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Abstract—To protect user privacy and meet law regulations, federated
(machine) learning is obtaining vast interests in recent years. The key
principle of federated learning is training a machine learning model
without needing to know each user’s personal raw private data. In
this paper, we propose a secure matrix factorization framework under
the federated learning setting, called FedMF. First, we design a user-
level distributed matrix factorization framework where the model can be
learned when each user only uploads the gradient information (instead
of the raw preference data) to the server. While gradient information
seems secure, we prove that it could still leak users’ raw data. To this
end, we enhance the distributed matrix factorization framework with
homomorphic encryption. We implement the prototype of FedMF and
test it with a real movie rating dataset. Results verify the feasibility of
FedMF. We also discuss the challenges for applying FedMF in practice
for future research.

Index Terms—IEEE Intelligent system, Security and Privacy Protection,
Distributed system

1 INTRODUCTION

With the prevalence of government regulations and laws on
privacy protection in the big data era (e.g., General Data
Protection Regulation1), privacy-preserving machine learn-
ing has obtained rapidly growing interests in both academia
and industry. Among various techniques to achieve privacy-
preserving machine learning, federated (machine) learning
(FL) recently receives high attention. The original idea of
FL was proposed by Google 2, which targets at learning
a centered model based on the personal information dis-
tributed at each user’s mobile phone. More importantly,
during model training, no user’s raw personal information
is transferred to the central server, thus ensuring privacy
protection. Also, the learned privacy-preserving model can
be proved to hold almost similar predictive power com-
pared to the traditional model learned on users’ raw data.
This highlights the practicality of FL as little predictive ac-
curacy is sacrificed, especially compared to other accuracy-
lossy privacy-preserving mechanisms such as differential
privacy.

Starting from the original Google paper, many re-
searchers have been devoted to this promising and critical
area. Recently, a nice survey paper on FL has been published
[10]. While many research works have been done on FL,
a popular machine learning technique, matrix factorization
(MF) [5], is still under-investigated in FL. Since MF is one
of the prominent techniques widely employed in various

1. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32016R0679R(02)
2. https://ai.googleblog.com/2017/04/federated-learning-collaborative.html

applications such as item recommendation [5] and envi-
ronment monitoring [8], we highly believe that studying
MF under FL is urgently required. This work is one of the
pioneering research efforts toward this direction.

Taking recommendation systems as an example, two
types of users’ private information are leaked in traditional
MF [5]: (i) users’ raw preference data, and (ii) users’ learned
latent feature vectors. As revealed by previous studies, either
raw preference data or latent features can leak users’ sensi-
tive attributes, e.g., age, relationship status, political views,
and sex orientations [9]. This highlights the importance
of protecting users’ private information during MF. Prior
studies have studied privacy-preserving MF in two main
types:

(1) Obfuscation-based methods obfuscate users’ prefer-
ence raw data before releasing it to the central server so as to
ensure a certain level of privacy protection (e.g., differential
privacy) [3]. The pitfall is that obfuscation inevitably leads
to the loss of predictive power of the learned latent feature
vectors. Hence, these methods usually need to make a trade-
off between privacy protection and model performance.

(2) Encryption-based methods use advanced encryp-
tion schemes such as homomorphic encryption for imple-
menting privacy-preserving MF [4]. While they usually do
not need to sacrifice predictive power for privacy protec-
tion, they commonly require a third-party crypto-service
provider. This makes the system implementation compli-
cated as such a provider is not easy to find in practice.3

Moreover, if the crypto-service provider colludes with the
recommendation server, then no user privacy protection can
be preserved [4], [6].

This research proposes a novel FL-based MF framework,
called FedMF (Federated Matrix Factorization). FedMF em-
ploys distributed machine learning and homomorphic en-
cryption schemes. In brief, FedMF lets each user compute
the gradients of his/her own rating information locally
and then upload the gradients (instead of the raw data)
to the server for training. To further enhance security,
each user can encrypt the gradients with homomorphic
encryption. With FedMF, two shortcomings of the tradi-
tional obfuscation- or encryption-based methods can be
addressed: (i) no predictive accuracy is lost as we do not
obfuscate data; (ii) no third-party crypto-service provider
is required as each user’s device can handle the secure
gradient computing task.

3. Some studies suggest that governments can perform this role, but
this is still not the case in reality now [4].
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In summary, we have the following contributions:
(1) To the best of our knowledge, we design the first

FL-based secure MF framework, called FedMF, which can
overcome the shortcomings of traditional obfuscation- or
encryption-based mechanisms as aforementioned.

(2) To implement FedMF, first, we design a user-level dis-
tributed matrix factorization framework where the model
can be learned when each user only uploads the gradient
information (instead of the raw preference data) to the
server. Though gradient information seems secure, we prove
that it could still leak users’ raw data to some extent4. Then,
we enhance the distributed matrix factorization framework
with homomorphic encryption to increase security.

(3) We implement a prototype of FedMF (the code will be
published in https://github.com/Di-Chai/FedMF). We test
the prototype on a real movie rating dataset. Results verify
the feasibility of FedMF.

It is worth noting that, similar to FedMF, [1] tried to
develop a federated collaborative filtering system. However,
[1] directly let users upload their gradient information to
the server. As we will prove in this paper, gradients can still
reveal users’ original preference data. Hence, a more secure
system like FedMF is required to rigorously protect users’
privacy.

2 PRELIMINARIES

In this section, we briefly introduce two techniques closely
related to our research, horizontal federated learning and addi-
tively homomorphic encryption.

2.1 Horizontal Federated Learning
Federated learning is a method that enables a group of data
owners to train a machine learning model on their joint
data and nobody can learn the data of the participants.
Federated learning can be categorized based on the dis-
tribution characteristics of the data [10]. One category of
federated learning is horizontal federated learning. Horizontal
federated learning is introduced in the scenarios when the
data from different contributors share the same feature
space but vary in samples. In our secure matrix factorization
recommendation system, the rating information distributed
on each user’s device has exactly the same feature space,
while different users are exactly different samples. So our
matrix factorization in federated learning can be categorized
as horizontal federated learning. Following the typical as-
sumption of horizontal federated learning [10], we assume
all the users are honest and the system is designed to be
secure against an honest-but-curious server5.

2.2 Additively Homomorphic Encryption
Homomorphic encryption (HE) is often used in federated
learning to protect user’s privacy by providing encrypted

4. Similar work that proves gradients leak information also attracts
many other researchers’ interests, such as [2] proves gradients leak
information in image deep learning domain. Here we prove the privacy
leakage from gradients in matrix factorization process.

5. An honest-but-curious server means that the server is a legitimate
participant in the system who will not deviate from the defined protocol
but will attempt to learn all possible information from legitimately
received messages

parameter exchange. HE is a special kind of encryption
scheme that allows any third party to operate on the en-
crypted data without decrypting it in advance. An encryp-
tion scheme is called homomorphic over an operation ’?’ if
the following equation holds:

E(m1) ? E(m2) = E(m1 ? m2), ∀m1,m2 ∈M (1)

where E is an encryption algorithm and M is the set of all
possible messages.

Addictively homomorphic encryption is homomorphic over
addition. Typically, it consists of the following functions:

• KeyGen → (pk, sk): key generation process, where
pk is the public key and sk is the secret key.

• Enc(m, pk)→ c: encryption process, where m is the
message to be encrypted and c is the ciphertext.

• Dec(c, sk)→ m: decryption process
• Add(c1, c2) → ca(i.e. Enc(c1 + c2)): add operation

on ciphertext, ca is the ciphertext of plaintexts’ addi-
tion.

• DecAdd(ca, sk) → ma: decrypt ca, getting the addi-
tion of plaintexts.

3 USER-LEVEL DISTRIBUTED MATRIX FACTOR-
IZATION

We firstly introduce the matrix factorization optimization
method used in our paper, stochastic gradient descent [5].
Based on it, we design a user-level distributed matrix fac-
torization framework.

3.1 Stochastic Gradient Descent
Suppose we have n users, m items and each user rated a
subset of m items. For [n] := {1, 2..., n} as the set of users
and [m] := {1, 2, ...,m} as the set of items, we denoteM ∈
[n] × [m] as user-item rating pairs which a rating has been
generated, M = |M| as the total number of ratings and ri,j
represents the rating generated by user i for item j.

Given the rating information rij : (i, j) ∈M, the rec-
ommendation systems are expected to predict the rating
values of all the items for all the users. Matrix factorization
formulates this problem as fitting a bi-linear model on the
existing ratings. In particular, user profile matrix U ∈ Rn×d

and item profile matrix V ∈ Rm×d are computed, where d
is the dimension of the profile vector, the resulting profile
matrices are used to predict user i’s rating on item j,
which is 〈ui, vj〉. The computing process of U and V can
be done by solving the following regularized least squares
minimization:

min
U,V

1

M
(ri,j − 〈ui, vj〉)2 + λ||U ||22 + µ||V ||22 (2)

where λ and µ are small positive values to rescale the
penalizer. Stochastic gradient descent iteratively updates U
and V with the following equations [5]:

uti = ut−1i − γ 5ui F (U
t−1, V t−1) (3)

vti = vt−1i − γ 5vi F (U t−1, V t−1) (4)

where

5uiF (U, V ) = −2
∑
j:(i,j)

vj(rij − 〈ui, vj〉) + 2λui (5)
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Algorithm 1 User-level Distributed Matrix Factorization
Init: Server initializes item profile matrix V
Init: User initializes user profile matrix U
Output: Converged U and V

Server keeps latest item-profile for all users’ download
User local update:

Download V from server, peform local updates:
uti = ut−1i − γ 5ui F (U

t−1, V t−1)
Gradienti = γ 5vi F (U t−1, V t−1)
Send Gradienti to server

Server update:
Receive Gradienti from user-i
Perform update : vti = vt−1i −Gradienti

5vjF (U, V ) = −2
∑
i:(i,j)

ui(rij − 〈ui, vj〉) + 2λvj (6)

The number of iterations relies on the stopping criteria. A
typical criteria is to set a small threshold ε, such that the
training stops when the gradient 5uiF and 5vjF (or one
of them) are smaller than ε.

3.2 Distributed Matrix Factorization

In the distributed matrix factorization scenario, users hold
their rating information locally and the model is trained
on their joint data. To achieve this goal, we leverage a
distributed matrix factorization method, which decomposes
the iterative updating process into two parts that are per-
formed on the user side and the server side, respectively.
In particular, equation (3) is executed on user i’s device,
namely user update, and equation (4) is performed on the
server, called server update. This decomposition prevents the
server from directly knowing users’ raw preference data or
learned profiles.

Algorithm 1 shows our user-level distributed matrix
factorization method. The server keeps providing the latest
item profile matrix V for all the users to download. Having
the latest downloaded V and his/her own rating infor-
mation, each user i performs local updates and computes
Gradienti, which will be sent back to the server to update
item profiles.

4 GRADIENTS LEAK INFORMATION

With the enacting of many privacy-preserving regulariza-
tions (e.g., GDPR), dealing with personal data is sensitive
and critical. Because GDPR has strict restrictions on col-
lecting and using personal data, e.g., companies cannot
give users’ data to other companies without users’ explicit
permission. Currently, few companies can meet the require-
ments, and the violation may face a hefty fine. According
to the definition in GDPR, users’ rating data belongs to
personal data 6 because we can link the ratings to natu-
ral person even without identity information (e.g., using
linkage attack), thus it needs to be carefully treated. In

6. Personal data means any information relating to an identified or
identifiable natural person; an identifiable natural person is one who
can be identified, directly or indirectly (more information can be found
at https://gdpr.eu/eu-gdpr-personal-data).

FL, users keep the rating data locally and only upload
certain gradients. Thus, GDPR can be satisfied as long as
the uploaded information leaks no private data. Algorithm
1 shows a framework that allows the server to build a ma-
trix factorization recommendation system on a distributed
dataset, i.e., users keep rating information locally. In this
framework, users iteratively send Gradient information to
the server in plain text. Next, we are going to prove that such
a distributed matrix factorization system cannot protect
users’ rating information against the server, i.e., the server
can deduce users’ rating data using the Gradient. Thus, a
new solution (i.e., homomorphic encryption) is required to
avoid private data leakage from gradients and guarantee
that the federated matrix factorization can satisfy the GDPR
regulation.

For user-vector ui, suppose the user rated item-set is Mi.
We will have the following equation at time t

uti(rij − 〈uti, vtj〉) = Gtj , j ∈Mi (7)

where G is the gradient to be uploaded from the user
i to the server for updating item-profiles. Similarly, at time
t+ 1,

ut+1
i (rij − 〈ut+1

i , vt+1
j 〉) = Gt+1

j , j ∈Mi (8)

From equation (3) and (5), the correlation between Ut
and Ut+1 is :

(1− 2λγ)uti − ut+1
i = −2γ

∑
j∈Mi

vtj ∗ (rij− < uti, v
t
j >) (9)

Take a close look at the element-wise calculation of
equation (7)–(9), where we denote the latent user and item
vectors (ui and vj) are D dimension:

uti1(rij −
∑D
m=1 u

t
imv

t
jm) = Gtj1

...
utik(rij −

∑D
m=1 u

t
imv

t
jm) = Gtjk

...
utiD(rij −

∑D
m=1 u

t
imv

t
jm) = GtjD

(10)



ut+1
i1 (rij −

∑D
m=1 u

t+1
im vt+1

jm ) = Gt+1
j1

...
ut+1
ik (rij −

∑D
m=1 u

t+1
im vt+1

jm ) = Gt+1
jk

...
ut+1
iD (rij −

∑D
m=1 u

t+1
im vt+1

jm ) = Gt+1
jD

(11)



(1− 2λγ)uti1 − u
t+1
i1 = −2γ

∑N
n=1 v

t
n1(rin −

∑D
m=1 u

t
imv

t
nm)

...
(1− 2λγ)utik − u

t+1
ik = −2γ

∑N
n=1 v

t
nk(rin −

∑D
m=1 u

t
imv

t
nm)

...
(1− 2λγ)utiD − u

t+1
iD = −2γ

∑N
n=1 v

t
nD(rin −

∑D
m=1 u

t
imv

t
nm)

(12)
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Fig. 1: Overview of FedMF

Now we turn to analyze the k-th entry of ui, uik. From
equation (10), we have :

utik
uti(k+1)

=
Gtik

Gti(k+1)

(13)

rij −
D∑
m=1

utimv
t
jm =

Gtjk
utik

(14)

Plug equation (13) into (12), we will have

(1− 2λγ)utik − ut+1
ik = −2γ 1

utik

N∑
n=1

vtnkG
t
nk (15)

Thus we can represent ut+1
ik using utik as:

ut+1
ik = (1− 2λγ)utik + 2γ

1

utik

N∑
n=1

vtnkG
t
nk (16)

From equation (10) and (11) we have:

Gtjk
utik

+
D∑
m=1

utimv
t
jm =

Gt+1
jk

ut+1
ik

+
D∑
m=1

ut+1
im vt+1

jm (17)

Plug equation (16) into (17):

Gtjk
utik
−

Gt+1
jk

(1− 2λγ)utik + 2γ 1
ut
ik

∑N
n=1 v

t
nkG

t
nk

=

D∑
m=1

[((1− 2λγ)utim + 2γ
1

utim

N∑
n=1

vtnmG
t
nm)vt+1

jm − u
t
imv

t
jm]

(18)

Let αk = 2γ
∑N−1
n=0 v

t
nkG

t
nk,

Gtjk
utik
−

Gt+1
jk

utik +
αk

ut
ik

=
D∑
m=1

[((1− 2λγ)vt+1
jm − v

t
jm)utim +

αmv
t+1
jm

utim
] (19)

From equation (13), we can have:

utim =
Gtjm
Gtjk

utik (20)

Plug equation (20) into (19):

Gtjk
utik
−

Gt+1
jk

utik +
αk

ut
ik

=
utik
Gtjk

D∑
m=1

[((1− 2λγ)vt+1
jm − v

t
jm)Gtjm]+

Gtjk
utik

D∑
m=1

[
αmv

t+1
jm

Gtjm
] (21)

Denote βj and γj as follow:βj =
∑D
m=1[((1− 2λγ)vt+1

jm − vtjm)Gtjm]

γj =
∑D
m=1[

αmv
t+1
jm

Gt
jm

]
(22)

We will have:

Gtjk
utik
−

Gt+1
jk

utik +
αk

ut
ik

=
utik
Gtjk

βj +
Gtjk
utik

γj (23)

Since we know there must be one real scalar of utik that
satisfies equation (23). We can use some iterative methods to
compute a numeric solution of (23), e.g., Newton’s method.

After getting uti, we can use equation (10) to compute ri,
which can be written as:

rij =
Gtjk
utik

+
D∑
m=1

utimv
t
jm (24)

In summary, knowing the gradients of a user uploaded
in two continuous steps, we can infer this user’s rating
information. Thus, we propose a secure matrix factorization
framework based on homomorphic encryption, which will
be elaborated in the next section.
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5 FEDMF: FEDERATED MATRIX FACTORIZATION

To overcome this information leakage problem, we propose
to encode the gradients such that the server cannot inverse
the encoding process. Then, the encoded data leaks no
information. Meanwhile, the server should still be able to
perform updates using the encoded gradients. One way to
achieve such a goal is by using homomorphic encryption.

Figure 1 shows a framework of our method, called
FedMF (Federated Matrix Factorization). Two types of par-
ticipants are involved in this framework, the server and the
users. As previously illustrated in Sec. 2.1, we assume that
the server is honest-but-curious, the users are honest, and
the privacy of the users is protected against the server.

Key Generation: As the typical functions involved in
homomorphic encryption (Sec. 2.2), we first generate the
public key and secret key. The key generation process is
carried out on one of the users. The public key is known to
all the participants including the server. And the secret key is
only shared between users and needs to be protected against
the server. After the keys are generated, different TLS/SSL
secure channels will be established for sending the public key
and secret key to the corresponding participants.

Parameter Initialization: Before starting the matrix fac-
torization process, some parameters need to be initialized.
The item profile matrix is initialized at the server side while
the user profile matrix is initialized by each user locally.

Matrix Factorization: Major steps include,

1) The server encrypts item profile V using public key,
getting the ciphertext CV . From now on, the latest
CV is prepared for all users’ download.

2) Each user downloads the latest CV from the server,
and decrypts it using secret key, getting the plain-
text of V . V is used to perform local update and
compute the gradient G. Then G is encrypted using
public key, getting ciphertext CV . Then a TLS/SSL
secure channel is built, CV is sent back to the server
via this secure channel.

3) After receiving a user’s encrypted gradient, the
server updates the item profile using this ciphertext
: Ct+1

V = CtV − CG. Afterward, the latest CV is
prepared for users’ downloading.

4) Step 2 and 3 are iteratively executed until conver-
gence.

Security against Server: As shown in Fig. 1, only ciphertext
is sent to the server in FedMF. So no bit of information
will be leaked to the server as long as our homomorphic
encryption system ensures ciphertext indistinguishability
against chosen plaintext attacks [2].

No Accuracy Decline: We also claim that FedMF is accu-
racy equivalent to the user-level distributed matrix factor-
ization. This is because the parameter updating process is
the same as the distributed matrix factorization (Sec. 3) if
the homomorphic encryption part is removed.

6 PROTOTYPE AND EVALUATION

In this section, we choose Paillier encryption method [7] to
instantiate a prototype of our system and use a real movie
rating dataset to evaluate the prototype.

6.1 Prototype Implementation
We use Paillier encryption [7] to build a prototype of FedMF.
Paillier encryption is a probabilistic encryption schema
based on composite residuosity problem. Given publick key
and encrypted plaintext, paillier encryption has the follow-
ing homomorphic property operations:

op1. E(m1) ·E(m2) (mode n
2) = E(m1 +m2 (mode n))

op2. E(m1) · gm2 (mode n2) = E(m1 +m2 (mode n))
op3. E(m1)

m2 (mode n2) = E(m1m2 (mode n))
Typically, paillier encryption requires the plaintext to be

a positive integer. But in our system, the data are all in the
form of floating point numbers and some of them might be
negative. Thus we need to extend the encryption method to
support our system.

Float. In brief, a base exponent was multiplied to the
decimal, the integer part of the multiplication result I and
the base exponent ewas treated as the integer representation
of the floating point number, i.e. (I, e). In the encryption
process, only I is encrypted, the ciphertext will be (CI , e).
Then the ciphertext with the same e can directly conduct
operation op1 to get the encrypted summation of plaintext,
ciphertext with different e needed to recalibrate such that e
is the same. In practice, we use the same base exponent such
that no information will leak from e.

Negative number. A max number parameter is set to
handle the negative numbers. The max number can be set
to half of n in pk, which means we assume all of our data
is smaller than max number, such an assumption is easy to
satisfy since n is usually set to a very large prime number.
Then we perform mode n on all the plaintext, all the positive
number have no changes and all the negative numbers
become positive numbers greater than max number. In the
decryption process, if the decrypted plaintext is greater than
max number, we minus n to get the correct negative plaintext.

FullText or PartText. Usually the rating or feedback
comprises a sparse matrix [5] which means the amount of
feedback from a user could be very limited. Therefore, two
different settings are implemented in our system. Both of
them follow the overall steps of FedMF but are slightly
different at the user uploading process. In one setting called
FullText, users upload gradients for all the items; the gra-
dient is set to 0 if a user does not rate an item. In the other
setting called PartText, users only upload the gradients of the
rated items. They both have advantages and disadvantages,
PartText leaks information about which items the user has
rated but has higher computation efficiency, FullText leaks
no information but needs more computation time.

We utilize an open source python package, python-
paillier7 to accomplish the encryption part in our prototype
system.

6.2 Evaluation
Dataset: We use two datasets in our experiments. The first
one is MovieLens small dataset which is frequently used in
other homomorphic-encrypted MF works such as [6] and
[4], and it contains 100K ratings made by 610 users on 9724
movies. We also test our method on a large dataset: the
MovieLens full dataset which contains 27M ratings made
by 280K users on 58K items.

7. https://github.com/n1analytics/python-paillier
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(a) FullText (b) PartText

Fig. 2: User-Server time consumption ratio

Parameters: In Paillier encryption, we set the length of
public key to 1024. The bandwidth of communication is set
to 1 Gb/s. In the matrix factorization process, we set the
dimension of the user and item profile to 100.

Environment: All the test experiments are performed on
a server with 3.7GHz 6-core CPU and 32GB RAM, where
the operating system is Windows and the programming
language is Python. We used a module called gmpy8 to
accelerate the homomorphic encryption part in Python such
that it is as fast as C++ implementation.

TABLE 1: Time consumption (per iteration) on MovieLens-
small dataset (second).

#Item #Users #Rating Regular
MF

Distributed
MF

FedMF
PartText

FedMF
FullText

32 610 356 0.00429 0.00321 2.963 15.253
64 610 738 0.0082 0.00604 5.119 36.938
128 610 1420 0.0161 0.0104 9.518 95.021
256 610 2941 0.0308 0.0195 18.286 224.644
512 610 5227 0.0624 0.0378 35.759 487.755
1024 610 10615 0.131 0.0763 69.622 1004.051
2048 610 20758 0.251 0.154 133.113 2035.324
4096 610 42951 0.495 0.312 278.168 4080.073
8192 610 84994 0.997 0.618 560.156 8200.046

Fig. 3: Comparison of training loss

Performance: Since neither distributed computing or
homomorphic encryption mechanisms will affect the com-
putation values, FedMF will output the same user and item

8. gmpy is a c-coded Python extension module that supports multiple-
precision arithmetic, https://github.com/aleaxit/gmpy

TABLE 2: Time consumption (per iteration) on MovieLens
full dataset.

#Item #Users #Rating
Regular

MF
(second)

Distributed
MF

(second)

FedMF
PartText
(hour)

FedMF
FullText
(hour)

*

58K 5K 493K 5.833 3.520 0.4 ∼110
58K 10K 994K 11.557 5.612 0.6 ∼220
58K 20K 1.9M 23.646 9.125 1.0 ∼470
58K 40K 3.8M 47.198 17.202 1.9 ∼970
58K 80K 7.7M 93.813 31.350 2.8 ∼1500
58K 160K 15M 184.706 63.340 8.1 ∼4000
58K 283K 27M 324.601 114.592 15.3 ∼8400
* We note that running FedMF FullText is very time consuming

(e.g., one iteration for all the users/items can be up to one year).
So, currently we estimate the running time rather than actual
running. Particularly, the user’s local running time is linearly
correlated with the number of ratings, thus, we sample 100 users
and calculate the averaged time consumption on one rating and
estimate the running time for all the users.

TABLE 3: Comparison of converged results.

RegularMF DistributedMF FedMF
PartText

FedMF
FullText

RMSE 1.39692* 1.39761* 1.39654 1.39654
* The results of RegularMF and DistributedMF are slightly

different because in DistributedMF we make the server
updates item-vector only when all the users have their
gradient uploaded, and in RegularMF the server updates
item-vector immediately after receiving gradient from
an arbitrary user.

profiles as the original MF algorithm. Hence, the major
objective of the experiments is testing the computation time
of FedMF.

Fixing the number of users to 610, Table 1 shows the
time consumption of each iteration of RegularMF, Distribut-
edMF, FedMF-PartText and FedMF-FullText (one iteration
means all of the 610 users’ uploaded gradients are used
to update the item profiles once). We assume that all the
users update in parallel and the server starts the aggregation
only after receives all the users’ gradients. Thus the time
consumption bottleneck of users’ update is the one who
has the most rating data, because it requires the most
significant running time. For both PartText and FullText,
the time consumption is quite good when there are not
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too many items, and the time efficiency decreases when
more items are given. Roughly, the time consumed for
each iteration linearly increases with the number of items.
Compared with Fulltext, PartText is more efficient but it leaks
some information. Particularly, PartText is nearly 15 times
faster than the Fulltext solution. The results also show that
FedMF-PartText is about four orders of magnitude slower
compared with DistributedMF because of the significant
time consumption overhead caused by HE. However, if
not using HE, the security of users’ rating data cannot be
guaranteed due to the possible gradient leakage. Hence,
this is a trade-off between security and efficiency. Table 2
shows the time consumption on MovieLens full dataset.
The time consumption of both PartText and FullText setting
linearly increases with the number of users. When using
the whole dataset (i.e., 280K users), it requires more than 15
hours to train one iteration in FedMF-PartText. This reveals
that for applying FedMF or other homomorphic encryption-
enhanced federated learning mechanisms to larger datasets,
improving computation efficiency is an urgently required
future research direction.

Figure 2a and 2b show the ratio of the user and server
updating time when the number of items changes. The
communication time is dismissed from the figures because
it is too small compared with the user and server updating
time. For example, 256MB of gradient data needs to be sent
to the server when the item number is 8192, and it will
cost about 4 seconds using a bandwidth of 1Gb/s. In the
FullText setting, the server update costs most of the time.
In contrast, the user update consumes most of the time in
the PartText setting. The reason is that the server’s updating
time significantly increases in the FullText setting, while the
users’ updating time is bearly influenced because of the
bottleneck mentioned above.

To verify that our FedMF system has no accuracy de-
cline, we performed experiments on a small-scale dataset 9

which contains 40 movies, 7 users and 130 ratings. For each
user, we select three rating records for testing and the other
ratings compose the training dataset. Root Mean Square
Error (RMSE) is used as metric to evaluate the model’s
performance. As illustrated in Figure 3 and Table 3, the
RMSE of RegularMF/DistributedMF and FedMF are almost
the same, showing that FedMF has no accuracy decline.
It is worth nothing that the float numbers are transferred
to integers using a fixed precision in pailliar encryption,
thus the results of pailliar-encryption based methods (e.g.,
FedMF) will be slightly different from plaintext methods
(e.g., DistributedMF).

Real world implementation: In real-world implemen-
tation, different from experiment settings, users’ devices
may not online simultaneously. Such circumstance will not
affect FedMF system since the server can update item vector
immediately after receiving gradient from one user instead
of waiting all users’ gradients received. The training process
can be carried out when the users’ devices are charging and
remains extra computing resources.

9. Such a small dataset can help to reduce model convergence time
consumption.

7 CONCLUSION AND FUTURE WORK

In this paper, we propose a novel secure matrix factorization
framework in federated machine learning, called FedMF.
More specifically, we first prove that a distributed matrix
factorization system where users send gradients to the
server in forms of plaintext will leak users’ rating infor-
mation. Then, we design a homomorphic encryption based
secure matrix factorization framework. We have proved that
our system is secure against an honest-but-curious server,
and the accuracy is the same as the matrix factorization on
users’ raw data.

Experiments on real-world data show that FedMF’s time
efficiency is acceptable when the number of items is small.
Also note that our system’s time consumption linearly in-
creases with the number of items. To make FedMF more
practical in reality, we still face several challenges:

More efficient homomorphic encryption. FedMF shows large
time consumption overhead because of the low efficiency of
the HE algorithm. If we can improve the HE’s efficiency
when conducting operations on ciphertext, our system’s
performance will increase.

Between FullText and PartText. Our experiments have
shown that PartText is much more efficient than FullText,
but PartText reveals the set of items rated by a user. This
information, without the exact rating scores, may still leak
users’ sensitive information [9]. Perhaps we can ask users to
upload more gradients than only the rated items, but not all
the items, so as to increase efficiency compared to FullText,
while not leaking the exactly rated item set.

More secure definitions. We currently use a typical hori-
zontal federated learning secure definition, which assumes
honest participants and an honest-but-curious server. Such
a secure definition is relatively weak because there might
be malicious users in real-world applications. Malicious
users may collude with the server (i.e., share the private
key) to attack other users, causing privacy issues. They also
may perform backdoor attacks to the system, which will
bring security issues. In the future, we will explore more
challenging secure definitions, such as building a secure
system where the server is honest-but-curious, and some
participants are malicious, and the malicious participants
may collude with the server.
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