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Abstract—The publicly available BGP vantage points (VPs)
have been heavily used by the research community to build
the Internet autonomous system (AS) level topology, which is a
key input to many applications, such as routing protocol design,
performance evaluation and network security issues. However, a
detailed study on the eyeshots1 of these VPs has received little
attention before. In this paper, we inspect these VPs carefully.
Specifically, we do a measurement work to evaluate the effect of
various factors on the eyeshot of each individual VP as well as the
relationship between the eyeshots of different VPs. Based on the
measurements, we disclose several counterintuitive observations
and explain the possible reasons behind, which will help people
to better understand the eyeshots of VPs and make better use of
them in practice.

Index Terms—Internet topology, Measurement, Vantage point,
BGP routing table

I. INTRODUCTION

The Internet AS topology is critical to many important appli-
cations. Nowadays, people’s understanding about this topology
is mainly based on several public route monitoring systems,
such as Routeviews [1] and RIPE/RIS [2], which operate by
gathering periodic BGP routing table snapshots and real-time
BGP updates from ASes of various ISP backbones and network
locations to discover dynamic changes of the global Internet
routing system. Each of these peered ASes act as a VP for them
to observe and construct the “entire” AS topology graph2. In
normal peering contracts, these VPs are requested to regard
the central route collectors as “customer” and configure their
routers to export their full BGP routing table [4]. The central
collectors are passive in the sense that they do not participate
in announcing any prefixes or forwarding any traffic.

BGP-centric AS topological information collected and syn-
thesized from all VPs has been heavily used by a substan-
tial number of efforts [3, 5]–[15] to understand the Internet
infrastructure, characterize its evolution, model its properties
and infer its missing areas. Chang et al. [5] were among the
first to study the completeness of commonly used BGP-derived
topology maps. The pioneering efforts in [3, 6] were to evaluate
and quantify the coverage of the public view on different
components of Internet topology (e.g., Tier-1 ASes, customer-
providers links, and peering links) according to individual case
studies. In [7], Oliveira et al. observed the tradeoff between
topology liveness and completeness. In [8], the authors used
BGP data to build a model to capture Internet routing diversity.
He et al. [9] presented a framework to find the missing links
in a snapshot of BGP-derived AS graph. In one seminal
paper [13], Faloutsos et al. focused on the BGP-derived AS

1By the “eyeshot” of a VP, we mean the AS links this VP has observed and
reported to the central collectors.

2It is known that the BGP-based AS topology is not complete, we call it
entire because it is a best effort to date [3].

graph and argued that the AS topology follows several power-
law rules, e.g., its degree distribution. This observation was
questioned in [14] by showing that the degree distribution,
though heavy-tailed, did not follow strict power-law. Zhang
et al. [15] examined the visibility constraints imposed by the
deployment of route monitors on various applications. There
were also efforts that attempt to describe the Internets AS-level
topology with the help of generic graph-theoretic constructions
(see for example [11, 12]).

Most previous work uses BGP data from a macroscopic view
which simply blends the eyeshots of all the VPs together. To
the best of our knowledge, the property of the eyeshot of each
individual VP and the details of putting these eyeshots together
to construct the AS graph have not been extensively studied be-
fore. In this paper, we focus on a microscopic view of studying
the eyeshot of each individual VP. Intuitively, monitors placed
in different VPs are supposed to provide different information
about the global Internet structure. Questions such as what are
the determinative factors of the eyeshot of an individual VP,
what are the differences between the eyeshots of different VPs,
and how the entire AS graph is assembled by all these eyeshots
in a cumulative way, are interesting and are yet to be answered.
To this end, we perform a comprehensive study on the eyeshots
of these VPs. We make the following measurement efforts and
contributions in this paper:
∙ We make a first detailed measurement study on the eyeshots

of the public view VPs, by which we obtain counterintuitive
and indicative observations.

∙ For the observations, we explain the reasons behind to help
people to better understand them.

∙ Going beyond the measurements and observations, we dis-
cuss how our study could be used in practice to benefit the
community.
The rest of this paper is organized as follows. Section II in-

troduces the data collection and processing. Section III presents
our measurements, observations and possible explanations.
Section IV discusses the implications, applications as well as
limitations. At last, Section V gives the concluding remark of
the paper.

II. DATA COLLECTION AND PROCESSING

A. Dataset

To fully evaluate the eyeshot of a single VP, it is necessary
for us to know all the backup links that can be observed
by this VP. For this purpose, the BGP data we used in this
paper include a collection of BGP routing tables/updates from
790 BGP speaking routers in 438 unique ASes from Dec,
2007 to Sep, 2008. Specifically, we start from the dataset of
Routeviews [1] collected at route-views.oregon-ix.net, which



is the most widely used BGP archive so far. We then include
routing data from 6 other Oregon route severs and 16 route
collectors of RIPE/RIS [2]. We term this dataset as “public
view”. According to previous researches [3, 6, 7], the ten-
month public view data are enough to cover all the backup
links in the Internet topology. Though there are additional BGP
data sources such as route severs, looking glasses, and Internet
Routing Register [16], the amount of additional AS links they
could add upon to the public view is quite incremental [3, 6].
Additionally, some of these additional datasets do not provide
historical archives which further limit their information on the
backup links. So we do not include them here.

B. Policy Inference

After collecting and extracting AS paths as described pre-
viously, we leverage the previous work [17] to infer the
relationship between ASes. Although there are several follow-
up works on relevant policy inference [18]–[20], we prefer [17]
due to its ability of inferring relationships based only on the AS
paths, without any other extra requirements such as data from
Internet registers or active probes. While simple, the author
showed the 99.1% correctness of their inferred relationships
between AT&T and its neighbors. There are also comparison
studies of the accuracy of algorithms in [17] and [19] indicating
that the former one is more accurate in identifying peer-peer
relationship. Furthermore, study in [15] has shown that the AS
relationships inferred by heuristics in [17] are pretty stable with
respect to variations in the observed AS paths. In addition, we
assume that the AS relationships did not change significantly
within a ten-month period. To justify this, we sample the AS
relationships from CAIDA [21] for the past five years. We
check the relationships at ten-month intervals and find that
more than 98.5% of AS pairs do not change their relationships.
The statistics of the inference result is listed in Table I.

# Total # Customer-provider # Peer-peer # Others
117580 90755 (77.2%) 18687 (15.9%) 8138 (6.9%)

TABLE I
STATISTICS OF LINKS OF THE PUBLIC VIEW (THE “OTHERS” INCLUDES
THE SIBLING-SIBLING LINKS AND LINKS WHOSE RELATIONSHIPS HAVE

NOT BEEN DETERMINED).

C. Network Classification

There are several ways to classify the tiers of ASes. Existing
approaches use the degree of an AS, the number of prefixes
originated by an AS, or the distinct AS paths seen from an
AS, etc. However, without considering the AS relationships,
these heuristics may be misleading [6]. For instance, the
degree for an AS could be a mixed set of neighbors including
providers, peers, or customers. Algorithms using the number of
prefixes and distinct AS paths may be too coarse since prefixes
vary significantly in length and route aggregations happen
everywhere. To mitigate these limitations, we use the method
proposed in [6]. This method uses the number of downstream
customer ASes to classify AS hierarchy. According to this rule,
we classify all the ASes into five tiers as shown in Table II.

# Tier-1 # Tier-2 # Tier-3 # Tier-4 # Tier-5
9 479 1588 3454 26233

TABLE II
STATISTICS OF ASES ON EACH TIER.

III. MEASUREMENTS AND OBSERVATIONS

In this section, we perform a detailed measurement study
on the eyeshots of all VPs. First, we measure the eyeshot
of each individual VP to understand the relation between its
eyeshot and various factors. Then, we focus on characterizing
eyeshots of every pair of VPs and investigating if the AS
relationship between two VPs has impact on the differences
between their eyeshots. Finally, we examine how the entire AS
graph is cumulatively constructed by the eyeshots of VPs. We
also explain the possible reasons behind some of the observed
phenomena.

A. Individual VP Eyeshot

We check the effects of several factors on the eyeshot of
each individual VP and outline the determinative factor for
estimating the eyeshot of a single VP.

Total # Tier-1 Tier-2 Tier-3 Tier-4 Tier-5
438 9 116 112 110 91

TABLE III
STATISTICS OF VPS ON EACH TIER.

Rank AS number AS name # of AS links Tier
1 11608 ACTTG 68958 2
2 3277 RUSNET 66353 4
3 12989 HWNG 64333 2
4 1280 ISC 63926 2
5 4513 INTERNAP-4513 63350 2
6 286 KPN 63157 2
7 14361 HOPONE-global 63114 3
8 7575 AARNET 62941 2
9 29073 ECATEL 62743 5

10 2497 IIJ 62660 2

TABLE IV
THE TOP 10 VPS AND THEIR EYESHOTS.

1) Relation with Tier: An intuitive thought that the eyeshot
of a particular VP could have relation with the tier where it
stands and the higher the tier, the better its eyeshot, is actually
not true. To evaluate this, we classify all the VPs according
to their network tiers (as shown in Table III) and check if
the eyeshot has correlation with the tier the VP lies in. Fig. 1
gives the individual value plot of the eyeshots for all tiered
VPs. From the figure, we can clearly see that while all Tier-1
VPs can observe a substantial number of links in general, VPs
on all the other tiers have a high variability on their eyeshots.
For example, there exist Tier-2 VPs who can observe very few
links; on the contrary, there exist Tier-5 VPs who can capture
more than 60,000 links. We also annotate the mean and median
values in the figure, and find that both decrease with tiers.
It should be noted that the median values for Tier-3, Tier-4,
and Tier-5 VPs approach 0 which means that most of the VPs
in these tiers only observe little links, say one or two links.
Furthermore, Table IV enumerates the top ten VPs according
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Fig. 1. Eyeshot vs Tier.
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Fig. 2. Eyeshot vs Degree.
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Fig. 3. Eyeshot vs Prefix.

to their eyeshots. It is surprising that there is no Tier-1 VP
within these ten ASes. While most of them are Tier-2 VPs, we
witness Tier-4 and Tier-5 VPs among this list.
∙ Observation 1: The mean and median values of the eyeshots

decrease with tiers, however the maximum values have no
relationship with tiers, in other words, tier cannot be a
determinate measure to show the eyeshot of a VP.
2) Relation with AS degree: A VP will learn the routes to

each destination from all its neighboring ASes. So intuitively,
VPs with more neighbors may be able to see more links. To
this end, we study if the AS degree of a VP can be used to
predict the eyeshot of this VP. Fig. 2 demonstrates the relation
between the degree of a VP and the number of AS links it can
observe. We find a poor correlation from this figure. While a
high degree (when the AS degree is greater than 1,000) usually
indicates a good eyeshot, there is a high variability among these
middle degree and low degree VPs. For instance, while there
exists some VPs of very low degree (tens) who can provide a
substantial number of links, there are some other VPs of middle
degree (hundreds) but only contribute very limited number of
links to the public view.
∙ Observation 2: The eyeshot of a VP with a large AS degree

is always large; however, the eyeshot of a VP with a small
AS degree is not necessarily small.
3) Relation with the observed prefixes: According to the

global reachability property of the Internet routing, each VP
should be able to receive the route(s) to every routable prefix.
However, due to issues such as route aggregation and policy
filtering, one VP may only observe a restricted number of
prefixes. We collect all the prefixes that are observed by
each VP and draw a scatterplot between the observed prefixes
(normalized by the whole prefix spaces) and the eyeshot of this
VP in Fig 3. We find that the number of AS links each VP can
contribute is highly correlated with the number of observed
prefixes especially when the percentage is less than 65%. This
correlation implies that the number of observed prefixes is a
good indicator to predict the eyeshot of a VP. Further, when
the percentage is larger than 65% the eyeshots remains stable.
∙ Observation 3: The number of observed prefixes is one

determinative measure for the eyeshot of a particular VP. Up
to 65%, the eyeshot of a VP is highly (linearly) correlated
with the number of prefixes it has observed. However, when
exceeding this value, the eyeshot remains stable around
60,000 no matter how many prefixes it can observe.

4) Explanation: We speculate there are following reasons
accounting for the above results, i.e., why the tier or AS degree
of a VP cannot be a good measure for its eyeshot? First,
the existence of route aggregations across the Internet heavily
narrows the eyeshots of some VPs. And the random occurrence
of aggregations may partially explain the high variability of
the eyeshots of VPs on the same tiers. Second, some VPs
do not provide the full table as they are supposed to. This
renders it difficult to see some links from these VPs. For
instance, a VP may regard the central collector as “peer”
instead of “customer”, and will only export the routes from its
customers but not the full table. To validate this conjecture, we
directly contact the Routeview administrator and get positive
confirmation [4]. Third, it is possible that some VPs have not
been able to capture all the backup links. However, this may
not be a major reason given that ten-month public view data
have a very good coverage on the backup links [7].

B. Comparison between VPs

Located in different places, each VP should have its own
view about the Internet topology. Therefore, we compare the
eyeshots of any two VPs, quantify the differences and quest
the reasons behind the observations.

1) Selecting representative VPs: As stated above, ideally,
each VP should be able to see all known address spaces
for the global reachability. However, due to issues such as
prefix aggregation and filtering, the complete address spaces
cannot be seen by all VPs. We differentiate the VPs according
to the following three measures: 1) the number of observed
prefixes, 2) the number of observed ASes, and 3) the number
of the observed links. When ordering the VPs in terms of the
number of observed prefixes, we find all these three measures
dramatically decrease between the 100th VP and the 200th VP,
especially around the 150th VP. So we conservatively choose
the first 100 VPs for the analysis in this section because these
VPs have a good coverage of address spaces, in other words,
they are representative.
∙ Observation 4: Although there are more than 400 VPs in

the public view, most of them contribute very little.
2) Quantifying the differences: To quantify the dissimilarity

between two VP’s eyeshots, we measure the Jaccard distance
between them. As shown in (1), this is calculated by dividing
the sizes of the differences of two sets by the size of the union.
Note that 0 ≤ 𝐽 ≤ 1 measures how different these two eyeshots
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Fig. 4. CDF plot of the Jaccard distance among all VP pairs.
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Fig. 5. Histogram plot of Jaccard distance among all VP pairs.

are. For example, a distance of 0.1 indicates that 10% of the
links are seen from either VP1 or VP2, but not both.

𝐽(𝑠1, 𝑠2) =
∣(𝑠1 − 𝑠2) ∪ (𝑠2 − 𝑠1)∣

∣𝑠1 ∪ 𝑠2∣ (1)

Focusing on the 100 selected representative VPs, in Fig. 4,
we show the cumulative distribution function (CDF) of Jaccard
distances of these

(
100
2

)
= 4950 VP pairs. From the CDF, it

is interesting to find that the curve is approximately normal
with a central tendency 𝜇 = 0.174 and standard deviation
𝜎 = 0.034. To further display this property, Fig. 5 shows
the histogram which can give a more clear sense about the
approximate normality. Through this, we can also learn that,
on an average, the eyeshots of any two representative VPs can
have as high as 82.6% links in common.
∙ Observation 5: The Jaccard distances of the eyeshots of

representative VP pairs approximately follow a nice normal
distribution, i.e., 𝑁(0.174, 0.0342).
3) Impact of peering relationship: We now study how the

peering relationship affects the Jaccard distances between the
VP pairs. Among these 4950 pairs, 3960 pairs do not connect
with each other, 457 pairs have peer-peer relationships, and
533 pairs have customer-provider relationships. As we check,
the average Jaccard distance of unconnected pairs is 17.8%,
while the average value of peer-peer pairs is 15.6% and of
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customer-provider pairs is 15.7%. It makes sense that VP pairs
that do not have connections cannot exchange routes directly,
so averagely, they tend to have less in common between their
eyeshots than those having connections. In addition, we find
the average Jaccard distance of peer-peer pairs and that of
customer-provider pairs are too close to be differentiated.
∙ Observation 6: The eyeshots of VP pairs who are not con-

nected have less in common than those who are connected.
As a further step, we study from the perspective of each

individual VP. We calculate and plot the average Jaccard
distance of each VP with all its unconnected VPs and that
with all its connected ones in Fig. 6. The results confirm the
previous observation that a VP tends to have more in common
with its neighboring VPs than those unconnected ones. We
further measure the average Jaccard distances of each VP with
its providers, peers, and customers in Fig. 7. Note that there are
39 VPs having providers, peers and customers simultaneously,
so we only include them in the figure. We do not see any
obvious difference among these three categories. According to
the valley-free routing policy [17], an AS will export most of
its known to its customers, less to its peers or providers, so
it is expected that the eyeshot of one VP may be covered by
its neighbors differently. However, our experiments show that
this is not the case. That is to say, the eyeshot of a VP is
covered by its neighbors in a relatively random way regardless
of their mutual AS relationship. We believe route aggregation is
one root cause for this phenomenon. Ideally, a provider should



export all its routes to its customer, so the Jaccard distance
should be zero. However, due to aggregations, the provider may
have aggregated some routes before exporting to the customer,
which result in the difference between their eyeshots.
∙ Observation 7: The eyeshot of a VP is covered by its

neighbors in a relatively random way regardless of their
mutual AS relationship.

C. Assembling the Entire AS Graph
We check how the AS graph is cumulatively constructed by

the eyeshots of VPs. In addition to the first 100 VPs, we add
another 50 VPs according to Section III-B1. Though these VPs
do not provide a complete coverage of address spaces, the still
contribute to our study because they have observed amount of
links. Note that we choose VPs using the following orders:

∙ Link-based selection: VPs are chosen based on the eye-
shots, and VPs with more observed links are preferred to
those with fewer ones.

∙ Random-based selection: VPs are chosen randomly.
1) Marginal coverage: Before directly jumping into assem-

bling the AS graph, we are interested in the question: how
much link information of a given VP can also be observed
by the other VPs? To answer this question, for each VP we
calibrate how many other VPs can cover the eyeshot of the
chosen one. Our experimental result exhibits that most of the
eyeshots of VPs can be well covered by tens of other VPs,
and some of them only need less than ten other VPs. For
illustration, in Fig. 8, we take a well-known Tier-1 VP, AT&T
(AS7018), as an example to demonstrate the coverage process,
and other VPs have similar curves with this one (We do not
include them here for the space limitation). We can clearly see
that this VP’s eyeshot can be fully covered by 20 others VPs
even in a random order.
∙ Observation 8: Most of the eyeshots of VPs can be well

covered by tens of other VPs, and some of them are even
covered by less than ten other VPs.
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Fig. 8. Marginal utility on Tier-1 AS7018.

2) Convergence process: In Fig. 9, we examine the con-
vergence process by incrementally adding eyeshots of VPs. A
key observation here is that the random scheme is comparable
with the link-based scheme in building this AS topology graph.
Approximately, 50 VPs can assemble 80% of the entire graph,
and 100 VPs can assemble more than 90%.
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Fig. 9. Convergence process by cumulatively adding VPs.
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∙ Observation 9: Different ways of selecting VPs do not
have many differences on the assembly convergence. Fur-
thermore, randomly choosing 100 VPs can assemble more
than 90% of the entire AS topology graph.
3) Explanation: To explain why the random scheme has

good performance as the link-based one, we calculate for each
AS link how many VPs among these 150 selected ones have
seen it simultaneously. In Fig. 10, we draw the complementary
cumulative distribution function (CCDF). It is obvious that
most of the links can be observed from multiple VPs. For
example, more than 50% of the total links can be seen from
the eyeshots of 75 VPs. To its extreme, there are around 10%
of the links can be seen from the eyeshots of all 150 VPs.
This explains why the random scheme could have such good
performance. Since one link can be captured from multiple
VPs, one still has good chance to observe it when randomly
choosing a VP.

IV. DISCUSSION

Although the data collected from all the public view VPs
have been heavily used to form the basis for many important
researches, the eyeshot of each individual VP has not been in-
tensively studied before. We posit that a thorough investigation
on the eyeshots of VPs will help people to better understand
them and make better use of them in practice. Specifically, the



measurements and observations in Section III could have the
following implications and applications.

First, the operation and maintenance of the VPs for the
measurement infrastructure require lot of money each year.
Several measurement projects or infrastructures finally end up
with the shortage of support funding. For example, NLANR is
a concrete lesson to learn [22]. From our observations 8 and
9, the eyeshots of the current VPs have large redundancy. It is
possible to reduce the number of the VPs while provide similar
measurement power. In this way, the annual cost for the VPs
can be greatly saved. Therefore, the study of how to reduce the
redundancy of VPs while provide the required measurement
power should be an attractive and practical topic.

Second, our characterization on the eyeshots from different
VPs, especially the identified normal distribution (i.e., obser-
vations 5), could be an useful input to construct a mathematical
model to infer how many missing links are there in the ground-
truth of AS topology.

Third, from the perspective of common users, our measure-
ment results, such as observations 4, 8 and 9, can be referred to
save their labours by collecting the data from less VPs without
losing much topological information. Of course, it is required
to pick out a minimum set of VPs that can provide users such
a shortcut in their efforts. From the perspective of management
of the public view, our study is not only a good starting point
for designing an efficient deployment of VPs, but also a good
estimator to estimate the potential of a newly coming VP (such
as lessons learned from observations 1, 2, and 3).

Fourth, the greening of Internet has drawn increasing atten-
tion in recent years. It is a general trend that the Internet should
operate more greenly in future. Our observations in the above
section serve as a good feedback to the relevant administrators
suggesting that certain actions could be taken to make their
monitoring infrastructures more energy-efficient and green.

Though having positive indications, our study also has its
own limitations. For instance, we are focusing on the static
information, i.e., AS links, in this paper. Although AS link is a
most important piece of information in the AS topology study,
there is other information such as dynamics that also need to
be attended in our future work. Furthermore, the experimental
results are customized to our dataset from Dec, 2007 to Sep,
2008. While the results are expected to be held at a different
time window, a detailed evaluation should be carried out before
we make our results widely applicable. All these limitations
will be considered in our coming work.

V. CONCLUSION

This paper differentiates itself from all previous work by a
first step to detailedly study the eyeshots of the public view
VPs. First, we found that the eyeshot of an individual VP is
poorly correlated with its tier or degree which may be under
intuitive assumptions, instead, the number of observed prefixes
is one indicator for the eyeshot. Second, we observed a nice
normal distribution of the Jaccard distances of the eyeshots be-
tween the representative VPs. We also identified that the mutual
AS relationship has no obvious effect on the dissimilarity of
the eyeshots. Third, we found the two different schemes of
selecting VPs do not have much differences on the process of
building the AS topology graph. We further showed that the

eyeshots of these VPs have great redundancy so that randomly
choosing 100 of them can assemble more than 90% of the
entire AS topology graph. For some observations we made,
we have specifically explained the possible reasons behind for
people’s better understanding. At last, we have discussed the
implications, applications as well as limitations of this study,
and the discussion actually formulated our forthcoming agenda.
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