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Abstract—Data centers often hold tens to hundreds of
thousands of servers in order to offer cloud computing services
at scale. Ethernet switching and IP routing have their own
advantages and limitations in building data center networks.
Recent research, such as PortLand and BCube, has proposed
scalable data center network designs. A common feature
of these designs is that their addressing and routing are
customized to specific topologies.
In this paper, we propose a generic addressing, routing and

forwarding protocol for data center networks, which works
on arbitrarily “layered” network topologies. We first form the
network as a multi-rooted tree. Each network node (i.e., hosts
and switches) is then assigned one or more locators, and each
locator encodes a downward path from the roots to this node.
Data center networks often have rich path diversity, so tracking
all locators of a destination node will cause switches to have
very large forwarding tables. We further use a new forward-
ing model to reduce the forwarding states. In addition, the
multiple-locator mechanism brings built-in support for multi-
path routing, load balancing and fault tolerance. Evaluations
based on simulations and prototype experiments demonstrate
that our proposal achieves our design goals.

I. INTRODUCTION
Cloud computing services have been driving the creation

of data centers that hold thousands to even hundreds of
thousands of commodity servers. To make these cloud
computing services fast and reliable, it is critical to build
cloud data center networks that have high bandwidth and
low latency, scale well, are easy to manage and resilient to
network failures.
To support a wide variety of cloud computing services,

as discussed in [1], a competitive data center network has
to satisfy a couple of requirements: a) low management
and operation cost: minimize configuration and manage-
ment overhead, facilitate flexible application placement, and
provide mobility support for virtual machine migration;
b) traffic efficiency: fully utilize network link capacity to
support high bandwidth and/or low latency applications;
c) scalability: keep forwarding tables small and introduce
little flooding traffic, even if network grows large; d) fault
tolerance: quickly detect and recover from network failures.
Traditionally, data center networks have been built using

Ethernet switches and IP routers. Ethernet excels at zero
configuration and easy management, but has suboptimal
traffic efficiency and poor scalability. In contrast, IP routers
can achieve shortest path routing over arbitrary network

topologies and scale better, but its configuration and man-
agement overhead are much higher.
There have been much recent research on designing data

center networks to meet the goals discussed above. These
include VL2 [1], PortLand [2], DCell [3], and BCube [4],
etc. In section II, we review these proposals in more details.
One common issue of all these proposals is that each of
them is targeted to a specific network topology (e.g., clos for
VL2, fat-tree for PortLand, and hypercube for BCube). The
addressing, routing, and traffic scheduling protocol design
of each proposal is thus tightly tied to a specific topology,
which limits customers’ choice of network topology. To
provide, but not dictate, choices to its customers, a network
equipment vendor has to implement all these different pro-
tocols and cause higher cost.
In this paper, we present a new data center network design

that can work on arbitrarily “layered” network topologies.
We start from two basic observations for data center net-
works. First, data center networks, either in the traditional
settings [5] or in the new proposed topologies like clos [1]
and fat-tree [6], are often physically inter-connected as a
hierarchical structure, rather than a random graph. Second,
data center networks often have rich path diversity. The
topologies are designed to allow multiple paths between any
pair of nodes for load-balancing or robustness. Based on
the two observations, we designed a set of addressing and
routing mechanisms, as detailed in Sections III-V.
Given a data center network topology, each switch or host

is assigned one or more locators. Locators encode the node’s
location in the topology. The first step of addressing is to
form the topology as a multi-rooted tree. Then, for each
node, we find out all the downward paths from the roots
to this node. For each path, we assign a locator to this
node. Locators, instead of the MAC address, are used in
forwarding. Since locators are addressed according to the
hierarchical structure of the multi-rooted tree, address ag-
gregation can reduce the forwarding states, compared to the
flat MAC address. A central controller assists with address
resolution, path selection and fault tolerance. In address
resolution, the controller selects a path between the host pair,
and returns the corresponding locator of the destination host
to the source host. Multiple locators indicate multiple paths.
Various scheduling algorithms can be used in locator/path
selection. In addition, network failure can be easily handled
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by replacing the original locator corresponding to the failure
path with other locators.
Since a node’s locators encode all the paths from the

roots to this node, given the fact that data center networks
often have rich path diversity, tracking all the locators of all
destination will cause switches to have a very large number
of forwarding states. A key question is how to reduce the
forwarding states while at the same time retain the routing
efficiency and multi-path capability. To this end, we use two
mechanisms. We first introduce a new forwarding model,
such that traffic through a switch can be divided into three
forwarding types. The second mechanism is to utilize input
port in forwarding, in addition to the destination locator.
In summary, the main contribution in this paper is to

propose a set of generic addressing, routing and forwarding
mechanisms that are optimized for common data center
topologies, and can support all “layered” topologies con-
structed in arbitrary ways. The forwarding model reduces
forwarding states while keeping the routing efficiency and
multi-path capability. And the multiple-locator mechanism
brings built-in support for multi-path routing, load balancing
and fault tolerance. The simulation (Section VI) and proto-
type experiment (Section VII) results validate these claims.

II. BACKGROUND AND RELATED WORK

In Ethernet switching, the “plug-and-play” semantics of-
fered by persistent MAC addresses and its self learning
mechanism greatly simplifies network configuration and
management. But Ethernet cannot be directly applied to
current mega data center because of its two problems. First,
it uses the spanning tree protocol (STP) to ensure a loop-
free topology. STP performs well for small network; But, in
large network with many redundant paths, STP introduces
substantial inefficiency. Second, the network-wide flooding
and ARP broadcasting would result in large overhead that
grows with network size. There are many proposals to
enhance Ethernet switching [7], [8], [9].
IP routing can scale to large networks and ensures efficient

usage of networking resources via shortest path routing.
However, the tradeoff is the complexity in configuration
and management. Routing protocols like OSPF have other
limitations such as control traffic flooding, lack of multi-path
support and slow converge. In addition, virtual machines
(VM) are being widely deployed in data centers. Migrating
a VM to a different switch would require assigning a new
IP address, an operation that would break all the ongoing
TCP connections on the VM.
An ideal data center network architecture should combine

the advantages of Ethernet switching and IP routing, that is,
not only “plug-and-play”, but also scalable, efficient, and
robust. Recently, there have been a number of proposals
targeting these goals. For example, PortLand assigns Pseudo
MAC (PMAC) addresses to all end hosts to encode their
position in the topology [2]. Packet forwarding proceeds

Topology Multipath FWS Address Routing
GARDEN layered arbitrary O(S) locators generic
PortLand fat-tree ECMP O(P) PMAC specific
VL2 clos VLB O(S) AA/LA OSPF
SPAIN arbitrary arbitrary O(NV) flat VLAN
SEATTLE arbitrary single O(N) flat OSPF

Table I
COMPARISON OF GARDEN AND THE RELATED WORK

based on the hierarchical PMAC, which results in very small
forwarding tables. However, PortLand is designed for the
fat tree topology, but can not be directly used in arbitrary
network topologies. VL2 provides a virtual layer 2 network
over the clos topology [1]. It separates names (AA) from
locators (LA), and uses a directory service to maintain the
mapping between them. Switches run the OSPF link state
routing protocol and maintain switch level topology. VL2
uses VLB and ECMP to spread traffic over multiple paths.
SPAIN provides multi-path forwarding over arbitrary

topologies [10]. It first pre-computes a set of paths to exploit
the redundancy in a given network topology, then merges
these paths into a set of trees, and each tree is mapped
as a separate VLAN. Flat MAC address is used in SPAIN,
so the forwarding table size increases proportionally to the
total number of hosts in the network. SEATTLE proposes
a scalable Ethernet architecture for large enterprises [11].
The switches combine link-state routing and an one-hop,
network-wide DHT to achieve broadcast elimination and
shortest-path forwarding. We compare our proposal with the
above-discussed work in Table I, where FWS indicates the
forwarding state, P is the number of ports per switch, S is
the number of switches, N is the number of end hosts, and
V is the number of VLANs in SPAIN.
DAC presented an automatic data center address config-

uration system [12]. Rather than solving the addressing and
routing problems, their goal is to map a blueprint which
contains connectivity information and logical id for servers
and switches, to the real physical network and complete the
configuration task. ALIAS [13] presented an addressing and
communication protocol that automates topology discovery
and address assignment for the hierarchical topologies of
data centers. ALIAS groups switches into hypernode (HN) to
reduce forwarding state. However, topology fluctuations are
easy to change the HN membership, and lead to relabeling
of switches and hosts.

III. DESIGN OVERVIEW

Our design employs a logically centralized controller,
which assists with addressing, routing, address resolution,
path selection and fault tolerance. After topology discovery,
the central controller assigns locators for switches and hosts,
and then calculates the forwarding tables for each switch
based on the address space.
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Figure 1. Addressing and forwarding table examples. The number near each link indicates the port number of the switch.

A. Addressing

Given a network topology, the first step of addressing is
to form the topology as a multi-tiered structure or a multi-
rooted tree. Here we first define some notations:

• lev(x): the level of node x in the multi-rooted tree
• Pj(Si): the jth port of switch Si

• dir(P ): the direction of port P , including Upward Ports
(UwP), Downward Ports (DwP) and Peer Ports (PrP)

• loc(x): locators of node x
The input of the algorithm is an undirected graph, where

switches and hosts are nodes and the links are edges. The
output is a multi-rooted tree, each switch and host are
assigned a level, and all ports of switches are assigned
directions. Assume the height of the tree is H , then from
top to bottom each level is defined as level 0 to H − 1. For
switch Sa and Sb, assume Pm(Sa) is connected to Pn(Sb).
If lev(Sa) > lev(Sb), then we define dir(Pm(Sa)) = UwP
and dir(Pn(Sb)) = DwP . And if lev(Sa) = lev(Sb), then
we define dir(Pm(Sa)) = dir(Pn(Sb)) = PrP .
We first sequentially take each switch Si as the root, create

a spanning tree containing all the end hosts, assume the
height of the tree is Hi. Let H = min(Hi). Among all
the switches, we select those one with height Hi = H as
the root switches Sr, and define lev(Sr) = 0. For each
port of a root switch Pj(Sri), if Pj(Sri) is connected to
another root switch, then we define dir(Pj(Sri)) = PrP ;
otherwise, dir(Pj(Sri)) = DwP . Next, we assign the
level and port direction of other non-root switches level by
level. For a switch Sa, if Pm(Sa) is connected to Pn(Sb),
and dir(Pn(Sb)) = DwP , then lev(Sa) = lev(Sb) + 1,
and dir(Pm(Sa)) = UwP . If lev(Sa) = lev(Sb), then
dir(Pm(Sa)) = PrP . Otherwise, dir(Pm(Sa)) = DwP .
After the network topology is formed as a multi-rooted

tree, all the switches and hosts are assigned one or more
locators. Locators encode the node’s location in the topology,
specifically, they encode all paths from the root switches to
this node. Firstly, the R root switches are assigned locators:
“0”, “1”, ..., “R − 1”, respectively. For a non-root switch
Sa (assume lev(Sa) = L), find out all paths from each

root to Sa, and with respect to each path, assign a locator
“add0.add1.....addL”, where add0 is the locator of the root,
and addi(1 ≤ i ≤ L) is the port number of the “level i−1”
switch that the “level i” switch connects. For each end host
Hb, its locators are assigned as “loc(Se).Pb(Se)”, where
loc(Se) is the locator of the edge switch Se, and Pb(Se) is
the port number of Se that Hb connects. If there are multiple
virtual machines on the same physical machine Hb, then the
VMs are assigned locators “loc(Hb).vmid”. An example of
the addressing scheme is given in Figure 1.
The maximal complexity of the tree construction and

addressing is at the stage of iterating all switches to find the
root candidates, which is S ∗O(N +S), where S and N are
the number of switches and end hosts, respectively. Given
that this is a one-off process, optimization is less important.

B. Address Resolution and Forwarding
Locators can be used in different kinds of implementations

to provide routing and forwarding for the network, such as
IP tunneling or MAC address rewriting ([2], [14]). In the
remaining sections, we use MAC address rewriting as the
example for our design and experiments.
After assigning locators for all the switches and hosts, the

controller records the IP-locators mapping for all the end
hosts. And the edge switches record the IP-MAC-locators
mapping for the end hosts connected to this switch. When
a source host Hr sends out an ARP request for a desti-
nation host Hd, the edge switch intercepts the request and
forwards it to the controller. Based on the current network
situation, the controller selects an appropriate path for this
communication. Since multi-path information is indicated
by the multiple locators, the chosen path corresponds to
one of Hd’s locators. The edge switch then returns the
corresponding locator to Hr as the ARP reply. In addition,
the forwarding tables in the switches are based on destination
locators rather than MAC addresses. Therefore, all packet
forwarding proceeds based on the locators. Finally, the
egress switch performs locators-to-MAC addresses rewriting
for the packets and sends it to the destination host Hd. For
example, H5 wants to communicate with H1. The controller
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selects a path “H5, S9, S5, S1, S3, S7, H1” for them, and
returns the corresponding locator “0.0.0.0” as ARP reply to
H5. Figure 1 also shows some forwarding table examples.
Based on the entries in their forwarding tables, the switches
in the path will forward the packet by using “0.0.0.0” as the
destination address.
Our design employs a logically centralized controller. The

overhead introduced to the network and to the controller
by the centralized mechanism mainly comes from the ARP
requests/responses between the controller and individual
edge switches. Assuming an ARP request or response takes
42 bytes, and each host generates R requests per second,
then the traffic overhead is 42 ∗ 8 ∗ R ∗ 2 ∗ N bps, where
N is the number of end hosts. For example, in an extreme
case where each host generates 10 ARP requests per second
in a 10,000 host network, the traffic overhead would be
67.2Mbps. In addition, the controller will be processing
R ∗ N ARP requests per second. In a large-scale network,
the controller CPU could be the bottleneck. But it is possible
to move the controller to a small-scale cluster if necessary
when high frequency of ARP requests is anticipated ([2]).

IV. ROUTING AND FORWARDING

A. Forwarding Model
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Figure 2. Knee switch examples

In this section, we describe the routing algorithm of how
to calculate the forwarding tables. As illustrated in Figure 2,
a path from source to destination host may contain several
path segments of different directions: upward (e.g., 11),
downward (e.g., 12) and horizontal (e.g., 22). We name
the first switch of the last downward path segment as knee
switch. In addition, a node x is defined as a peak switch of
a path if for any other node y in this path, lev(x) ≤ lev(y).
An important observation behind our design is that data

center networks are often physically inter-connected as a
hierarchical structure. In such a network topology, traffic
patterns are mostly like this: starting from the source host
at the bottom, going up to the access level (ToR or edge

� � � �

� � � 


� � � �

Figure 3. forwarding model

switches), and then to the core level (aggregation or core
switches), and finally going down to the destination host.
Based on this observation, we apply two constrains for

the traffic patterns: Constraint 1: Traffic changes direction
from upward to downward no more than once; Constraint
2: The knee switch must be one of the peak switches.
Constraint 1 forbids traffic pattern 5 in Figure 2, while
Constraint 2 further prevents traffic pattern 4. Finally, only
traffic patterns 1, 2, and 3 are allowed. In other words,
the path contains one or more upward and horizontal path
segments, to the peak switch, and finally a downward path
segment to the destination. We refer to this as (upward-
horizontal)*/(downward)* forwarding, an extension of the
(up)*/(down)* forwarding introduced in [15]. One can find
that these two constraints work for most of the switch-centric
data center network topologies.
According to the two constraints, traffic through a switch

Sa can be divided into three forwarding types, FwT1-FwT3,
as shown in Figure 3.

• FwT1: Sa is on the downward path segment, subse-
quent to the knee switch. Traffic comes from one UwP,
and goes out from one DwP.

• FwT2: Sa is the knee switch. Traffic comes from one
DwP or PrP, and goes out from one DwP.

• FwT3: Sa is on the upward or horizontal path segment,
antecedent to the knee switch. Traffic comes from one
DwP or PrP, and goes out from one PrP or UwP.

B. Multiple Paths

In this section, we show the relationship of multiple paths
and multiple locators. The multi-paths between source host
Hr and destination host Hb are from three conditions. First,
there may be multiple different knee switches. For example,
in Figure 1, among the paths from H1 to H5, some go
through knee switch S1, and others through S2. Second, after
the knee switch SK is determined, there may be multiple
upward (and/or horizontal) paths between Hr and SK . For
example, if S1 is SK , then from H1 to S1, one path through
S3 and the other through S4. Third, after SK is determined,
there may be multiple downward paths between SK and Hb.
For example, from H5 to H1, if S1 is SK , then there are
two downward paths between S1 and H1.
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Figure 4. Multiple locators indicate multiple paths.

According to the addressing mechanism, loc(SK) is a
prefix of loc(Hb), i.e., loc(Hb) = loc(SK).loc′(Hb). For
the first kind of multi-paths, choosing different SK

j will
bring different loc(SK

j ), so the corresponding loc(Hb) is
different. For example, as shown in Figure 4, H1 commu-
nicates with H5. loc(H5) is chosen as 0.2.0.0 or 1.2.0.0
to indicate different knee switches S1 and S2 respectively.
Given one knee switch SK

j , if it has multiple locators,
then the corresponding loc(Hb) are different. However, the
different loc(Hb) represents the same path. In the example
of H1 to H3, S3 has two locators, and correspondingly, H3

gets two locators 0.0.1.0 and 1.0.1.0. However, these two
locators represent the same path.
For the second kind of multi-paths, multiple upward

(and/or horizontal) paths share the same loc(Hb), since
locators encode the downward-path information from the
root to the node. In the example of H1 to H5, when S1 is
the knee switch, the two paths from H1 to S1 correspond to
the same locator. Path selection for this kind of multi-paths
is done in switch S7. As shown in the forwarding table of
S7 in Figure 1, packets can be forwarded from both port 2
and 3 when the destination locator is “0.*”.
For the third kind of multi-paths, choosing different

downward path from SK toHb will bring different loc′(Hb),
so the corresponding loc(Hb) is different. In the example
of H5 to H1, if S1 is SK , then the two downward paths
between S1 and H1 correspond to two locators 0.0.0.0 and
0.1.0.0. In summary, multiple paths are related to multiple
locators. However, the relationship is not one-to-one map-
ping. Multiple locators may represent one path, and multiple
paths may share one locator.

C. Routing Algorithm

Next, we introduce the routing algorithm to calculate the
forwarding table for a switch Sa given the destination host
Hb. To forward a packet, a switch first needs to decide the
direction of the output port. If Hb is a descendant of Sa,
and from a downward port DPj(Sa) there is a downward
path to Hb, then Sa should forward the packet downward
from DPj(Sa). According to the addressing mechanism,
loc(Sa).DPj(Sa) is a prefix of loc(Hb). Therefore, we set
the forwarding rule loc(Sa).DPj(Sa).∗ ⇒ DPj(Sa) for
each DPj(Sa). This rule handles FwT1 and FwT2.

FwT3 means that Sa is on the upward or horizontal

path segment, before the knee switch. To handle this, the
algorithm performs breadth-first traversal to upward and
horizontal direction from Sa to the root of the multi-rooted
tree. In other words, the breadth-first traversal is only from
Sa’s UwP and PrP, not from its DwP. After this step, all
the switches in Sa’s upward and horizontal direction and the
corresponding port of Sa to reach that switch are added into
a set sset. Finally, for each (Sm, Pm(Sa)) in sset, we set
the forwarding rule loc(Sm).∗ ⇒ Pm(Sa). The forwarding
rules for Sa are summarized below:

loc(Hb) = loc(Sa).DPj(Sa).∗ ⇒ DPj(Sa) (1a)
loc(Hb) = loc(Sm).∗ ⇒ Pm(Sa) (1b)

A forwarding table example has been shown in Fig-
ure 1. The time complexity of the routing algorithm is
O(S ∗O(P

2 )
d
2 ), where S is the number of switches, P is the

number of ports per node, and d is the average path length.
The algorithm only does partial bread-first traversal from a
switch’s UwP and PrP to the root, so both the port number
and path length become half of the original value.
The hierarchical addressing mechanism leads to aggrega-

tion of forwarding entries. Equation (1a) and (1b) indicate
aggregation for the descendants of switch Sa and Sm respec-
tively. After all forwarding entries are generated, some en-
tries from (1b) can be further merged. Assume we have two
entries loc(Sm1).∗ ⇒ Pm(Sa) and loc(Sm2).∗ ⇒ Pm(Sa),
and loc(Sm1) is a prefix of loc(Sm2), then they can be
merged as loc(Sm1).∗ ⇒ Pm(Sa).
Since in address resolution phase any one of the multiple

locators may be chosen, so all the locators for a node
need to be recorded in the forwarding entries. As shown in
Equation(1a) and (1b), if switch Sa (or Sm) has multiple
locators, then there will be multiple forwarding entries.
For example, switch S7 has 4 locators, so Equation (1a)
generates 4 forwarding entries for port 0 and 1. Assume
in the bread-first traversal from a switch Sa’s UwP and
PrP to the root, there are SU switches, then Equation (1b)
generates SU ∗ M entries, and each DwP generates M
entries. Therefore, the forwarding state of a switch Sa is
O(SU ∗M +M ∗P/2), where P is the number of ports per
node, and M is the number of multiple paths.

D. Reducing Forwarding States
Tracking all locators will cause switches have a very

large forwarding tables. To reduce the redundant forwarding
state, we utilize input port in forwarding, in addition to
the destination address. If the input port is one of its
UwP , then it is FwT1; otherwise, it is FwT2 or FwT3.
For FwT1, the only thing Sa need to do is to decide
from which DwP to send out the packets. According to
the addressing mechanism, loc(Hb) = loc(Sa).DPj(Sa).∗,
where DPj(Sa) is the port number of Sa that connects to
Hb or Hb’s ancestor. We use L to denote lev(Sa), then
Sa can decide the DwP by looking at addL+1(Hb), the
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(L + 1)th field of loc(Hb). Therefore, the forwarding rule
can be simplified to addL+1(Hb) = DPj(Sa) ⇒ DPj(Sa).
For FwT2 or FwT3, an ideal situation is only one locator

of a switch is recorded, rather than tracking all locators
of Sa and Sm. This needs some cooperation of the con-
troller in the locator selection process. The controller first
chooses one knee switch SK

j . Assuming SK
j has Lj locators:

locl(SK
j ), then some of Hb’s locators are formatted as

loc(Hb) = locl(SK
j ).loc′(Hb). Then the controller selects

one downward path, which corresponds to one loc′k(Hb).
Finally, the controller decides “loc0(SK

j ).loc′k(Hb)” to be
the locator of host Hb, where loc0(SK

j ) represents the first
locator of loc(SK

j ). As mentioned, given a chosen knee
switch, its multiple locators will bring different loc(Hb).
However, they actually represent the same path. Therefore,
if we use the first locator in the controller and the forwarding
table, there will be no loss of multiple-path capacity.
In summary, forwarding rules in Equations (1a) and (1b)

are converted to Equations (2a)-(2c) shown below. Here,
loc0(Sa) and loc0(Sm) represents the first locator of loc(Sa)
and loc(Sm). Equation (2a)-(2c) correspond to forward-
ing type FwT1-FwT3 respectively. The reduced forwarding
state is O(SU + P ), much smaller than the original value
O(SU ∗ M + M ∗ P/2).

InPort = UwP, addL+1(Hb) = DPj(Sa) ⇒ DPj(Sa) (2a)
loc0(Sa).DPj(Sa).∗ ⇒ DPj(Sa) (2b)

loc0(Sm).∗ ⇒ Pm(Sa) (2c)

V. OTHER COMPONENTS
The multi-locator mechanism brings built-in support for

multi-path routing, load balance and fault tolerance. Here
we describe other components of our system, including
scheduling, fault tolerance and mobility support.
One of the approaches to perform flow scheduling is to

insert forwarding entries into switches on the fly. While our
system carries out scheduling by choosing different locators
in the address resolution phase, thus no forwarding table
modifications are required to the switches along the path.
For example, in the topology shown in Figure 1, both H5

and H7 communicate with H1. If we would like the first pair
takes the path “H5, S9, S5, S1, S3, S7, H1”, and the second
pair takes the path “H7, S10, S5, S2, S4, S7, H1”, then the
controller can assign locator “0.0.0.0” for H1 and returns to
H5, and assign locator “1.1.0.0” for H1 and returns to H7.
Various scheduling mechanisms can be used in selecting

appropriate paths. A straightforward approach could be as
follows: switches periodically report traffic status of each
link to the controller, then the controller has a global view
of the link utilization. In path selection, the controller finds
the bottleneck links for each path between the host pair, and
selects the path with the most light-loaded bottleneck links.
However, during ARP resolution, a host expects only

one MAC address for a particular IP address, and stores

it in its ARP cache. To dynamically change the path for
an on-going communication, the controller will send an
address translation rule to the ingress switch, which includes
“srcIP, destIP, destLoc”. Then the ingress switch will rewrite
the destination MAC address from the original destination
locator to this new destLoc for the packets between srcIP
and destIP, thus the communication path will be changed.
To provide flow level scheduling, the address translation rule
also need to consist port number information.
Our system provides natural fault tolerant routing based

on the selection of multiple locators. After detecting a link
failure, the controller disables the paths that pass through the
failed link by returning other active locator when receiving
an ARP request. To provide fault tolerance for the on-going
communications, the controller chooses another available
path and sends the corresponding address translation rule
to the ingress switch. Mobility support is similar to fault
tolerance. For example, a virtual machine migrates from a
physical machine to another. When the edge swtich detects
the new VM, it reports the change to the controller. The
controller then assigns new locators to the VM, and returns
new ones for the new ARP request about the VM. For
the on-going communications, the controller needs to send
address translation rules to all the edge switches that connect
a source host communicating with the VM.

VI. SIMULATIONS
In this section, we first generate a variety of network

topologies to evaluate the forwarding states, and then evalu-
ate several scheduling algorithms using different traffic ma-
trixes. The simulated topologies include: 1) Fat-tree(p)([6]):
p is the number of ports per switch. 2) VL2(p)([1]): p is the
number of ports per intermediate switch, and the number
of servers per rack is 20. 3) CiscoDC(m, a)([5]): a three-
layer tree with two core switches, m is the number of
aggregation modules, and a is the number of access switch
pairs associated with each aggregation module.

A. Forwarding States
Forwarding states of different network topologies are

shown in Table II. Columns “#paths”, “fws” and “fws
(reduced)” are the number of multi-paths between host pairs,
the original forwarding states and the reduced forwarding
states, respectively. One can find that the basic algorithm
generates a large number of forwarding states when the
number of multi-paths is large, while the reduced one
generates a small number of forwarding states in most cases.
In fat-tree topology, a edge switch need to store one

forwarding entry for each of the p2/4 core switches, and
the forwarding entries cannot be aggregated. Therefore, its
forwarding state is relatively large for fat-tree(48). While in
VL2 topology, the number of core switches is p/2, so the
reduced forwarding states for all switches is very small. In
CiscoDC topology, according to the connection pattern, the

112112



Topology #hosts #switches #paths fws fws (reduced)
core agg edge core agg edge

Fat-tree(8) 128 80 16 8 20 80 8 12 24
Fat-tree(24) 3456 720 144 24 156 1872 24 36 168
Fat-tree(48) 27648 2880 576 48 600 14400 48 72 624
VL2(4) 80 10 8 4 6 86 4 6 44
VL2(48) 11520 648 96 48 600 1032 48 72 66
VL2(96) 46080 2448 192 96 2352 2064 96 144 90

CiscoDC(2,2) 192 14 8 5 12 106 5 11 53
CiscoDC(8,8) 3072 146 8 17 36 106 17 35 53
CiscoDC(16,16) 12288 546 8 33 68 106 33 67 53

Table II
FORWARDING STATES FOR DIFFERENT TOPOLOGIES

numbers of locators and multi-paths do not increase with m
and a. Therefore, both the basic and reduced the algorithm
generate very small forwarding tables in large scale network.

B. Scheduling
Different scheduling methods are evaluated under a group

of communication patterns, similar to [16]: 1) Stride(i): A
host with index x sends to the host with index (x + i)
mod (num hosts). 2) All-to-all: Every host sends to every
other hosts in the network. 3) Random: A host sends to
any other host in the network with uniform probability. In
each pattern, every host sends out one 1GB file in one TCP
flow, and the time interval of the start time of each flow is
1ms. Three scheduling mechanisms are evaluated: 1) Fixed
locator: fixedly return the first locator of the destination host
for every source host, which simulates the spanning tree
protocol; 2) Random locator: randomly select one locator
from the multiple locators of the destination host; 3) Traffic-
aware locator: select a locator based on the link status of the
multiple paths. We simply use the number of flows in each
link to indicate the link status. Since in the traffic matrixes,
all hosts send out one flow of the same size, this simple
method achieves near optimal aggregate throughput.
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Figure 5. Aggregate throughput for three communication patterns on
various network topologies.

Some of the evaluation results are shown in Figure 5.
To put the results for different topologies in one figure, we
normalize the aggregate throughput by dividing by the non-
blocking throughput of the network. From the results, one
can find that traffic-aware locator selection significantly out-
performs the others. For small step stride patterns, most of
the communications happen under the same edge switch, so
all the three scheduling method produce very high through-
put, e.g., fat-tree(4)/stride(1) and vl2(4)/stride(4). Random
locator selection performs better when the number of flows
or the number of multi-paths is large, e.g., in fat-tree(8)/all-
to-all and vl2(4)/all-to-all. The aggregate throughput in
fat-tree(4)/random is low, since several source hosts may
randomly select the same destination host.

VII. PROTOTYPE EVALUATION
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Figure 6. Comparison of different scheduling algorithms

We built a testbed of fat-tree(4) topology, which consists
of 10 DELL Optiplex 990 desktops and 16 Intel PRO/1000
PT Quad Port Ethernet NICs. We deploy the 36 elements (20
switches and 16 hosts) of fat-tree(4) topology in 10 physical
machines. The four switches in one pod are hosted in one
machine by running four virtual machines; and each pod’s
four end hosts are hosted in one machine. The remaining
two machines are running two VMs in each to host four
core switches. In addition, the machines are plugged into
one or two quad port NICs to provide appropriate number
of interfaces for the switches and hosts. For the four switches
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Figure 7. Response to link failure

in the same pod, we use the virtual links provided by the
hypervisor to connect them. The controller is run in another
PC, connected to the switches by a 24-port Gigabit TP-Link
switch. We use ebtables to implement the forwarding table,
by mapping each forwarding entry to an ebtables configured
filter rule. The edge switches also add “locator ↔ MAC”
NAT rule to do MAC/locator addresses rewriting.
Figure 6 shows the aggregate throughput of the three

locator selection schemes for stride(4) traffic matrix. The
fixed locator has very limited total throughput (90Mbps)
since all the flows from one pod choose the same uplink
to the core switch. The random locator has an obviously
improved total throughput (196.8Mbps), and the traffic-
aware locator has the best total throughput (256Mbps).The
reason of the low throughput in the testbed is that the virtual
links between the VMs in one physical machine are set to be
100Mbps, and virtual machines bring performance overhead.
We further evaluate the fault tolerance of our system, by

dropping one link between an aggregate and a core switch at
the time point of 50 second after all the flows have started.
Figure 7 shows the throughput for one flow affected by
the dropped link. The throughput dropped to zero at that
time point and react in slow-start mode in the new path. Its
throughput decreases nearly 50% because the rescheduled
flow competes with other original flows in the chosen link.

VIII. CONCLUSION

In this paper, we propose a generic addressing and routing
protocol for hierarchical data center networks. We first form
the topology as a multi-rooted tree, and then assign each
switch or host one or more locators. Each locator encodes a
downward path from the roots to this node. When there are
a large number of multi-paths in the network, some switches
may have a large forwarding table, since switches need to
store multiple forwarding entries for multiple locators. We
further introduce a new forwarding model, which generates
very small forwarding tables, and at the same time keeps
the multi-path capability. We use simulation to evaluate our
system on a variety of network topologies with different
sizes, and also build a testbed of fat-tree topology consisting
16 hosts. The evaluation compares the forwarding state for
various topologies, and the aggregate network throughput

using different scheduling methods. In addition, the testbed
experiments show that our system has good fault tolerance.
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