and ad-
ditively homomorphic encryption.

2.1 Horizontal Federated Learning
Federated learning is a method that enables a group of data
owners to train a machine learning model on their joint data
and nobody can learn the data of the participants. Federated
learning can be categorized based on the distribution char-
acteristics of the data [Yang et al., 2019]. One category of
federated learning is horizontal federated learning. Horizon-
tal federated learning is introduced in the scenarios when the
data from different contributors share the same feature space

3Similar work that proves gradients leak information also attracts
many other researchers’ interests, such as [Aono et al., 2017] proves
gradients leak information in image deep learning domain. Here
we prove the privacy leakage from gradients in matrix factorization
process.

but vary in samples. In our secure matrix factorization rec-
ommendation system, the rating information distributed on
each user’s device has exactly the same feature space, while
different users are exactly different samples. So our matrix
factorization in federated learning can be categorized as hor-
izontal federated learning. Following the typical assumption
of horizontal federated learning [Yang et al., 2019], we as-
sume all the users are honest and the system is designed to
be secure against an honest-but-curious server4.

2.2 Additively Homomorphic Encryption
Homomorphic encryption (HE) is often used in federated
learning to protect user’s privacy by providing encrypted pa-
rameter exchange. HE is a special kind of encryption scheme
that allows any third party to operate on the encrypted data
without decrypting it in advance. An encryption scheme is
called homomorphic over an operation ’?’ if the following
equation holds:

E(m1) ? E(m2) = E(m1 ? m2), ∀m1,m2 ∈M (1)

where E is an encryption algorithm and M is the set of all
possible messages [Acar et al., 2018].

Addictively homomorphic encryption is homomorphic over
addition. Typically, it consists of the following functions:

• KeyGen→ (pk, sk): key generation process, where pk
is the public key and sk is the secret key.
• Enc(m, pk) → c: encryption process, where m is the

message to be encrypted and c is the ciphertext.
• Dec(c, sk)→ m: decryption process
• Add(c1, c2)→ ca(i.e. Enc(c1 + c2)): add operation on

ciphertext, ca is the ciphertext of plaintexts’ addition.
• DecAdd(ca, sk) → ma: decrypt ca, getting the addi-

tion of plaintexts.

3 User-level Distributed Matrix Factorization
We firstly introduce the matrix factorization optimization
method used in our paper, stochastic gradient descent [Koren
et al., 2009]. Based on it, we design a user-level distributed
matrix factorization framework.

3.1 Stochastic Gradient Descent
Suppose we have n users, m items and each user rated a
subset of m items. For [n] := {1, 2..., n} as the set of
users and [m] := {1, 2, ...,m} as the set of items, we de-
noteM ∈ [n] × [m] as user-item rating pairs which a rating
has been generated, M = |M| as the total number of ratings
and ri,j represents the rating generated by user i for item j.

Given the rating information rij : (i, j) ∈M, the recom-
mendation systems are expected to predict the rating values
of all the items for all the users. Matrix factorization formu-
lates this problem as fitting a bi-linear model on the existing
ratings. In particular, user profile matrix U ∈ Rn×d and item

4An honest-but-curious server means that the server is a legiti-
mate participant in the system who will not deviate from the defined
protocol but will attempt to learn all possible information from le-
gitimately received messages [Paverd et al., 2014].

Algorithm 1 User-level Distributed Matrix Factorization
Init: Server initializes item profile matrix V
Init: User initializes user profile matrix U
Output: Converged U and V

Server keeps latest item-profile for all users’ download
User local update:

Download V from server, peform local updates:
uti = ut−1i − γ 5ui F (U

t−1, V t−1)
Gradienti = γ 5vi F (U t−1, V t−1)
Send Gradienti to server

Server update:
Receive Gradienti from user-i
Perform update : vti = vt−1i −Gradienti

profile matrix V ∈ Rm×d are computed, the resulting profile
matrices are used to predict user i’s rating on item j, which is
〈ui, vj〉. The computing process of U and V can be done by
solving the following regularized least squares minimization:

min
U,V

1

M
(ri,j − 〈ui, vj〉)2 + λ||U ||22 + µ||V ||22 (2)

where λ and µ are small positive values to rescale the penal-
izer. Stochastic gradient descent iteratively updates U and V
with the following equations [Koren et al., 2009]:

uti = ut−1i − γ 5ui F (U
t−1, V t−1) (3)

vti = vt−1i − γ 5vi F (U t−1, V t−1) (4)

where

5uiF (U, V) = −2
∑
j:(i,j)

vj(rij − 〈ui, vj〉) + 2λui (5)

5vjF (U, V) = −2
∑
i:(i,j)

ui(rij − 〈ui, vj〉) + 2λvj (6)

The number of iterations relies on the stopping criteria. A
typical criteria is to set a small threshold ε, such that the train-
ing stops when the gradient5ui

F and5vjF (or one of them)
are smaller than ε.

3.2 Distributed Matrix Factorization
In the distributed matrix factorization scenario, users hold
their rating information locally and the model is trained on
their joint data. To achieve this goal, we leverage a distributed
matrix factorization method, which decomposes the iterative
updating process into two parts that are performed on the user
side and the server side, respectively. In particular, equa-
tion (3) is executed on user i’s device, namely user update,
and equation (4) is performed on the server, called server up-
date. This decomposition prevents the server from directly
knowing users’ raw preference data or learned profiles.

Algorithm 1 shows our user-level distributed matrix fac-
torization method. The server keeps providing the latest
item profile matrix V for all the users to download. Having
the latest downloaded V and his/her own rating information,
each user i performs local updates and computes Gradienti,
which will be sent back to the server to update item profiles.

4 Gradients Leak Information
Algorithm 1 shows a framework that allows the server to
build a matrix factorization recommendation system on a dis-
tributed dataset, i.e. users keep rating information locally. In
this framework, users iteratively send Gradient information
to the server in plain text. Next, we are going to prove that
such a distributed matrix factorization system cannot protect
users’ rating information against the server, i.e. server can
deduce users’ rating data using the Gradient.

For user-vector ui, suppose the user rated item-set is Mi.
We will have the following equation at time t

uti(rij − 〈uti, vtj〉) = Gtj , j ∈Mi (7)

where G is the gradient to be uploaded from the user i to the
server for updating item-profiles. Similarly, at time t+ 1,

ut+1
i (rij − 〈ut+1

i , vt+1
j 〉) = Gt+1

j , j ∈Mi (8)

From equation (3) and (5), the correlation between Ut and
Ut+1 is :

(1−2λγ)uti−ut+1
i = −2γ

∑
j∈Mi

vtj ∗(rij− < uti, v
t
j >) (9)

Take a close look at the element-wise calculation of equa-
tion (7)–(9), where we denote the latent user and item vectors
(ui and vj) are D dimension:

uti1(rij −
∑D
m=1 u

t
imv

t
jm) = Gtj1

...
utik(rij −

∑D
m=1 u

t
imv

t
jm) = Gtjk

...
utiD(rij −

∑D
m=1 u

t
imv

t
jm) = GtjD

(10)

ut+1
i1 (rij −

∑D
m=1 u

t+1
im vt+1

jm) = Gt+1
j1

...
ut+1
ik (rij −

∑D
m=1 u

t+1
im vt+1

jm) = Gt+1
jk

...
ut+1
iD (rij −

∑D
m=1 u

t+1
im vt+1

jm) = Gt+1
jD

(11)

(1− 2λγ)uti1 − u
t+1
i1 = −2γ

∑N
n=1 v

t
n1(rin −

∑D
m=1 u

t
imv

t
nm)

...
(1− 2λγ)utik − u

t+1
ik = −2γ

∑N
n=1 v

t
nk(rin −

∑D
m=1 u

t
imv

t
nm)

...
(1− 2λγ)utiD − u

t+1
iD = −2γ

∑N
n=1 v

t
nD(rin −

∑D
m=1 u

t
imv

t
nm)

(12)
Now we turn to analyze the k-th entry of ui, uik. From

equation (10), we have :

utik
uti(k+1)

=
Gtik

Gti(k+1)

(13)

rij −
D∑
m=1

utimv
t
jm =

Gtjk
utik

(14)

Plug equation (13) into (12), we will have

(1− 2λγ)utik − ut+1
ik = −2γ 1

utik

N∑
n=1

vtnkG
t
nk (15)

Thus we can represent ut+1
ik using utik as:

ut+1
ik = (1− 2λγ)utik + 2γ

1

utik

N∑
n=1

vtnkG
t
nk (16)

From equation (10) and (11) we have:

Gtjk
utik

+

D∑
m=1

utimv
t
jm =

Gt+1
jk

ut+1
ik

+

D∑
m=1

ut+1
im vt+1

jm (17)

Plug equation (16) into (17):

Gtjk
utik

+

D∑
m=1

utimv
t
jm =

Gt+1
jk

(1− 2λγ)utik + 2γ 1
ut
ik

∑N
n=1 v

t
nkG

t
nk

+

D∑
m=1

((1− 2λγ)utim + 2γ
1

utim

N∑
n=1

vtnmG
t
nm)vt+1

jm (18)

which is,

Gtjk
utik
−

Gt+1
jk

(1− 2λγ)utik + 2γ 1
ut
ik

∑N
n=1 v

t
nkG

t
nk

=

D∑
m=1

[((1− 2λγ)utim + 2γ
1

utim

N∑
n=1

vtnmG
t
nm)vt+1

jm − u
t
imv

t
jm]

(19)

Let αk = 2γ
∑N−1
n=0 v

t
nkG

t
nk,

Gtjk
utik
−

Gt+1
jk

utik +
αk

ut
ik

=

D∑
m=1

[((1− 2λγ)utim +
αm
utim

)vt+1
jm − u

t
imv

t
jm]

=

D∑
m=1

[((1− 2λγ)vt+1
jm − v

t
jm)utim +

αmv
t+1
jm

utim
] (20)

From equation (13), we can have:

utim =
Gtjm
Gtjk

utik (21)

Plug equation (21) into (20):

Gtjk
utik
−

Gt+1
jk

utik +
αk

ut
ik

=

D∑
m=1

[((1− 2λγ)vt+1
jm − v

t
jm)

Gtjm
Gtjk

utik +
αmv

t+1
jm

Gt
jm

Gt
jk
utik

]

=
utik
Gtjk

D∑
m=1

[((1− 2λγ)vt+1
jm − v

t
jm)Gtjm]+

Gtjk
utik

D∑
m=1

[
αmv

t+1
jm

Gtjm
] (22)

Denote βj and γj as follow:βj =
∑D
m=1[((1− 2λγ)vt+1

jm − vtjm)Gtjm]

γj =
∑D
m=1[

αmv
t+1
jm

Gt
jm

]
(23)

We will have:

Gtjk
utik
−

Gt+1
jk

utik +
αk

ut
ik

=
utik
Gtjk

βj +
Gtjk
utik

γj (24)

Since we know there must be one real scalar of utik that
satisfies equation (24). We can use some iterative methods to
compute a numeric solution of (24), e.g., Newton’s method.

After getting uti, we can use equation (10) to compute ri,
which can be written as:

rij =
Gtjk
utik

+

D∑
m=1

utimv
t
jm (25)

In summary, knowing the gradients of a user uploaded in
two continuous steps, we can infer this user’s rating informa-
tion. Thus, we propose a secure matrix factorization frame-
work based on homomorphic encryption, which will be elab-
orated in the next section.

5 FedMF: Federated Matrix Factorization
To overcome this information leakage problem, we propose
to encode the gradients such that the server cannot inverse the
encoding process. Then, the encoded data leaks no informa-
tion. Meanwhile, the server should still be able to perform up-
dates using the encoded gradients. One way to achieve such
a goal is by using homomorphic encryption.

Figure 1 shows a framework of our method, called FedMF
(Federated Matrix Factorization). Two types of participants
are involved in this framework, the server and the users. As
previously illustrated in Sec. 2.1, we assume that the server
is honest-but-curious, the users are honest, and the privacy of
the users is protected against the server.

Key Generation: As the typical functions involved in ho-
momorphic encryption (Sec. 2.2), we first generate the public
key and secret key. The key generation process is carried out
on one of the users. The public key is known to all the partic-
ipants including the server. And the secret key is only shared

Figure 1: Overview of FedMF

between users and needs to be protected against the server.
After the keys are generated, different TLS/SSL secure chan-
nels will be established for sending the public key and secret
key to the corresponding participants.

Parameter Initialization: Before starting the matrix fac-
torization process, some parameters need to be initialized.
The item profile matrix is initialized at the server side while
the user profile matrix is initialized by each user locally.

Matrix Factorization: Major steps include,

1. The server encrypts item profile V using public key, get-
ting the ciphertext CV . From now on, the latest CV is
prepared for all users’ download.

2. Each user downloads the latest CV from the server, and
decrypts it using secret key, getting the plaintext of V .
V is used to perform local update and compute the gra-
dient G. Then G is encrypted using public key, getting
ciphertext CV . Then a TLS/SSL secure channel is built,
CV is sent back to the server via this secure channel.

3. After receiving a user’s encrypted gradient, the server
updates the item profile using this ciphertext : Ct+1

V =
CtV −CG. Afterward, the latestCV is prepared for users’
downloading.

4. Step 2 and 3 are iteratively executed until convergence.

Security against Server: As shown in Fig. 1, only cipher-
text is sent to the server in FedMF. So no bit of informa-
tion will be leaked to the server as long as our homomor-
phic encryption system ensures ciphertext indistinguishabil-
ity against chosen plaintext attacks [Goldreich, 2009].

No Accuracy Decline: We also claim that FedMF is accu-
racy equivalent to the user-level distributed matrix factoriza-
tion. This is because the parameter updating process is the
same as the distributed matrix factorization (Sec. 3) if the ho-
momorphic encryption part is removed.

6 Prototype and Evaluation
In this section, we choose Paillier encryption method [Pail-
lier, 1999] to instantiate a prototype of our system and use a
real movie rating dataset to evaluate the prototype.

6.1 Prototype Implementation
We use Paillier encryption [Paillier, 1999] to build a proto-
type of FedMF. Paillier encryption is a probabilistic encryp-
tion schema based on composite residuosity problem [Jager,
2012]. Given publick key and encrypted plaintext, paillier en-
cryption has the following homomorphic property operations:

op1. E(m1)·E(m2) (mode n
2) = E(m1+m2 (mode n))

op2. E(m1) · gm2 (mode n2) = E(m1 +m2 (mode n))
op3. E(m1)

m2 (mode n2) = E(m1m2 (mode n))
Typically, paillier encryption requires the plaintext to be

a positive integer. But in our system, the data are all in the
form of floating point numbers and some of them might be
negative. Thus we need to extend the encryption method to
support our system.

Float. In brief, a base exponent was multiplied to the dec-
imal, the integer part of the multiplication result I and the
base exponent e was treated as the integer representation of
the floating point number, i.e. (I, e). In the encryption pro-
cess, only I is encrypted, the ciphertext will be (CI , e). Then
the ciphertext with the same e can directly conduct operation
op1 to get the encrypted summation of plaintext, ciphertext
with different e needed to recalibrate such that e is the same.
In practice, we use the same base exponent such that no in-
formation will leak from e.

Negative number. A max number parameter is set to han-
dle the negative numbers. The max number can be set to
half of n in pk, which means we assume all of our data is
smaller than max number, such an assumption is easy to sat-
isfy since n is usually set to a very large prime number. Then
we perform mode n on all the plaintext, all the positive num-
ber have no changes and all the negative numbers become
positive numbers greater than max number. In the decryption

#Item #Rating PartText FullText
40 8307 34.39 90.94
50 9807 44.05 113.34
60 11214 46.34 141.52
80 13817 52.91 182.27
160 22282 92.81 374.85
320 34172 140.51 725.72
640 49706 178.24 1479.40
1280 67558 264.10 2919.91
2560 83616 334.79 5786.01

Table 1: Time consumption of each iteration (seconds).

process, if the decrypted plaintext is greater than max num-
ber, we minus n to get the correct negative plaintext.

FullText or PartText. Usually the rating or feedback
comprises a sparse matrix [Koren et al., 2009] which means
the amount of feedback from a user could be very limited.
Therefore, two different settings are implemented in our sys-
tem. Both of them follow the overall steps of FedMF but are
slightly different at the user uploading process. In one set-
ting called FullText, users upload gradients for all the items;
the gradient is set to 0 if a user does not rate an item. In the
other setting called PartText, users only upload the gradients
of the rated items. They both have advantages and disad-
vantages, PartText leaks information about which items the
user has rated but has higher computation efficiency, FullText
leaks no information but needs more computation time.

We utilize an open source python package, python-paillier5

to accomplish the encryption part in our prototype system.

6.2 Evaluation
Dataset: To test the feasibility of our system, we use a
real movie rating dataset [Harper and Konstan, 2016] from
MovieLens which contains 100K rating information made by
610 users on 9724 movies. This dataset is also used in other
homomorphic-encrypted MF works such as [Nikolaenko et
al., 2013] and [Kim et al., 2016].

Parameters: In Paillier encryption, we set the length of
public key to 1024. The bandwidth of communication is set
to 1 Gb/s. In the matrix factorization process, we set the di-
mension of user and item profile to 100.

Environment: All the test experiments are performed on a
server with 5.0GHz 6-core CPU and 32GB RAM, where the
operating system is Windows and the programming language
is Python. We used a module called gmpy 6 to accelerate the
homomorphic encryption part in Python such that it is as fast
as C++ implementation.

Performance: Since neither distributed computing or ho-
momorphic encryption mechanisms will affect the computa-
tion values, FedMF will output the same user and item pro-
files as the original MF algorithm. Hence, the major objective
of the experiments is testing the computation time of FedMF.

5https://github.com/n1analytics/python-paillier
6gmpy is a c-coded Python extension module that supports

multiple-precision arithmetic, https://github.com/aleaxit/gmpy

Figure 2: User-Server time consumption ratio of FullText

Figure 3: User-Server time consumption ratio of PartText

Fixing the number of users to 610, Table 1 shows the time
consumption of each iteration of PartText and FullText (one
iteration means all of the 610 users’ uploaded gradients are
used to update the item profiles once). For both PartText and
FullText, the time consumption is quite good when there are
not too many items, and the time efficiency decreases when
more items are given. Roughly, the time consumed for each
iteration linearly increases with the number of items. Com-
pared with Fulltext, PartText is more efficient but it leaks
some information. Particularly, PartText is nearly 20 times
faster than the Fulltext solution.

Fig. 2 and 3 show the ratio of the user and server updating
time when the number of items changes. The communica-
tion time is dismissed from the figures because it is too small
compared with the user and server updating time. For exam-
ple, ∼80MB of gradient data need to be sent to server when
the item number is 2560 and it will cost only 1.25 seconds.
From these figures, we can find out that ∼95% of time in
one iteration is spent on server updates, which means if we
increase the computing power of the server or improve the
homomorphic encryption method such that the complexity of
computation on ciphertext is lowered, the time efficiency of
the whole system will improve significantly. This would be
our future work.

To verify that our FedMF system has no accuracy decline,
we performed experiments on a small-scale dataset 7 which
contains 40 movies, 7 users and 130 ratings. For each user,
we select three rating records for testing and the other rat-

7Such a small dataset can help to reduce model convergence time
consumption.

https://github.com/n1analytics/python-paillier
https://github.com/aleaxit/gmpy

Figure 4: Comparison of training loss

RegularMF FedMF-PartText FedMF-FullText

RMSE 1.3969165 1.3965372 1.3965372

Table 2: Comparison of converged results.

ings compose the training dataset. Root Mean Square Er-
ror (RMSE) is used as metric to evaluate the model’s perfor-
mance. As illustrated in figure 4 and table 2, the evaluation
results of regular MF and FedMF are very close, having dis-
parity smaller than 0.3%. Such a small difference exists be-
cause in FedMF, to simplify implementation, we make the
server update item-vector only when all the users have their
gradient uploaded, and in Regular MF, which has a different
setting, the server will update item-vector immediately after
receiving gradient from an arbitrary user. If all the settings
have no difference, the evaluation results will be exactly the
same.

Real world implementation: In real-world implementa-
tion, different from experiment settings, users’ devices may
not online simultaneously. Such circumstance will not affect
FedMF system since the server can update item vector imme-
diately after receiving gradient from one user instead of wait-
ing all users’ gradients received. The training process can be
carried out when the users’ devices are charging and remains
extra computing resources.

7 Conclusion and Future Work
In this paper, we propose a novel secure matrix factoriza-
tion framework in federated machine learning, called FedMF.
More specifically, we first prove that a distributed matrix fac-
torization system where users send gradients to the server in
forms of plaintext will leak users’ rating information. Then,
we design a homomorphic encryption based secure matrix
factorization framework. We have proved that our system is
secure against an honest-but-curious server, and the accuracy
is the same as the matrix factorization on users’ raw data.

Experiments on real-world data show that FedMF’s time
efficiency is acceptable when the number of items is small.
Also note that our system’s time consumption linearly in-
creases with the number of items. To make FedMF more
practical in reality, we still face several challenges:

More efficient homomorphic encryption. As we have dis-
cussed before, about 95% of our system’s time consumption
is spent on server updates, where the computation is all per-

formed on the ciphertext. If we can improve the homomor-
phic encryption’s efficiency when conducting operations on
ciphertext, our system’s performance will increase.

Between FullText and PartText. Our experiments have
shown that PartText is much more efficient than FullText, but
PartText reveals the set of items rated by a user. This infor-
mation, without the exact rating scores, may still leak users’
sensitive information [Yang et al., 2016]. Perhaps we can
ask users to upload more gradients than only the rated items,
but not all the items, so as to increase efficiency compared to
FullText, while not leaking the exactly rated item set.

More secure definitions. Currently, we use a typical hor-
izontal federated learning secure definition, which assumes
honest participants and an honest-but-curious server. Next,
we can explore more challenging secure definitions, such as
how to build a secure system where the server is honest-but-
curious, and some participants are malicious and the mali-
cious participants may collude with the server.

References
[Acar et al., 2018] Abbas Acar, Hidayet Aksu, A Selcuk

Uluagac, and Mauro Conti. A survey on homomorphic
encryption schemes: Theory and implementation. ACM
Computing Surveys (CSUR), 51(4):79, 2018.

[Ammad-ud-din et al., 2019] Muhammad Ammad-ud-din,
Elena Ivannikova, Suleiman A. Khan, Were Oyomno,
Qiang Fu, Kuan Eeik Tan, and Adrian Flanagan. Federated
collaborative filtering for privacy-preserving personalized
recommendation system. CoRR, abs/1901.09888, 2019.

[Aono et al., 2017] Yoshinori Aono, Takuya Hayashi, Li-
hua Wang, Shiho Moriai, et al. Privacy-preserving
deep learning via additively homomorphic encryption.
IEEE Transactions on Information Forensics and Security,
13(5):1333–1345, 2017.

[Berlioz et al., 2015] Arnaud Berlioz, Arik Friedman, Mo-
hamed Ali Kaafar, Roksana Boreli, and Shlomo
Berkovsky. Applying differential privacy to matrix fac-
torization. In Proceedings of the 9th ACM Conference on
Recommender Systems, pages 107–114. ACM, 2015.

[Dwork, 2011] Cynthia Dwork. Differential privacy. Ency-
clopedia of Cryptography and Security, pages 338–340,
2011.

[Goldreich, 2009] Oded Goldreich. Foundations of cryptog-
raphy: volume 2, basic applications. Cambridge univer-
sity press, 2009.

[Harper and Konstan, 2016] F Maxwell Harper and
Joseph A Konstan. The movielens datasets: History
and context. Acm transactions on interactive intelligent
systems (tiis), 5(4):19, 2016.

[Jager, 2012] Tibor Jager. The generic composite residuosity
problem. In Black-Box Models of Computation in Cryptol-
ogy, pages 49–56. Springer, 2012.

[Kim et al., 2016] Sungwook Kim, Jinsu Kim, Dongyoung
Koo, Yuna Kim, Hyunsoo Yoon, and Junbum Shin. Effi-
cient privacy-preserving matrix factorization via fully ho-
momorphic encryption. In Proceedings of the 11th ACM

on Asia Conference on Computer and Communications
Security, pages 617–628. ACM, 2016.

[Konečnỳ et al., 2016] Jakub Konečnỳ, H Brendan McMa-
han, Felix X Yu, Peter Richtárik, Ananda Theertha Suresh,
and Dave Bacon. Federated learning: Strategies for
improving communication efficiency. arXiv preprint
arXiv:1610.05492, 2016.

[Koren et al., 2009] Yehuda Koren, Robert Bell, and Chris
Volinsky. Matrix factorization techniques for recom-
mender systems. Computer, (8):30–37, 2009.

[Kosinski et al., 2013] Michal Kosinski, David Stillwell, and
Thore Graepel. Private traits and attributes are predictable
from digital records of human behavior. Proceedings of the
National Academy of Sciences, 110(15):5802–5805, 2013.

[Nikolaenko et al., 2013] Valeria Nikolaenko, Stratis Ioanni-
dis, Udi Weinsberg, Marc Joye, Nina Taft, and Dan Boneh.
Privacy-preserving matrix factorization. In Proceedings of
the 2013 ACM SIGSAC conference on Computer & com-
munications security, pages 801–812. ACM, 2013.

[Paillier, 1999] Pascal Paillier. Public-key cryptosystems
based on composite degree residuosity classes. In Interna-
tional Conference on the Theory and Applications of Cryp-
tographic Techniques, pages 223–238. Springer, 1999.

[Paverd et al., 2014] AJ Paverd, Andrew Martin, and Ian
Brown. Modelling and automatically analysing privacy
properties for honest-but-curious adversaries. University
of Oxford, Tech. Rep, 2014.

[Wang et al., 2016] Leye Wang, Daqing Zhang, Yasha
Wang, Chao Chen, Xiao Han, and Abdallah M’hamed.
Sparse mobile crowdsensing: challenges and opportuni-
ties. IEEE Communications Magazine, 54(7):161–167,
2016.

[Yang et al., 2016] Dingqi Yang, Daqing Zhang, Bingqing
Qu, and Philippe Cudré-Mauroux. Privcheck: privacy-
preserving check-in data publishing for personalized lo-
cation based services. In Proceedings of the 2016 ACM
International Joint Conference on Pervasive and Ubiqui-
tous Computing, pages 545–556. ACM, 2016.

[Yang et al., 2019] Qiang Yang, Yang Liu, Tianjian Chen,
and Yongxin Tong. Federated machine learning: Concept
and applications. ACM Transactions on Intelligent Systems
and Technology (TIST), 10(2):12, 2019.

	Introduction
	Preliminaries
	Horizontal Federated Learning
	Additively Homomorphic Encryption

	User-level Distributed Matrix Factorization
	Stochastic Gradient Descent
	Distributed Matrix Factorization

	Gradients Leak Information
	FedMF: Federated Matrix Factorization
	Prototype and Evaluation
	Prototype Implementation
	Evaluation

	Conclusion and Future Work

