
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE/ACM TRANSACTIONS ON NETWORKING 1

Towards Comprehensive Traffic Forecasting in Cloud
Computing: Design and Application

Yang Peng, Kai Chen, Guohui Wang, Wei Bai, Yangming Zhao, Hao Wang, Yanhui Geng,
Zhiqiang Ma, and Lin Gu

Abstract—In this paper, we present our effort towards compre-
hensive traffic forecasting for big data applications using external,
light-weighted file system monitoring. Our idea is motivated by
the key observations that rich traffic demand information already
exists in the log and meta-data files of many big data applications,
and that such information can be readily extracted through
run-time file system monitoring. As the first step, we use Hadoop
as a concrete example to explore our methodology and develop a
system called HadoopWatch to predict traffic demands of Hadoop
applications.We further implement HadoopWatch in a small-scale
testbed with 10 physical servers and 30 virtual machines. Our
experiments over a series of MapReduce applications demonstrate
that HadoopWatch can forecast the traffic demand with almost
100% accuracy and time advance. Furthermore, it makes no mod-
ification on the Hadoop framework, and introduces little overhead
to the application performance. Finally, to showcase the utility of
accurate traffic prediction made by HadoopWatch, we design and
implement a simple HadoopWatch-enabled network optimiza-
tion module into the HadoopWatch controller, and with realistic
Hadoop job benchmarks we find that even a simple algorithm
can leverage the forecasting results provided by HadoopWatch to
significantly improve the Hadoop job completion time by up to
14.72%.
Index Terms—Cloud computing, data center networks, traffic

prediction, Hadoop.

I. INTRODUCTION

T HE EXPLOSION of big data and cloud applications has
imposed significant challenges on the design of network

infrastructure in data center environments. Researchers have
proposed various new network architectures [1], [23], [39] and
traffic engineering mechanisms [2], [6], [43] to handle the rapid
growth of bandwidth requirement in data center networks.
Many of these proposals leverage the knowledge of application

Manuscript received November 13, 2014; revised April 12, 2015; accepted
July 15, 2015; approved by IEEE/ACM TRANSACTIONS ON NETWORKING Ed-
itor A. Bremler-Barr. This work was supported by HKRGC-ECS 26200014 and
Huawei Noah’s Ark Lab. Part of this work was presented at IEEE INFOCOM
2014.
Y. Peng, K. Chen, W. Bai, Z. Ma, and L. Gu are with Hong Kong Uni-

versity of Science and Technology, Hong Kong (e-mail: ypengab@cse.ust.hk;
kaichen@cse.ust.hk; wbaiab@cse.ust.hk; zma@cse.ust.hk; lingu@cse.ust.hk).
G. Wang is with Facebook, New York, NY 10003 USA (e-mail:

ricewgh@gmail.com).
Y. Zhao is with University of Electronic Science and Technology of China,

Chengdu 610051, China (e-mail: zhaoyangming.uestc@gmail.com).
H. Wang is with Shanghai Jiao Tong University, Shanghai 200240, China

(e-mail: wh.sjtu@gmail.com).
Y. Geng is with Huawei Noah's Ark Lab, Hong Kong (e-mail: geng.

yanhui@huawei.com).
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TNET.2015.2458892

traffic demands to customize network design. For example,
Hedera [2], MicroTE [6], and D3 [43] perform flow-level
traffic engineering and rate control based on predicted traffic
demands. Helios [17], c-Through [39], and OSA [7] rely on
accurate traffic demand estimation to perform dynamic optical
circuit provisioning. More recently, researchers have also
looked into the tight integration of applications and network to
configure the network topology and routing based on applica-
tion run-time traffic demands [19], [40], [42]. All these systems
require comprehensive understanding of application traffic in
data center networks—the ability to forecast traffic demand
before packets enter the network.
However, it is difficult to predict application traffic demand

accurately. All the existing solutions focus on using heuristic
algorithms based on the measurement of network-level pa-
rameters. For example, Hedera [2] and Helios [17] estimate
traffic demands using flow counter measurement on switches;
c-Through [39] andMahout [12] use socket buffer occupancy at
end hosts to estimate traffic demands for different destinations.
However, these schemes have important drawbacks. First, most
of them cannot predict the traffic demand before the traffic
enters the network. Second, parameters observed on network
paths cannot accurately reflect the truth of application demands
due to the noise of background flows and congestion control
at end hosts. Third, they fail to capture the fine-grained traffic
dependencies and priorities information imposed by applica-
tions. As a result, these network-layer solutions are shown to
perform poorly in predicting the real application demands [4],
which could further lead to undesirable performance in network
provisioning and traffic engineering mechanisms using these
demands.
In this paper, we explore an alternative solution to provide

comprehensive traffic forecasting at application layer. With
application-specific information, application-layer traffic fore-
casting is expected to achieve more accurate traffic demand
estimation. However, there are several design issues that make
this approach challenging and interesting for exploration.
• Ahead-of-time: The scheme must be able to predict traffic
demand before the data is sent out to the network, so that
it can be most useful for network configuration and traffic
engineering.

• Transparency: Many big data and cloud applications in
data centers are complex distributed applications. Traffic
forecasting should be transparent to these applications and
do not modify any application codes.

• Light-weighted: Traffic forecasting should be light-
weighted. Many data center applications are large-scale
systems with high performance requirements. The traffic

1063-6692 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE/ACM TRANSACTIONS ON NETWORKING

forecasting system should not introduce much overhead
to degrade the application performance, and it should
scale gracefully with the number of computing nodes and
concurrent jobs.

• Fine-grained: An application-layer traffic forecaster is
expected to provide more fine-grained traffic demand
information than just traffic volume. For example, many
distributed applications have computation barriers that
cause co-dependencies among multiple flows, and co-de-
pendent flows may need to be treated collectively in
transfer to be more meaningful. Such structural informa-
tion will be much useful to enable better network control
and optimization.

We observe that rich traffic demand information already
exists in the log and meta-data files of many big data ap-
plications, and such information can be extracted efficiently
through run-time file system monitoring. We use Hadoop as
a concrete example to explore the design of application-layer
traffic forecasting using file system monitoring. We develop
a system called HadoopWatch, which is a passive monitoring
agent attached to the Hadoop framework that monitors the
meta-data and logs of Hadoop jobs to forecast application
traffic before the data is sent out to network. It does not require
any modification to the Hadoop framework.
We have implemented HadoopWatch and deployed it on a

real small-scale testbed with 10 physical machines and 30 vir-
tual machines. Our experiments over a series of MapReduce ap-
plications demonstrate that HadoopWatch can forecast the ap-
plication-layer traffic demand with almost 100% accuracy and
strict time advance, while introducing little overhead to the ap-
plication performance.
To further demonstrate the utility of accurate traffic fore-

casting made by HadoopWatch, we introduce a case on how the
co-dependent flows predicted by HadoopWatch can be utilized
to improve the data transfer efficiency of Hadoop jobs. Specifi-
cally, we design and implement a simple network optimization
software module, called HadoopOptimizer, into the Hadoop-
Watch controller, and through running Hadoop TeraSort-25G
and TeraSort-50G we show that even a simple optimization
algorithm can leverage the forecasting results provided by
HadoopWatch to significantly improve the Hadoop job com-
pletion time by up to 14.72%. We envision that HadoopWatch
will have more applications than what we discussed in this
showcase example.
In a nutshell, our work is a first step towards comprehensive

traffic forecasting at the application layer. Many research prob-
lems remain to be explored in future work. However, we be-
lieve our work shows early promises of performing comprehen-
sive and light-weighted traffic forecasting through file system
monitoring, which could be a useful building block for tight
network and application integration in cloud and data center
environments.
Roadmap: The rest of the paper is organized as follows.

Section II introduces the background and key observations that
enables the forecasting architecture. Section III presents the
design of HadoopWatch. Section IV discusses the implementa-
tion and evaluation results of HadoopWatch. Section V shows
a concrete example to apply the forecasting results by
HadoopWatch to optimize Hadoop jobs. Section VI reviews

the related works. We discuss the future work and conclude the
paper in Section VII.

II. TRAFFIC FORECASTING VIA FILE SYSTEM MONITORING

Due to a variety of data exchange requirements, there is a
large amount of network traffic in the life cycle of a Hadoop
job. We first briefly introduce the Hadoop architecture and
its dataflow in different stages. Then, to motivate our idea of
forecasting application traffic through external, light-weight
file system monitoring, we introduce the observations and op-
portunities in file systems that provide rich-semantics enabling
traffic forecasting.

A. Hadoop Background

Hadoop consists of Hadoop MapReduce and Hadoop Dis-
tributed File System (HDFS). Hadoop MapReduce is an im-
plementation of MapReduce designed for large clusters, while
HDFS is a distributed file system designed for batch-oriented
workloads. Each job in MapReduce has two phases. First, users
specify a map function that processes the input data to generate
a list of intermediate key-value pairs. Second, a user-defined re-
duce function is called to merge all intermediate values associ-
ated with the same intermediate key [15]. HDFS is used to store
both the input to the map and the output of the reduce, but the
intermediate results, such as the output of the map, are stored in
each node's local file system.
A Hadoop implementation contains a single master node and

many worker nodes. The master node, called the JobTracker,
handles job requests from user clients, divide these jobs into
multiple tasks, and assign each task to a worker node for exe-
cution. Each worker node maintains a TaskTracker process that
executes the tasks assigned to itself. Typically, a TaskTracker
has a fixed number of slots for accepting tasks.

B. Hadoop Dataflows

Many Hadoop jobs are communication intensive, involving a
large amount of data transfer during their execution. We broadly
characterize Hadoop dataflows into three types.
• Import: The map reads data from HDFS. To increase
overall data loading throughput of a job, multiple con-
current map tasks may be scheduled to fetch data in
parallel. Specifically, for each map task, the JobTracker
will specify its input split. As a map task runs, it will fetch
the corresponding data (in the form of key-value pairs)
from HDFS and iteratively perform the user defined map
function over it. Optimized with various scheduling tech-
niques [41], [44], most map tasks achieve data locality,
while there also exist some nonlocal map tasks reading
their input splits from remote DataNodes that involve
network transfer.

• Shuffle: Intermediate results are shuffled from the map to
the reduce. Before the reduce function is called, a reduce
task requires intermediate results from multiple map tasks
as its input. When a map task finishes, it will write its
output to local disk, commit to the JobTracker, and reclaim
the resources. Meanwhile, the reduce task will periodically
query the JobTracker for any latest map completion events.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

PENG et al.: TOWARDS COMPREHENSIVE TRAFFIC FORECASTING IN CLOUD COMPUTING: DESIGN AND APPLICATION 3

Being aware of these finishedmap tasks and their output lo-
cations, a reduce task initiates a few threads and randomly
requests intermediate data from the TaskTracker daemons
on these nodes.

• Export: The reduce writes output to HDFS. Large output
data is partitioned into multiple fix-sized blocks,1 while
each of them is replicated to three DataNodes in a
pipeline [35], [38]. A Hadoop job completes after the
outputs of all reduce tasks are successfully stored.

C. Observations and Opportunities
Rich Traffic Information in File Systems:Most cloud big data

applications, such as Hadoop, have various file system activities
during the job execution. We observe that these file system ac-
tivities usually contain rich information about the job run-time
status and its upcoming network traffic.
First, logging is a common facility in big data applications for

troubleshooting and debugging purposes. However, these log
file entries can also be used to identify network traffic. For ex-
ample, the source and destination of a shuffle flow in MapRe-
duce can be determined after locating a pair of map and reduce
tasks, while such task scheduling results are written in the Job-
Tracker's log.
Moreover, intermediate computing results and meta-data are

periodically spilled to disk due to limited capacity of memory
allocation. The size of all the output partitions of a map task is
saved in a temporary index file, from which we can compute the
payload volume of all the shuffle flows from this map.
In addition, the namespace of a distributed file system may

also be accessible by parsing its meta-data files on disk. For
example, when the HDFS starts up, its whole namespace is
updated in a file named FsImage. Another file called EditLog
is used to record all namespace changes thereafter. Although
Hadoop only maintains a snapshot of the namespace in memory
for frequent remote queries, it can be externally reconstructed
with those two files on disks. The reconstructed namespace can
be used to recover the network traffic generated by HDFS read
and write operations.
Light-Weighted File System Monitoring:We further observe

that these file system activities can be monitored using light-
weighted file monitoring facilities in modern operating systems.
In recent Linux system, there is a file change notification sub-
system called inotify [29]. The key of inotify is to perform file
surveillance in the form of watch, with a pathname and an event
mask specifying the monitored file and the types of file change
events. A file will be monitored after it is tagged to watch,
whereas all the files in a directory will be monitored if the di-
rectory is watched. Table I shows all the valid events in in-
otify. With inotify, we can dynamically retrieve the footprint
of an application with its file system activities. Furthermore,
inotify can monitor file change events efficiently in an asyn-
chronous manner rather than polling. As a result, the applica-
tion's file system operations can be executed in a nonblocking
mode while inotify is running. This effectively minimizes the
impact of monitoring on the Hadoop applications.
In summary, the above observations enable us explore the

idea of forecasting application traffic through external, light-
weight file system monitoring.

1The last block in a file may be smaller.

TABLE I
VALID EVENTS IN INOTIFY

Fig. 1. Architecture of traffic forecasting.

III. HADOOPWATCH

As the first step, we use Hadoop as a concrete example to ex-
plore the detailed design of our traffic forecasting approach. We
choose Hadoop because it is one of the most popular computing
frameworks in today's data centers, and its execution structure
represents several typical traffic patterns in data center applica-
tions. We develop a system called HadoopWatch and show how
we can forecast traffic demand of Hadoop jobs by monitoring
the file system activities. In the following, we first discuss the
HadoopWatch architecture, then introduce the monitor file se-
lection, and finally show how to perform traffic forecasting.

A. Architecture

Based on the above observations, we propose to forecast the
traffic demand of big data and cloud applications by monitoring
their file system activities. Fig. 1 shows the general architecture
of this traffic forecasting framework. It is a passive monitoring
engine attached to a big data cluster, which does not require
any modification to the applications. It continuously monitors
the file system activities of the applications and predict their
traffic demands at run-time. The traffic forecasting framework
has two components, Forecast Agents and Forecast Controller.
We implant a Forecast Agent in each worker/master node to
collect traffic information and report to the centralized Forecast
Controller.
• Forecast Agent: Forecast Agent is a daemon implanted on
each node that collecting run-time file system activities.
To keep it light-weighted, we selectively monitor the spe-
cific files and activities with inotify. To monitor file ac-
cess details, some system call parameters are also collected
and encoded in the redundant space of inotify interface. To
get the content of other bulk data and metadata on disk,
the agent will read them directly. Information collected by
Forecast Agents will be reported to the Forecast Controller.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE/ACM TRANSACTIONS ON NETWORKING

TABLE II
FILES FOR TRAFFIC FORECASTING IN HADOOPWATCH

• Forecast Controller: The main task of the Forecast Con-
troller is to collect reports from all the Forecast Agents
and generate comprehensive traffic demand results. The re-
ported traffic demand information may include the basic
information such as source, destination, and data volume,
and more fine-grained information such as flow dependen-
cies and priorities.

This centralized model is inspired by the success of several
large-scale infrastructure deployments such as GFS [22] and
MapReduce [15], which employ a central master to manage
tasks at the scale of tens of thousands of worker nodes. In addi-
tion, we note that, just as Hadoop, HadoopWatch can be inher-
ently fault-tolerant. For example, whenworker node failure hap-
pens, the log/meta-data information associated with the failed
node is no longer useful because this node is excluded from the
computing framework, thus the Forecast Controller simply dis-
cards any partial information reported from the failed node, and
instead exploits the information from the backup node where
the data replica resides for traffic forecasting (by default, there
are three replicas in HDFS).

B. Monitor File Selection

In Table II, we summarize all the files that should be mon-
itored to forecast the three types of dataflows in Hadoop. The
selection of these files is based on the detailed analysis of the
Hadoop framework and the job execution semantics as follows.
Import: The map needs to read input from HDFS. From

the JobTracker's log, we can easily identify whether a map
task is data-local, rack-local, or nonlocal. For rack-local and
nonlocal maps, they introduce data import from remote nodes
through networks. However, the JobTracker's log does not tell
from which DataNodes a map will read its input data split. To
forecast this information, we pick out the split.dta file. This file
contains a map task's input split information, i.e., the input file
location, offset and length in HDFS.
Shuffle: To forecast the shuffle traffic from a map to a re-

duce, we observe that the output of a map task is stored in a file
named file.out as shown in Fig. 2. To support direct access to all
data partitions in it, there is an index file named file.out.index
that maintains all their offsets and sizes. Since each partition in
file.out corresponds to the payload of a shuffle flow sent to a

Fig. 2. Data flows in shuffle phase.

reduce, we can forecast its volume based on the size of the cor-
responding partition. On the other hand, to infer the source and
destination of a shuffle flow, we use the scheduling result in the
JobTracker's log which includes the information where a map
task or a reduce task is launched.
Export: The reduce may export its output to HDFS, which

entails HDFS writing. In HDFS, each data block is replicated
with multiple replicas (three replicas by default). The HDFS
writing is implemented using a pipeline set up among replica
nodes to maintain data consistency. Fig. 3 shows the diagram of
a pipelined HDFSwriting. First, when a HDFS client requests to
write a block, the NameNode allocates three sequential DataN-
odes and writes this allocation in its log (). Then, before the
block is transferred between each pair of DataNodes, the re-
ceiver side writes a log indicating the upcoming HDFS writing
(–). Finally, when the write completes, its volume is saved
in the DataNode's log (–). Through these log files, we can
forecast the communicationmatrix according to the pipeline and
predict the volume of upcoming flows based on the HDFS block
size (e.g., 64 MB).

C. Traffic Forecasting

As above, HadoopWatch can provide accurate traffic fore-
casting for every data flow, including its source, destination, and
volume. As shown in Table III, the source and destination are
two identities, which can uniquely identify a flow in a Hadoop
job. With these per-flow metrics, we can not only compose the

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

PENG et al.: TOWARDS COMPREHENSIVE TRAFFIC FORECASTING IN CLOUD COMPUTING: DESIGN AND APPLICATION 5

Fig. 3. Pipelined HDFS writing.

TABLE III
PER-FLOW METRICS

overall traffic matrix in the cluster, but also identify fine-grained
flow relations such as dependency and priority.
The source and destination in Table III are logical identities.

To determine the physical locations, we just map the logical
source and destination to the physical nodes. The mapping re-
quires knowledge of task scheduling results and block locations.
Most of these information is plainly accessible by monitoring
files listed in Table II. However, the source locations of map
input blocks and the volumes of reduce export flows cannot be
explicitly captured. Therefore, HadoopWatch develops the fol-
lowing two heuristics to infer these information:
• Source location of a map input block: When the Job-
Tracker schedules a rack-local or nonlocal map task, it will
independently choose the closest block replica to fetch.
For these map tasks, we can translate their input splits to
blockIDs through querying the NameNode. Since there
are rarely two tasks processing the same input dataset
simultaneously, the node where we captured such block
file access event is likely to be the source of the data
import flow.

• Volume of a data export flow: When the reduce task output
is written into HDFS, the data will be divided and stored
into multiple blocks (typically 64 MB) and replicated to
several DataNodes. Because the block size is fixed, in most
cases, the size of an export flow is fixed, i.e., 64 MB. How-
ever, the last block size is uncertain and needs estimation.
Based on the definition of reduce function [15], it is likely
that the output size of a user-defined reduce function is
roughly proportional to its input size. Then, we maintain
a selectivity, , for reduce tasks in a job, which is de-
fined as the output size to its input size. For an upcoming
reduce operation, we estimate its selectivity based on the
selectivities of the reduce operations in recent past using
exponentially weighted moving average (EWMA)

Algorithm 1 Traffic matrix calculation

Input: every : (src, dest, vol)
1: for each do
2: '
3: '
4: (ip1, ip2) '
5: end for

where is the smoothing factor (HadoopWatch uses
). On the other hand, a reduce task 's input size, ,

is the sum of shuffle flow volumes from all map tasks. We
get the estimated reduce output using

For the th export flow of the reduce task , its volume
is calculated by checking whether the maximum

block size is enough to save the remaining bytes

if
otherwise.

Here, stands for the maximum size of a HDFS
block (e.g., 64 MB).

With the above basic data flow information inferred, we are
able to compose the traffic matrix and identify the flow depen-
dency and priority. We believe that this information is useful
for many aspects, e.g., traffic engineering, network profiling, or
transport protocol design. For example, traffic distribution infor-
mation is critical for fine-grained flow scheduling in Hedera [2]
and traffic engineering in MicroTE [6], while flow dependency
and priority information can be incorporated into several recent
deadline-aware transport designs like [37], [43],
and MCP [8] for more intelligent congestion control.
• Traffic matrix: We can easily calculate the traffic matrix in
a cluster with every data flow information. As shown in
Algorithm 1, to calculate the traffic volume between any
two physical nodes ip1 and ip2, we just need to sum up the
volumes of individual flows between them.

• Dependency: We define two types of dependencies, i.e.,
causal-dependency and co-dependency. The causal-depen-
dency means that the initiation of depends on
the completion of . For example, and

in Fig. 4. The co-dependency
specifies that and share a common barrier. The bar-
rier cannot be passed through until the completion of both
flows. One such example is the shuffle flows to the same
reduce task (e.g.,), and another ex-
ample is the pipeline flows replicating the same block (e.g.,

).
We can infer the dependency of two flows based on their
logical source and destination identities in Table III using
Algorithm 2. For example, we know ,
since the destination of and the source of
are both Map 4. Also, , as they share a
same destination, Reduce 2.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 4. Flow patterns in Hadoop.

Algorithm 2 Dependency

Input: and
Output: , 0 otherwise.
1: if ' ' then
2: return 1
3: else if ' ' then
4: return 2
5: else if ' ' then
6: return 3
7: end if
8: return 0

• Priority: Unlike flow dependency that reflects the inherent
structure of Hadoop jobs, flow priority is a metric that de-
pends more on the optimization objectives when the fore-
casted traffic is used in network planning. For different
optimization objectives, we can define different policies
to assign flow priorities. In a normal use case that we
want to boost the execution of a Hadoop job, a flow in an
earlier phase should be assigned to a higher priority. Be-
cause most Hadoop jobs are composed of multiple tasks
(e.g., import map shuffle reduce export), a job
completes when the slowest task is finished. As shown in
Fig. 4, import, shuffle, and reduce flows should be prior-
itized accordingly (e.g.,)
to ensure that the slowest flow finishes as fast as pos-
sible. Another example of priority assignment policy is that
shorter flows in larger co-dependent groups should be as-
signed with higher priorities. Using the “shortest job first”
strategy, finishing shorter flows in a larger co-dependent
group first can quickly decrease the number of blocking
flows and speed up the execution of a Hadoop job.

IV. EVALUATION

A. Methodology

Testbed setup:We deployed HadoopWatch on 30 virtual ma-
chines (VMs) running on 10 physical servers. All the 10 phys-
ical servers are HP PowerEdge R320 with a quad-core Intel
E5-1410 2.8 GHz CPU, 8 GB memory, and a 1-Gb/s network
interface. On each physical server, we set up three Xen VMs
(DomU), and each of the VMs is allocated with one dedicated
processor core (2 threads) and 1.5 GB memory. We run Hadoop
0.20.2 on all the 30 VMs for the traffic forecasting experiments.

Evaluation Metrics: In our evaluation, we study the accuracy
of HadoopWatch in prediction flow volumes, the time advance
of these predictions, and the overhead of HadoopWatch. To col-
lect the ground truth of Hadoop traffic volume and timing, we
use TCPdump to capture the actual time and volume of data
flows. We extract the source and destination of each flow by
parsing the application-level requests and responses in Hadoop
flows. We use the absolute difference between the predicted
volume and actual volume to evaluate the forecasting accu-
racy of HadoopWatch. We use the lead time metric to eval-
uate the time advance, which is defined as

of Hadoop flows.

B. Experiment Results
Accuracy: Fig. 5 shows the traffic volume and forecast accu-

racy for four representative Hadoop jobs: Terasort, Wordcount,
Hive Join, and Hive Aggregation [27]. Overall, it can be seen
that the shuffle and export phase introduced most of the traffic
for these jobs,2 and we achieve high accuracy for all types of
traffic. The slight difference between the forecast results and the
actual ones is mainly caused by the control signals and TCP re-
transmission packets. Furthermore, there are occasionally a few
dead export flows since a slower reduce task will be killed be-
tween a normal task and its backup instance.
Time Advance: Figs. 6–8 show the forecasting lead time for

data import, shuffle, and export flows, respectively. We use
NTP [31] to synchronize the clock on these nodes. The results
show that almost 100% traffic flows are successfully forecasted
in advance. Most data import and export flows occur soon after
the corresponding traffic forecasts (ms), while most
shuffle flows are forecasted much earlier in advance (5–20 s)
because a reduce task only initiates 5 shuffle flows fetching
intermediate data and other shuffle flows are pending. In a
small percent % of flows, we do observe some forecast
delays that flows are forecasted after they are actually sent out.
They are either caused by deviation of clock synchronization
or monitoring delay of inotify events.
Overhead: Fig. 9 compares the execution time of Hadoop

jobs with and without HadoopWatch to assess the overhead in-
troduced by HadoopWatch. For all the four jobs we tested, their
execution time only increases by up to 1%–2% with Hadoop-
Watch running in the cluster.
Dependency: Fig. 10 shows the distribution of flow's co-de-

pendent flow numbers and casual-dependent flow numbers. We
take the 40-GBWordcount job as an example, which consists of
658 map tasks and 20 reduce tasks. Therefore, shuffle flows can
be divided into 20 co-dependent groups. Each group contains
658 co-dependent flows initiated by the same reduce task. On
the other hand, because of the data locality of map tasks, a large
number of them are importing data from local disks. Thus, only
a small number of shuffle flows are casual-dependent on import
flows. Meanwhile, the output export flows of each reduce task
are casual-dependent on its input shuffle flows.
Scalability: Due to the limitations of testbed size, our evalu-

ation results of HadoopWatch are limited to tens of nodes. We
use simulation analysis to understand the scalability of Hadoop-
Watch. We first analyze the major determinants of monitoring

2Note that the output of Terasort is not replicated in remote DataNodes, so it
does not introduce any export flows.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

PENG et al.: TOWARDS COMPREHENSIVE TRAFFIC FORECASTING IN CLOUD COMPUTING: DESIGN AND APPLICATION 7

Fig. 5. Accuracy of traffic volume forecasting.

Fig. 6. Time advance in remote import flow forecasting.

Fig. 7. Time advance in shuffle flow forecasting.

Fig. 8. Time advance in remote export flows forecasting.

Fig. 9. Execution time (seconds).

Fig. 10. Distribution of co/casual-dependent flows.

overhead in Forecast Agent and Forecast controller, then esti-
mate the HadoopWatch overhead in large production settings.
On a worker node, our agent iteratively processes the in-

otify events that are caused by multiple tasks. It just parses
the traffic related information and sends to the controller. The
memory usage is fixed since no extra data is stored locally.
In addition, the CPU usage scale linearly with the number of
active tasks on each node since the execution of each
agent is strictly driven by these tasks' file system events. On

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 11. Agent overhead prediction.

Fig. 12. Central control overhead prediction.

the controller end, the forecasting controller continuously re-
ceives event reports from multiple agents and generates traffic
forecasts accordingly. As a result, its CPU usage scales linearly
with the number of total active tasks . Meanwhile, a lot
of memory is required to store the volumes of shuffle flows be-
tween thesemap tasks and reduce tasks. The total memory usage
exhibits a quadratic growth as increases.
Based on the performance metrics collected on our testbed,

we estimate the potential overhead that HadoopWatch intro-
duces on large production clusters. Figs. 11 and 12 show the es-
timated overhead on clusters with sizes released by Google and
Facebook.We observed that the agent only consume 6.89‰ of a
CPU core under hours of heavyworkload. To support 30 concur-
rent tasks on each node in the Google cluster [9], [46], Hadoop-
Watch agent may take 10% consumption of a CPU core and
fixed memory. Similarly, we estimate the overhead of Hadoop-
Watch central controller. It will only consume a CPU core's 30%
resources and around 50 MB memory to support hundreds of
thousands of tasks running concurrently. In summary, we be-
lieve HadoopWatch is scalable to support traffic forecasting in
large MapReduce clusters.

V. UTILITY OF HADOOPWATCH

Our evaluation in Section IV has shown that HadoopWatch
can predict the Hadoop traffic with high accuracy and further
identify the co-dependency of flows in Hadoop jobs. The pre-
dicted traffic demand can have a variety of benefits from traffic
engineering, flow scheduling, to network optimization, etc. In
this section, we showcase the utility of HadoopWatch through
a concrete example on how co-dependent flows predicted by
HadoopWatch can be utilized to improve the data transfer
efficiency of Hadoop jobs. To this end, we first explain why

and how to optimize co-dependent flows collectively. Then,
we propose and implement a simple HadoopWatch-enabled
optimization scheme into the HadoopWatch controller of our
testbed. Finally, we show that, with accurate prediction from
HadoopWatch, the job completion time of Hadoop benchmarks
can be significantly improved even with the proposed simple
algorithm.

A. How to Optimize Co-Dependent Flows

As introduced in Section III-C, co-dependent flows often
share a common barrier, which cannot be passed through until
the completion of the last flow among them. Thus, in order to be
effective, co-dependent flows must be optimized collectively.
It should be noted that our “co-dependent flows” is similar
to the recently proposed “coflow” concept [10]. A group of
co-dependent flows can be treated as a coflow.
We note that two recent schemes Varys [11] and Baraat [16]

optimize coflows using scheduling only. Instead, we use an ex-
ample in Fig. 13 to illustrate the need of optimizing coflows
using both routing and scheduling. In this example, there are
two coflows (i.e., two groups of co-dependent flows): Coflow
has flows and with sizes 20 and 50Mb, respectively, and
coflow has flows and with sizes 30 and 50 Mb, respec-
tively. Assume the link bandwidth is 100 Mb/s. As a reference
point, the optimal average coflow completion time (CCT) of this
example should be 0.65 s.
The first takeaway is that scheduling alone is not sufficient

to optimize average CCT. If routing is fixed, good scheduling
can minimize the average CCT by determining the sequence of
flows to send out to network. Fig. 13(a) shows a possible routing
with ECMP. With a naive scheduling such as fair sharing, both
coflows are dominated by path , and hence their
CCTs are both 1 s. If using the optimal scheduling shown in
Fig. 13(d), the CCTs for two coflows become 0.5 and 1 s, respec-
tively; apparently, scheduling does play a critical role. How-
ever, the average CCT (in this routing) is only 0.75 s, which
still has a 0.1 s gap to the real optimal value 0.65 s. It is clear
that routing should also play a critical role: The loads of two
paths in Fig. 13(a) are unbalanced, where path
has a traffic load twice that of path .
The second takeaway is that considering routing and sched-

uling separately cannot optimize average CCT. As an example
in Fig. 13(b), a load-balanced routing results in the following:
Both flows of coflow are routed on , while
the flows of coflow on ; now the network is
more balanced. However, the optimal CCTs for coflows and
in this case are 0.7 and 0.8 s, respectively [see Fig. 13(e)], and
the average CCT is 0.75 s, which is still not the optimal. The
reason is that flows of the same coflow are routed through the
same path without taking the flow co-dependence into account,
which leaves little space for scheduling to take effect to reduce
the average CCT.
The conclusion is that both routing and scheduling must

be jointly considered in order to optimize the average CCT.
When performing load-balancing, co-dependent flows in a
coflow should be spread disjointly across the network so that
scheduling can further take effect. In our example, the minimal
average CCT can be achieved by combining the load-balanced
coflow-aware routing in Fig. 13(c) and the scheduling in

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

PENG et al.: TOWARDS COMPREHENSIVE TRAFFIC FORECASTING IN CLOUD COMPUTING: DESIGN AND APPLICATION 9

Fig. 13. Motivating example, where (a)–(c) show different routing schemes and (d)–(f) show the optimal scheduling schemes for (a)–(c). (a) One possible unbal-
anced routing generated by ECMP. (b) Load-balanced routing without taking coflow concept into account. (c) Optimal load-balanced routing considering coflow
concept. (d) Optimal scheduling up on (a). (e) Optimal scheduling up on (b). (f) Optimal scheduling up on (c).

Fig. 13(f). In this case, the CCTs of two coflows are 0.5 and
0.8 s, respectively, and the average CCT is minimal.

B. How HadoopWatch Benefits Coflow Optimization
In light of the above motivating example, we should optimize

co-dependent flows in a coflow as a whole instead of treating
them individually. To this end, information such as flow co-de-
pendence, number of flows in a coflow, flow sizes, etc., is
needed. Fortunately, HadoopWatch can directly benefit such
coflow optimization by providing most of such information
ahead of time. For example, in some cases HadoopWatch can
even forecast the shuffle flows 5–20 s before they are sent to
network as we observed in our evaluation (Section IV-B). This
gives us abundant time to calculate the routing and scheduling
for each flow. In what follows, we introduce a simple Hadoop-
Watch-enabled network optimizer, called HadoopOptimizer,
that leverages the forecasting results provided by HadoopWatch
to optimize Hadoop applications. For simplicity, our focus is
to optimize the average CCT. We must acknowledge that the
proposed algorithm below is by no means optimal, and our
hope is just to demonstrate the utility of HadoopWatch. We
show that even a simple algorithm can leverage the forecasting
results provided by HadoopWatch to significantly improve the
Hadoop job performance. Designing a comprehensive/optimal
coflow routing/scheduling algorithm is challenging and is
beyond the scope of this paper.

C. Simple HadoopWatch-Enabled Optimizer
The HadoopOptimizer framework is shown in Fig. 14. It con-

sists of two modules: 1) the coflow-aware routing module that
calculates the routing path for each incoming flow based on
the coflow information inferred by HadoopWatch; and 2) the
coflow-aware scheduling module that determines the scheduling
priority of each flow based on its path and characteristics (e.g.,
flow size, whether it belongs to the last batch of flows of a

Fig. 14. HadoopOptimizer—a HadoopWatch-enabled network optimization
framework.

coflow). The scheduling module updates the priorities of related
flows when a flow enters the network or completes. It is worth-
while to note that in our current design HadoopOptimizer only
works on large flows, while small flows route through ECMP
by default and receive the highest priority as we will explain
subsequently.
1) Coflow-Aware Flow Routing: The goal of coflow-aware

flow routing is to fully utilize network bandwidth by performing
load-balancing, subject to a soft constraint that all co-dependent
flows in a coflow should use link-disjoint paths. This is because
that in order to further reduce average CCT through scheduling,
co-dependent flows in a coflow should be spread to different
paths as discussed in Section V-A.
When computing a routing path for flow , to approximate

coflow-aware load-balanced routing, we compute the minimal-
weighted shortest path and set the weight on each link as
follows:

(1)

where is the number of co-dependent flows in the same
coflow as using link , and is the relative traffic load on
link . Using , the algorithm in general prefers a light-loaded

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE/ACM TRANSACTIONS ON NETWORKING

(due to) and link-disjoint (due to) path for each incoming
flow . Here, can be calculated by

(2)

where is the flow path used by flow is all the flows
on link is the volume of flow , and is the residual
bandwidth on link that is reserved for elephant flows. This
formula also reflects the time to take to serve all the elephant
flows on link .
Note that HadoopOptimizer performs online flow routing. A

key issue with such online flow routing is that it may lead race
condition, i.e., the order to route flows may affect the effect of
load-balancing. Recall the example in Fig. 13, if we route the
flows in the order of to minimize the maximal
link utilization, the flows will be routed as in Fig. 13(a), which is
not a good load-balanced result. To achieve a better result as in
Fig. 13(c), we should route flows in a decreasing order in terms
of the flow sizes. This requires prior knowledge of incoming
flows. With HadoopWatch, we can predict the incoming flows
and their sizes. Thus, in HadoopOptimizer, if we forecast that
some larger flows will be arriving later, we will reserve paths
for those larger flows proactively.
Another issue is how to handle small flows. Previous mea-

surement study [5] shows that 80% of the flows in datacenters
are less than 10 kB, while most of the bytes are in the 10% of
large flows. Most of these short flows can be completed within
1 or 2 round-trip times (RTTs), and they cannot fully utilize
the link capacity. Thus, explicitly assigning routing paths for
short flows according to link bandwidth is not necessary. In
HadoopOptimizer, we simply use the network bandwidth-delay
product (BDP) to differentiate betweenmice and elephant flows,
and forward mice flows using ECMP. Tominimize the queueing
delay of mice flows, we prioritize them in the network.
2) Coflow-Aware Flow Scheduling: In HadoopWatch, we

observed that co-dependent flows in a coflow may enter the
network asynchronously. Motivated by this, the main idea of
coflow-aware flow scheduling in HadoopOptimizer is to speed
up a coflow only when the last batch of flows (or tail flows) of
this coflow begin to enter the network. This is because accel-
erating the first few flows (or head flows) in a coflow does not
directly translate to the completion of the coflow, as the coflow
completion time is decided by the completion of the last flow.
With HadoopWatch, we know the total number of co-dependent
flows in each coflow a priori, and based on this we can well con-
trol when to speed up.
To minimize average CCT, HadoopOptimizer tries to approx-

imate the shortest job first (SJF) scheduling. However, the SJF
schemes introduced in PDQ [24] and pFabric [3] for scheduling
individual flows do not directly apply to our case of sched-
uling coflows. To simplify the problem, we define the size of
a coflow as the average flow size of all active flows in this
coflow. Once the last batch of flows of a coflow arrives, we
calculate the remaining size of this coflow and assign the pri-
ority accordingly: Smaller coflows will be given higher priori-
ties. In the network, coflows with higher priorities will preempt
those with lower priorities, thus mimicking SJF. We note that
this heuristic is coarse-grained and might be far from optimal,
even though we see impressive performance gains in our eval-
uation subsequently.

One concern with SJF is starvation. However, HadoopOpti-
mizer can well handle such problem. For mice flows, because
they are prioritized in the network, they are free of starvation.
For large flows, to protect them from persistent starvation (ac-
tually temporary packet loss or TCP timeout is less harmful to
large flows), we resort to aging—HadoopOptimizer periodically
calculates the average transmission rate of each coflow in the
network during the past period. If the average transmission rate
of a coflow is less than a predefined threshold, the priority of
this coflow will be increased gradually. We note that another
way to avoid starvation is to use weighted fair queueing (WFQ)
instead of priority queueing, however in our implementation of
this paper, we do not enable WFQ.
As mentioned above, in order to transmit mice flows with

minimal queueing delay, we reserve the highest priority level
to them. Due to the small size of a mice flow, it cannot fully
utilize the link bandwidth, even if multiple mice flows reside on
the same link simultaneously, the competition among thesemice
flows would not introduce severe delay. In our implementation,
we statically provision 5% of link bandwidth for mice flows.
However, we note that dynamically predicting mice flow de-
mand based on its average usage in the past such as [25] can be
adopted in our framework to perform adaptive mice flow band-
width provisioning.
A potential problem with HadoopOptimizer is that, if we

set priorities naively based on the discussion above, we may
need too many priority levels that are beyond the capability of
existing commodity switches. For example, the Pronto-3295
Broadcom switch on our testbed can support 8 priority queues.
Consider that a flow with lower priority will be almost blocked
by flows with higher priority if they share the same link, we
made the following approximation. For any path, there is only
one higher-priority flow; all the rest of the flows share the same
low-priority level (Note that we only refer to large flows here,
all the mice flows use one highest priority level as discussed
above). When a new flow comes, we compare this new flow
with the current higher-priority flow, if the new flow's priority is
higher, then it preempts the current higher-priority flow, whose
priority is demoted to be low; Otherwise, the new flow's priority
is set to be low. When a current higher-priority flow completes,
we promote one low-priority flow to be higher provided that its
priority is the highest among all the relevant flows. In this way,
we only need 3 queues for implementation. One for mice flows
with the highest priority, one for higher-priority large flows,
and one for low-priority large flows.

D. Performance Improvement

We implemented HadoopOptimizer algorithm as a software
module into the HadoopWatch controller to navigate data
shuffle in Hadoop jobs. We expand our 10-server testbed in
Section IV-A to 36 physical servers connected in a 2-layer
leaf-spine network (2 spine switches and 4 leaf/ToR switches),
in which each ToR connects to 9 servers. As before, all the
36 servers are Dell PowerEdge R320 with a quad-core Intel
Xeon E5-1410 2.80 GHz CPU and 8 GB memory and run
Debian GNU/Linux 6.0. We leverage XPath [26] to explicitly
control flow routing, and adopt the built-in priority queueing
function in each switch for flow scheduling.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

PENG et al.: TOWARDS COMPREHENSIVE TRAFFIC FORECASTING IN CLOUD COMPUTING: DESIGN AND APPLICATION 11

Fig. 15. CCT improvement enabled by HadoopWatch. (a) 25G TeraSort on
Hadoop. (b) 50G TeraSort on Hadoop.

Over the Hadoop cluster, we run two Hadoop job bench-
marks: TeraSort-25G and TeraSort-50G.We focus onmeasuring
the improvement of CCT and job completion time (JCT). Our
experiments take as an input parameter, which indicates the
time to speed up a coflow. For example, means that
only when the last 10% of flows in a coflow begin to enter the
network, HadoopOptimizer starts to speed up this coflow. In our
demonstration below, we show CCT and JCT under the baseline
(i.e., without running HadoopOptimizer), , and .
Fig. 15 shows the cumulative distribution function (CDF)

of CCT for TeraSort-25G and TeraSort-50G, respectively. We
make two observations. First of all, enabled by HadoopWatch,
HadoopOptimizer can significantly improve the completion
times of coflows through coflow-aware routing and scheduling.
For example, with , HadoopOptimizer reduces the
average CCT by 13.64% (and 13.79% at the 99th percentile)
for TeraSort-25G, and by 10.2% (and 7.84% at the 99th
percentile) for TeraSort-50G respectively compared to the
baseline. Second, we find that the CCT of is better than
that of . One possible reason is that, in our setting, it is
still premature for us to speed up a coflow when the last 20%
flows of this coflow just start to enter the network.
Fig. 16 demonstrates the CDF of JCT under the baseline,

, and , respectively. In our experiments, we run
both TeraSort-25G and TeraSort-50G for 10 times, and the mea-
sured JCT for each time is plotted as a bar in Fig. 16. It is evident
that the improvement on CCT directly translates to job-level
performance improvement; for example, the JCT can be im-
proved by up to 14.72% in our evaluation. Overall, our simple
design and evaluation already demonstrate the nontrivial bene-
fits brought by HadoopWatch, and we expect HadoopWatch to
be used in more aspects in the future.

Fig. 16. JCT improvement enabled by HadoopWatch. (a) 25G TeraSort on
Hadoop. (b) 50G TeraSort on Hadoop.

VI. RELATED WORKS

Networking researchers have been exploring different ways
to predict and estimate network traffic demands in different en-
vironments. For example, ISPs have employed various traffic
demand matrices in their WAN traffic engineering and capacity
planning [18], [34]. However, these methods required a large
number of past statistics, such as server logs or link data, to
provide reliable estimation of traffic demand in the next period
of time. Such techniques are not suitable in data center net-
works, where most of the longest-lived flows last only a few
seconds [13] and the traffic is elastic.
To gain more instant information for traffic demand fore-

casting in data center networks, many researchers proposed
to estimate the traffic demand based on real-time measuring
socket buffers in end-hosts [12], [39] or counters in network
switches [2], [13], [17]. Such techniques are designed for gen-
eral traffic load prediction at network layer, while our method
targets a more accurate and fine-grained traffic forecasting with
application-level semantics captured in real time.
Various tracing and profiling tools have been proposed to

collect execution information of Hadoop. X-Trace [20] is in-
tegrated into Hadoop to collect cross-layer event traces for per-
formance diagnosis. To avoid modifying Hadoop, researchers
proposed to perform off-line analysis on Hadoop log files for
performance tuning and anomaly detection [21], [36]. How-
ever, HadoopWatch focuses on predicting traffic demands based
on real-time file system monitoring. Compared to a recent at-
tempt that focused on predicting shuffle flows by periodically
scanning Hadoop logs [14], HadoopWatch can provide more
fine-grained traffic forecasting and more scalable event-driven
monitoring.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have proposed to use file system monitoring
to provide comprehensive traffic forecasting for big data and

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE/ACM TRANSACTIONS ON NETWORKING

cloud applications. We developed HadoopWatch, a traffic fore-
caster for Hadoop, that can forecast Hadoop traffic accurately
and efficiently without modifying the Hadoop framework. We
believe application-layer traffic forecasting is a key building
block to enable workload optimized networking in cloud data
centers and tightly integrates network design with applications.
We have implemented HadoopWatch and deployed it on

a small-scale testbed with 10 physical machines and 30 vir-
tual machines. Our experiments over a series of Hadoop
applications demonstrate that HadoopWatch can predict the
application-layer traffic demand with almost 100% accuracy
in advance, while introducing little overhead to the application
performance.
We further demonstrated the utility of HadoopWatch by

showing a case that coflows predicted by HadoopWatch can
be used to improve the performance of Hadoop jobs. For this,
we implemented a network optimizer, HadoopOptimizer, into
the HadoopWatch controller, and through running Hadoop
job benchmarks we found that even a simple optimizer can
leverage HadoopWatch to significantly improve the Hadoop
job completion time by up to 14.72%.
Our work is a first attempt at exploring the space of com-

prehensive traffic forecasting at application layer, and many
follow-up problems remain to be explored in future work. For
example, HadoopWatch is now a traffic forecaster particularly
designed for the Hadoop framework; an important question is
how to generalize it to other frameworks. On the one hand,
by run-time file system monitoring, we believe the Hadoop-
Watch-like idea can not only be applied to Hadoop, but also
to some other frameworks such as Dryad [28], CIEL [32],
Pregel [30], etc. Since most of these distributed computing
frameworks need to cache data blocks in local disks when
performing distributed computation, monitoring file system
activities and analyzing log files can potentially provide data
traffic information. On the other hand, for frameworks based
on memory, such as Spark [45], a possible way for traffic
forecasting might be through monitoring both memory and file
system activities. However, whether this is feasible and how it
can be done require further investigation.

ACKNOWLEDGMENT

This work was performed when Y. Zhao and H. Wang were
interns with the SING Group at Hong Kong University of Sci-
ence and Technology (HKUST).

REFERENCES
[1] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity

data center network architecture,” in Proc. SIGCOMM, 2008, pp.
63–74.

[2] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A.
Vahdat, “Hedera: Dynamic flow scheduling for data center networks,”
in Proc. NSDI, 2010, p. 19.

[3] M. Alizadeh et al., “pFabric: Minimal near-optimal datacenter trans-
port,” in Proc. SIGCOMM, 2013, pp. 435–446.

[4] H. H. Bazzaz et al., “Switching the optical divide: Fundamental
challenges for hybrid electrical/optical datacenter networks,” in Proc.
SOCC, 2011, Art. no. 30.

[5] T. Benson, A. Akella, and D. A. Maltz, “Network traffic characteristics
of data centers in the wild,” in Proc. IMC, 2010, pp. 267–280.

[6] T. Benson, A. Anand, A. Akella, and M. Zhang, “Micro TE: Fine
grained traffic engineering for data centers,” in Proc. CoNEXT, 2011,
Art. no. 8.

[7] K. Chen et al., “OSA: An optical switching architecture for data center
networks with unprecedented flexibility,” in Proc. NSDI, 2012, p. 18.

[8] L. Chen, S. Hu, K. Chen, H. Wu, and D. Tsang, “Towards minimal-
delay deadline-driven data center TCP,” in Proc. HotNets, 2013, Art.
no. 21.

[9] Y. Chen, S. Alspaugh, D. Borthakur, and R. Katz, “Energy efficiency
for large-scale mapreduce workloads with significant interactive anal-
ysis,” in Proc. EuroSys, 2012, pp. 43–56.

[10] M. Chowdhury and I. Stoica, “Coflow: A networking abstraction for
cluster applications,” in Proc. HotNets, 2012, pp. 31–36.

[11] M. Chowdhury, Y. Zhong, and I. Stoica, “Efficient coflow scheduling
with Varys,” in Proc. SIGCOMM, 2014, pp. 443–454.

[12] A. Curtis, W. Kim, and P. Yalagandula, “Mahout: Low-overhead dat-
acenter traffic management using end-host-based elephant detection,”
in Proc. IEEE INFOCOM, 2011, pp. 1629–1637.

[13] A. R. Curtis et al., “DevoFlow: Scaling flow management for high-
performance networks,” in Proc. ACM SIGCOMM, 2011, pp. 254–265.

[14] A. Das et al., “Transparent and flexible network management for big
data processing in the cloud,” in Proc. HotCloud, 2013.

[15] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing on
large clusters,” in Proc. OSDI, 2004, p. 10.

[16] F. R. Dogar, T. Karagiannis, H. Ballani, and A. Rowstron, “Decentral-
ized task-aware scheduling for data center networks,” in Proc. SIG-
COMM, 2014, pp. 431–442.

[17] N. Farrington et al., “Helios: A hybrid electrical/optical switch archi-
tecture for modular data centers,” in Proc. ACM SIGCOMM, 2010, pp.
339–350.

[18] A. Feldmann, N. Kammenhuber, O. Maennel, B. Maggs, R. De Prisco,
and R. Sundaram, “A methodology for estimating interdomain web
traffic demand,” in Proc. ACM IMC, 2004, pp. 322–335.

[19] A. D. Ferguson, A. Guha, J. Place, R. Fonseca, and S. Krishnamurthi,
“Participatory networking,” in Proc. Hot-ICE, 2012, p. 2.

[20] R. Fonseca, G. Porter, R. H. Katz, S. Shenker, and I. Stoica, “X-Trace:
A pervasive network tracing framework,” in Proc. NSDI, 2007, p. 20.

[21] Q. Fu, J.-G. Lou, Y. Wang, and J. Li, “Execution anomaly detection in
distributed systems through unstructured log analysis,” in Proc. IEEE
ICDM, 2009, pp. 149–158.

[22] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The Google file system,”
in Proc. SOSP, 2003, pp. 29–43.

[23] A. Greenberg et al., “VL2: A scalable and flexible data center net-
work,” in Proc. ACM SIGCOMM, 2009, pp. 51–62.

[24] C.-Y. Hong, M. Caesar, and P. B. Godfrey, “Finishing flows quickly
with preemptive scheduling,” in Proc. SIGCOMM, 2012, pp. 127–138.

[25] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang, and V. Gill,
“Achieving high utilization with software-driven WAN,” in Proc.
ACM SIGCOMM, 2013, pp. 15–26.

[26] S. Hu et al., “Explicit path control in commodity data centers: Design
and applications,” in Proc. NSDI, 2015, pp. 15–28.

[27] S. Huang, J. Huang, J. Dai, T. Xie, and B. Huang, “The HiBench bench-
mark suite: Characterization of the MapReduce-based data analysis,”
in Proc. 26th IEEE ICDEW, 2010, pp. 41–51.

[28] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad: Dis-
tributed data-parallel programs from sequential building blocks,” in
Proc. EuroSys, 2007, pp. 59–72.

[29] R. Love, “Kernel Korner: Intro to Inotify Linux J,” 2005.
[30] G. Malewicz et al., “Pregel: A system for large-scale graph pro-

cessing,” in Proc. SIGMOD, 2010, pp. 135–146.
[31] D. L. Mills, “RFC 1305. Network Time Protocol (Version 3),” 1992.
[32] D. Murray et al., “CIEL: A universal execution engine for distributed

data-flow computing,” in Proc. NSDI, 2011, pp. 113–126.
[33] Y. Peng et al., “Hadoopwatch: A first step towards comprehensive

traffic forecasting in cloud computing,” in Proc. IEEE INFOCOM,
2014, pp. 19–27.

[34] M. Roughan, M. Thorup, and Y. Zhang, “Traffic engineering with es-
timated traffic matrices,” in Proc. ACM IMC, 2003, pp. 248–258.

[35] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The Hadoop dis-
tributed file system,” in Proc. IEEE MSST, 2010, pp. 1–10.

[36] J. Tan, X. Pan, S. Kavulya, R. Gandhi, and P. Narasimhan, “Mochi:
Visual log-analysis based tools for debugging Hadoop,” in Proc. Hot-
Cloud, 2009, Art. no. 18.

[37] B. Vamanan, J. Hasan, and T. Vijaykumar, “Deadline-aware datacenter
TCP (D2TCP),” in Proc. SIGCOMM, 2012, pp. 115–126.

[38] R. van Renesse and F. B. Schneider, “Chain replication for supporting
high throughput and availability,” in Proc. OSDI, 2004, p. 7.

[39] G. Wang et al., “c-Through: Part-time optics in data centers,” in Proc.
SIGCOMM, 2010, pp. 327–338.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

PENG et al.: TOWARDS COMPREHENSIVE TRAFFIC FORECASTING IN CLOUD COMPUTING: DESIGN AND APPLICATION 13

[40] G. Wang, T. E. Ng, and A. Shaikh, “Programming your network at run-
time for big data applications,” in Proc. HotSDN, 2012, pp. 103–108.

[41] W. Wang, K. Zhu, L. Ying, J. Tan, and L. Zhang, “Map task sched-
uling in MapReduce with data locality: Throughput and heavy-traffic
optimality,” in Proc. IEEE INFOCOM, 2013, pp. 1609–1617.

[42] K. C. Webb, A. C. Snoeren, and K. Yocum, “Topology switching for
data center networks,” in Proc. Hot-ICE, 2011, p. 14.

[43] C. Wilson, H. Ballani, T. Karagiannis, and A. Rowtron, “Better never
than late: Meeting deadlines in datacenter networks,” in Proc. SIG-
COMM, 2011, pp. 50–61.

[44] M. Zaharia et al., “Delay scheduling: A simple technique for achieving
locality and fairness in cluster scheduling,” in Proc. EuroSys, 2010, pp.
265–278.

[45] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I.
Stoica, “Resilient distributed datasets: A fault-tolerant abstraction for
in-memory cluster computing,” in Proc. NSDI, 2012, p. 2.

[46] X. Zhang et al., “CPI2: CPU performance isolation for shared compute
clusters,” in Proc. EuroSys, 2013.

Yang Peng received the B.S. degree from Wuhan
University, Wuhan, China, in 2010, and the M.Phil.
degree from Hong Kong University of Science and
Technology, Hong Kong, in 2014, both in computer
science.
He is now a full-time Software Developing

Engineer with the Bing search engine, Microsoft,
Redmond, WA, USA. He has research experiences
on system virtualization, big data applications, and
data center networks.

Kai Chen received the Ph.D. degree in computer
science from Northwestern University, Evanston,
IL, USA, in 2012.
He is an Assistant Professor with the Department

of Computer Science and Engineering, Hong Kong
University of Science and Technology, Hong Kong.
His research interesst includes networked systems
design and implementation, data center networks,
and cloud computing.

GuohuiWang received the Ph.D. degree in computer
science from Rice University, Houston, TX, USA, in
2011.
He is an Engineer with Facebook, New York, NY,

USA, working on network systems. Before joining
Facebook, he was a Research Staff Member with
the IBM T. J. Watson Research Center, Yorktown
Heights, NY, USA, where his research has been
focused on new network architectures, network vir-
tualization, and management for cloud data centers.

Wei Bai received the B.E. degree in information
security from Shanghai Jiao Tong University,
Shanghai, China, in 2013, and is currently pursuing
the Ph.D. degree in computer science at Hong Kong
University of Science and Technology, Hong Kong.
His current research interests are in the area of data

center networks.

Yangming Zhao received the B.S. degree in com-
munication engineering from the University of Elec-
tronic Science and Technology of China (UESTC),
Chengdu, China, in 2008, and is currently pursuing
the Ph.D. degree at UESTC.
His research interests include network optimiza-

tion, game theory, and data center networks.

Hao Wang received the B.S. degree in informa-
tion security from Shanghai Jiao Tong University,
Shanghai, China, in 2012, and is currently pursuing
the Master degree in software engineering at the
same university.
His research interests include load balancing

schemes in DCN and distributed computing
optimization.

Yanhui Geng received the B.Eng. and M.Eng. de-
grees from the University of Science and Technology
of China (USTC), Hefei, China, in 2002 and 2005, re-
spectively, and the Ph.D. degree from the University
of Hong Kong (HKU), Hong Kong, in 2009, all in
computer science.
He is a Researcher and Project Manager with

Huawei Noah's Ark Lab, Hong Kong. Before joining
Huawei, he was a Post-Doctoral Research Fellow
with HKU from 2009 to 2012, and was a Senior En-
gineer with the Hong Kong Science and Technology

Research Institute (ASTRI), Hong Kong, from 2012 to 2013. He has over 15
technical publications in international journals and conferences. His research
interests include software-defined networking (SDN), machine learning, big
data analytics, cloud computing, and indoor positioning technology.
Dr. Geng received the IEEE ICC 2010 Best Paper Award.

Zhiqiang Ma received the B.S. degree from Fudan
University, Shanghai, China, in 2009, and the Ph.D.
degree from the Hong Kong University of Science
and Technology (HKUST), Hong Kong, in 2014,
both in computer science.
He is currently the co-founder and CTO of Hututa

Technologies Limited, Hong Kong. His areas of
interest include large-scale distributed computing
and storage systems, operating systems and cloud
computing.

Lin Gu received the B.S. degree from Fudan Uni-
versity, Shanghai, China, in 1996, the M.S. degree
from Peking University, Beijing, China, in 2001, and
the Ph.D. degree from the University of Virginia,
Charlottesville, VA, USA, in 2006, all in computer
science.
He is an Assistant Professor with the Department

of Computer Science and Engineering, Hong Kong
University of Science and Technology (HKUST),
Hong Kong. His research interest includes big data
systems, cloud computing, operating systems, and

wireless sensor networks. He developed the Virtk (a.k.a., t-kernel) operating
system, the CCMR cloud platform, and VOLUME, a datacenter-scale dis-
tributed virtual memory technology.

