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ABSTRACT
Production datacenters operate under various uncertainties such
as tra�c dynamics, topology asymmetry, and failures. Therefore,
datacenter load balancing schemes must be resilient to these un-
certainties; i.e., they should accurately sense path conditions and
timely react to mitigate the fallouts. Despite signi�cant e�orts,
prior solutions have important drawbacks. On the one hand, solu-
tions such as Presto and DRB are oblivious to path conditions and
blindly reroute at �xed granularity. On the other hand, solutions
such as CONGA and CLOVE can sense congestion, but they can
only reroute when �owlets emerge; thus, they cannot always react
timely to uncertainties. To make things worse, these solutions fail
to detect/handle failures such as blackholes and random packet
drops, which greatly degrades their performance.

In this paper, we introduce Hermes, a datacenter load balancer
that is resilient to the aforementioned uncertainties. At its heart,
Hermes leverages comprehensive sensing to detect path conditions
including failures unattended before, and it reacts using timely
yet cautious rerouting. Hermes is a practical edge-based solution
with no switch modi�cation. We have implemented Hermes with
commodity switches and evaluated it through both testbed experi-
ments and large-scale simulations. Our results show that Hermes
achieves comparable performance to CONGA and Presto in normal
cases, and well handles uncertainties: under asymmetries, Hermes
achieves up to 10% and 20% better �ow completion time (FCT) than
CONGA and CLOVE; under switch failures, it outperforms all other
schemes by over 32%.
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• Networks → Network architectures; End nodes; Data cen-
ter networks; Data path algorithms;
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1 INTRODUCTION
Modern datacenter networks enable multiple paths between host
pairs and balance tra�c among them to deliver good performance
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to di�erent bandwidth- and latency-sensitive datacenter applica-
tions [3, 4, 18]. Meanwhile, production datacenters operate under
a multitude of uncertainties, such as congestion, asymmetry, and
failures [5, 10, 14, 17]. Uncertainties arise due to a variety of reasons
that include, among others, tra�c dynamics, link cuts, device het-
erogeneity, and switch malfunctions [19]. Naturally, a datacenter
load balancer must adapt to these uncertainties; i.e., they should (1)
accurately sense path conditions, and (2) appropriately split tra�c
among parallel paths in reaction to path conditions.

However, the standard multi-path load balancing mechanism
used in today’s datacenters, ECMP (Equal Cost Multi-Path) [21], bal-
ances tra�c poorly. ECMP randomly stripes �ows across available
paths using �ow hashing. Because it accounts for neither network
uncertainties nor �ow sizes, it can waste over 50% of the bisection
bandwidth [4].

As a result, many load balancing schemes have been proposed to
address the problem. Despite signi�cant e�orts, prior solutions still
have important drawbacks (see §2 and §7 for details). Some of them,
such as DRB [12] and Presto [20], are insensitive or even oblivious
to path conditions and blindly split tra�c at �xed (e.g., packet
or �owcell) granularity. These solutions su�er in the presence of
asymmetry because the optimal tra�c splitting across parallel paths
depends on tra�c demands and path conditions [5, 14], and schemes
that lack visibility of path conditions are unable to make optimal
decisions. Furthermore, blindly splitting �ows onto di�erent paths
on a round-robin basis can adversely a�ect transport protocols.
Besides the well-known packet reordering problem, we further
unveil the relatively less understood congestion mismatch problem
(§2.2.2).

In contrast, other solutions such as CONGA [5] and CLOVE
[24] are designed to be congestion-aware. Although they can sense
congestion, these solutions only reroute when �owlets emerge.
While �owlet switching helps to minimize packet re-ordering [33],
it is in�exible. As the formation of �owlets is decided by many
factors such as applications and transport protocols, �owlet-based
solutions are inherently passive and cannot always timely react to
congestion by rerouting �ows when needed. We show that this can
easily result in ∼50% performance loss (§2.2.2).

Furthermore, existing approaches for congestion sensing have
key shortcomings. They are either impractical because they require
non-trivial switch modi�cations [5, 25, 35], or ine�cient because
they provide limited visibility into network congestion [23, 24].
Moreover, none of them can detect switch failures such as packet
blackholes and random packet drops, which are frequently wit-
nessed in production datacenters [19]. Our experiments show that
being unable to detect these failures may lead to un�nished �ows
and over 100× worse average FCT.
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Given the above ine�ciencies, we ask the following question: can
we design a resilient load balancing scheme that can gracefully handle
all these uncertainties in a practical, readily-deployable fashion? In
this paper, we present Hermes to answer this question a�rmatively.

At its heart, Hermes detects path conditions via comprehensive
sensing (§3.1). It makes use of transport-level signals such as ECN
and RTT to measure path congestion, while leveraging events such
as retransmissions and timeouts to detect packet blackholes and
random packet drops caused by malfunctioning switches. To further
improve visibility, Hermes employs active probing – guided by the
power of two choices technique [28] – that can e�ectively increase
the scope of sensing at minimal probing cost.

Given path conditions, how to react to the perceived uncertain-
ties is still non-trivial. Considering the passiveness of �owlets, a
natural choice is to actively split �ows at a �ner granularity and
always switching to the best available path instantly. However, our
analysis reveals that such vigorous path changing, even coupled
with comprehensive sensing, can interfere with transport protocols
by causing frequent packet reordering and congestion mismatch
problems.

Therefore, Hermes handles uncertainties timely yet cautiously
(§3.2). On the one hand, rather than being constrained by a �xed
or passive granularity, Hermes is capable of reacting timely once it
senses congestion or failures. On the other hand, instead of vigor-
ously changing paths, Hermes assesses �ow status and path condi-
tions, and makes deliberate rerouting decisions only if they bring
performance gains. This enables Hermes to prune unnecessary
reroutings and to reduce packet reordering and congestion mis-
match, making it transport-friendly.

Hermes is a practical edge-based solution with no switch modi-
�cations. We implemented a Hermes prototype and deployed it in
our small-scale testbed (§4). Testbed experiments as well as large-
scale simulations with the realistic web-search [6] and data-mining
[18] workloads show that (§5):
• Under symmetric topologies, Hermes achieves 10-38% better FCT

than ECMP, outperforms CLOVE-ECN by up to 15% for both
workloads, and achieves comparable performance to Presto and
CONGA.

• Under asymmetric topologies, Hermes outperforms CONGA by
up to 10% due to its timely rerouting when sensing congestion
with the data-mining workload. Furthermore, with better visi-
bility via active probing, it achieves up to 20% better FCT than
solutions with limited visibility such as CLOVE-ECN and Let-
Flow [14].

• In case of switch failures, Hermes can e�ectively detect the fail-
ures, and it outperforms all other schemes by more than 32%.

2 BACKGROUND AND MOTIVATION
In this section, we �rst summarize di�erent sources of uncertainties
in datacenters (§2.1), and then elaborate the limitations of prior
solutions in terms of both sensing and reacting to uncertainties
(§2.2).

2.1 Uncertainties
Datacenters are �lled with the following uncertainties:

• Tra�c dynamics: As shown in previous studies [17], tra�c in
production datacenters can be highly dynamic. Congestion can
quickly arise as a few high-rate �ows start, and it can dissipate
as they complete.

• Asymmetries: Asymmetries are the norm in datacenters. For
example, topology asymmetry can arise as a datacenter evolves
by adding racks and switches over time, which may also intro-
duce coexistence of heterogenous devices (e.g., both 10G and
40G spine switches). Furthermore, it is reported that datacenters
can experience frequent link cuts [17, 19], creating asymmetries.

• Switch failures: Besides link failures that directly cause topol-
ogy asymmetry, production datacenters also su�er from a variety
of switch failures or malfunctions that traditionally have received
less attention. Notably, a recent study of Microsoft production dat-
acenters [19] reveals two types of switch failures that adversely
a�ect network performance: (1) packet blackholes: packets that
meet certain ‘patterns’ (e.g., certain source-destination IP pairs,
or port numbers) are dropped deterministically (i.e., 100%) by
the switch; and (2) silent random packet drops: a switch drops
packets silently and randomly at a high rate. The root causes
of these switch failures include TCAM de�cits in the switching
ASIC, switching fabric CRC checksum errors, and linecards not
being well seated, among others.
Load balancing tra�c under these uncertainties is a challenge. To

deal with tra�c dynamics and asymmetries, an ideal solution needs
to be congestion-aware. To handle failures, it needs to detect them
quickly and accurately. Despite continuous e�orts in recent years,
prior solutions still have important drawbacks as we illustrate in
the following.

2.2 Drawbacks of Prior Solutions in Handling
Uncertainties

We follow Table 1 to discuss the drawbacks of prior solutions,
motivating our design of Hermes.

2.2.1 Limitations in Sensing Uncertainties.
First of all, solutions such as DRB, Presto, and ECMP [12, 20, 21] are
either oblivious to congestion or rely only on local tra�c conditions.
They perform poorly under asymmetry because the optimal tra�c
splitting across paths in asymmetric topologies depends primarily
on tra�c demands and path conditions. Schemes without global
congestion-awareness cannot e�ectively balance the tra�c [5, 14].

Second, existing solutions that are designed to be global congestion-
aware [5, 23–25, 35] have drawbacks too. They are either impracti-
cal because they require non-trivial switch modi�cations [5, 25, 35]
or ine�cient because they only provide limited visibility into net-
work congestion at the end hosts [23, 24].

To illustrate this, we quantify network visibility as the average
number of concurrent �ows observed on parallel paths. We run
a trace-driven simulation based on web-search and data-mining
workloads in a 8×8 leaf spine topology with 10 Gbps links and 128
servers. We measure the visibility of both ToR switches and end
hosts for 2s. The results are shown in Table 2. We �nd that a source
ToR switch can observe congestion status of several parallel paths to
each destination ToR simultaneously, while the same is not the case
for end host pairs. Overall, current end host based solutions [23, 24],
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Schemes
Sensing Uncertainties Reacting to Uncertainties

Advanced Hardware
Congestion Switch Minimum Switchable Switching Method and FrequencyFailure Unit

ECMP [21]
Oblivious Oblivious

Flow Per-�ow random hashing
NoPresto [20] Flowcell (small �xed-sized unit) Per-�owcell round robin

DRB [12] Packet Per-packet round robin
LetFLow [14] Oblivious Oblivious Flowlet Per-�owlet random hashing Yes1

DRILL [16] Local awareness (Switch) Oblivious Packet Per-packet rerouting (according to local congestion) Yes
CONGA [5]
HULA [25] Global awareness (Switch) Oblivious Flowlet Per-�owlet rerouting (according to global congestion) Yes

Clove-INT [24]
FlowBender [23] Global awareness (Endhost) Oblivious Packet Reactive and random rerouting (when congested) NoClove-ECN [24] Flowlet Per-�owlet weighted round robing (according to global congestion)

Hermes Global awareness (Endhost) Aware Packet Cautious rerouting (based on global congestion and failure) No

Table 1: Summary of prior work under uncertainties. Note that unlike link failures that directly cause topology asymmetry,
here switch failure refers to malfunctions such as packet blackholes and silent random packet drops.

Workload Web-Search Web-Search Data-Mining Data-Mining
60% load 80% load 60% load 80% load

Switch pair 1.725 2.344 4.173 5.859
Endhost pair 0.007 0.009 0.016 0.022

Table 2: The average number of concurrent �ows observed
on parallel paths between ToR-to-ToR, host-to-host pairs.

which rely primarily on piggybacked information, lack su�cient
visibility for making appropriate load balancing decisions.

Finally, none of the existing schemes detect switch failures such
as packet blackholes and silent random packet drops. We note that
some solutions such as Presto [20] and DRB [12] rely on a cen-
tral controller to detect link failures; however, they do not detect
switch failures. Moreover, current congestion-aware solutions such
as CONGA [5] estimate congestion level by measuring link uti-
lization; thus, they cannot e�ectively detect switch failures either.
Consider a switch that experiences silent random packet drops;
�ows traversing this switch tend to have a low sending rate due
to frequent packet drops. Then the corresponding paths experi-
encing switch failures will have even lower measured congestion
levels compared to other parallel paths. As a consequence, existing
congestion-aware solutions may shift more tra�c to these undesir-
able paths. In our evaluation, this causes CONGA to perform worse
than ECMP (§5.3.3).

2.2.2 Problems with Reacting to Uncertainties.
Flowlet switching cannot timely react to uncertainties: Many
congestion-aware solutions [5, 24, 25] adopt �owlet switching. The
bene�t is that �owlets provide a �ner-granularity alternative to
�ows for load balancing without causing much packet reordering.
However, because �owlets are decided by many factors such as
applications and transport protocols, solutions relying on �owlet
switching are inherently passive and cannot always timely react to
congestion by splitting tra�c when needed.

Figure 1 shows such an example with CONGA [5]. We have two
small �ows (A, B) and two large �ows (C, D) from L0 to L1 via paral-
lel paths P1 and P2. We use DCTCP [6] as the underlying transport
protocol. At the beginning, CONGA balances load by placing �ow

1LetFlow [14] has been implemented for Cisco’s datacenter switch production line;
however, currently it is not widely supported by commodity switches. For example,
most Broadcom switching chipsets do not support �owlet switching.

10G
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10G 10GL0 L1
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D

Flows

(a) A simple case of 4 �ows

Flow A, B finish

Time

Flow C, D finish

Flow A, B finish

Time

Flow C, D finish

Flow C reroute from to

(b) Comparison of schemes

Figure 1: [Example 1] Flowlet switching cannot timely react
to congestion by splitting �ows under stable tra�c pattern.

A, B on P1 and C, D on P2. After �ow A and B complete, CONGA
senses that P1 is idle. However, when using a �owlet timeout of 100-
500µs [5], CONGA cannot identify �owlets for rerouting, mainly
because DCTCP is less bursty – this is because DCTCP adjusts its
congestion window smoothly, and thus, it is less likely to generate
su�cient inactivity gaps that form �owlets. On the other hand,
a smaller �owlet timeout value (e.g., 50µs [14]) triggers frequent
�ipping, causing severe packet reordering in our simulation. In the
ideal scenario, appropriate rerouting can almost halve the FCTs of
the large �ows.
Vigorous rerouting is harmful: Considering the de�ciency of
�owlets, a natural choice is to split �ows at a �ner granularity and
always switching to the best available path instantly. However, such
vigorous path changing, even coupled with congestion awareness,
can adversely interfere with transport protocols. Besides the well-
known packet re-ordering problem, we further unveil the congestion
mismatch problem (de�ned below) that has previously received little
attention.

Basically, congestion control algorithms adjust the rate (window)
of a �ow based on the congestion state of the current path. Hence,
each rerouting event can cause a mismatch between the sending
rate and the state of the new path. With vigorous rerouting within
a �ow, the congestion states of di�erent paths are mixed together,
and congestion on one path may be mistakenly used to adjust the
rate on another path. We refer to this phenomenon as congestion
mismatch.
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Figure 2: [Example 2] Congestion mismatch results in se-
vere throughput loss and queue oscillation under asymmet-
ric topologies with Presto.
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Figure 3: [Example 3] Distributing loads according to link
capacities does not solve the congestion mismatch problem.

In the following, we show three cases of congestion mismatch
and their impacts. Although we use DCTCP as the transport proto-
col, the problems demonstrated are not tied to any speci�c transport
protocol. To mask the throughput loss caused by packet reordering,
we set DupAckThreshold to 500.

First, we show that for congestion-oblivious load balancing
schemes with small granularity (e.g., Presto [20] and DRB [12]),
congestion mismatch causes throughput loss and queue oscillations
under asymmetries. Consider a simple 3×2 leaf-spine topology in
Figure 2a2 with a broken link from L0 to S1. Flow A is a DCTCP
�ow from L1 to L2, and �ow B is a UDP �ow from L0 to L2 with
a limited rate of 9 Gbps. We adopt Presto with equal weights for
di�erent paths.

As shown in Figure 2b, �ow A only achieves around 1 Gbps
overall throughput, and the queue length of the output port of
spine S0 to leaf L2 experiences large variations. Due to vigorous
rerouting, the congestion feedback (i.e., ECN) of the upper path
constrains the congestion window, resulting in throughput loss in
the bottom path. Furthermore, when �ow A with a larger window
shifts from the bottom path to the upper path, the upper path cannot
immediately absorb such a burst, causing queue length oscillations.

Second, we show that congestion mismatch remains harmful
even if we distribute tra�c proportionally to path capacity. To
illustrate this, consider a heterogenous network with 1 and 10 Gbps
paths shown in Figure 3a. We spread �owcells using 1:10 ratio to
match path capacities and expect both paths to be fully utilized.

However, as shown in Figure 3b, �ow A can only achieve an over-
all throughput of around 5 Gbps. To understand the reason, assume
that the �rst 10 �owcells go through the 10 Gbps path. Because the

2We �ip leaf L2 and omit the unused paths for clarity.
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Figure 4: [Example 4] The hidden terminal scenario: (a)
causes �owA to�ip between spine S0 and S1with stale infor-
mation; (b) causes sudden queue build-up every time when
�ow A reroutes through S1.

path is not congested, DCTCP will increase the congestion window
without realizing that the subsequent �owcell will go through the 1
Gbps path. With a large congestion window, the 11th �owcell is sent
at a high rate on the 1 Gbps path, causing a rapid queue buildup on
the output port of spine S0 to leaf L2. As the queue length exceeds
the ECN marking threshold (i.e., 32KB for 1 Gbps link), DCTCP
will reduce the window upon receiving ECN-marked ACKs without
realizing that such a reduction will a�ect the following �owcells
on the 10 Gbps path. As a result, such a congestion mismatch still
causes throughput loss and queue oscillations.

Third, we show that for congestion-aware solutions, suboptimal
rerouting also leads to severe congestion mismatch. Figure 4a shows
such an example with CONGA. Flow A starts from L0 to L2, and
we add a 3ms pause every 10ms to create a �owlet timeout. Flow
B keeps sending from L1 to L2. We �nd that �ow A keeps �ipping
between spine S0 and S1. This is because no matter which path
�ow A chooses, it does not have explicit feedback packets on the
alternative path; thus, it always assumes the alternative path to be
empty after an aging period (i.e., 10ms as suggested in [5]). As a
result, �ow A will aggressively reroute to the alternative path every
time it observes a �owlet.

We note that imperfect congestion information is unavoidable in
a distributed setting. However, current congestion-aware solutions
[5, 25] do not take this into account, and their aggressive rerouting
may lead to congestion mismatch. As shown in Figure 4b, each time
�ow A reroutes from spine S0 to S1, its sending rate is much higher
than the desired rate at the new path; this causes an acute queue
increase at the output port of S1-L2. These periodic spikes in queue
occupancy can lead to high tail latencies for small �ows or even
packet drops when bu�er-hungry protocols (e.g., TCP) are used.
In large-scale simulations with production workloads (§5.3.2), we
observe that CONGA performs 30% worse with a smaller �owlet
timeout of 50µs compared to that of 150µs, even after we mask
packet reordering. We believe that such performance degradations
are due to congestion mismatch.

3 DESIGN
The limitations discussed in §2 highlight the following properties
of an ideal load balancing solution:
• Comprehensiveness: it should e�ectively detect congestion and

failures to guide load balancing decisions;
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Figure 5: Hermes overview.

Flow-level Variable
rf Sending rate of a �ow

ssent Size sent of a �ow, used to estimate the remaining size
i ft imeout Set if a �ow experiences a timeout

Path-level Variable
fECN Fraction of ECN-marked packets of a path
tRTT RTT measurement of a path

nt imeout Number of timeout events of a path
fr etransmission Fraction of retransmission events of a path

rp Aggregate sending rate of all �ows of a path (∑ rf )
type Characterization of path condition

Table 3: Variables in Hermes.

Parameter Recommended Setting
TECN : threshold for fraction of ECN 40%
TRTT _low : threshold for low RTT 20 − 40µs + base RTT
TRTT _hiдh : threshold for high RTT 1.5×one hop delay + base RTT
∆RTT : threshold for notably better RTT one hop delay
∆ECN : threshold for notably better ECN fraction 3-10%
R: the highest �ow sending rate threshold for rerouting 20-40% of the link capacity
S : the smallest �ow sent size threshold for rerouting 100 − 800KB
Probe interval 100 − 500µs

Table 4: Parameters in Hermes and recommended settings.

• Timeliness: it should quickly react to various uncertainties and
make timely rerouting decisions;

• Transport-friendliness: it should limit its impact (i.e., packet re-
ordering and congestion mismatch) on transport protocols;

• Deployability: it should be implementable with commodity hard-
ware in current datacenter environments.
To this end, we propose Hermes, a resilient load balancing scheme

to gracefully handle uncertainties. Figure 5 overviews the two main
modules of Hermes: (1) the sensing module that is responsible
for sensing path conditions; and (2) the rerouting module that is
responsible for determining when and where to reroute the tra�c.

Akin to previous work [9, 20, 24], we implement a Hermes in-
stance running in the hypervisor of each end host, leveraging its
programmability to enable comprehensive sensing (§3.1) and timely
yet cautious rerouting (§3.2) to meet the aforementioned properties.
Table 3 and 4 summarize the key variables and parameters used in
the design and implementation of Hermes.

3.1 Comprehensive Sensing
3.1.1 Sensing Congestion.

Hermes leverages both RTT and ECN to detect path conditions:

Algorithm 1: Hermes Path Characterization
1 for each path p do
2 if fECN < TECN and tRTT < TRTT _low then
3 type = дood
4 else if fECN > TECN and tRTT > TRTT _hiдh then
5 type = conдested
6 else
7 type = дray

8 if (nt imeout > 3 and no packet is ACKed) or
(fr etransmission > 1% and type , conдested ) then

9 type = f ailed

ECN RTT Possible Cause Characterization
High High Congested Congested path

High Moderate/Low Not enough ECN samples or

Gray path
all delay is built up at one hop

Low High Not enough ECN samples or
the network stack incurs high RTT

Low Moderate Moderately loaded
Low Low Underutilized Good path

Table 5: Outcome of path conditions using ECN and RTT.

• RTT directly signals the extent of end-to-end congestion. While
it is informative, accurate RTT measurement is di�cult in com-
modity datacenters without advanced NIC hardware [26]. Thus,
in our implementation, we primarily use RTT to make a course-
grained categorization of paths, i.e., to separate congested paths
from uncongested ones. While a large RTT does not necessarily
indicate a highly congested path (e.g., end host network stack
delay can increase RTT), a small RTT is an indicator of an un-
derutilized path.

• ECN captures congestion on individual hops. It is supported by
commodity switches and widely used as congestion signal for
many congestion control algorithms [6, 34]. Note that ECN is a
binary signal that is marked when a local switch queue length
exceeds a marking threshold, it can well capture the most con-
gested hop along the path. However, in a highly loaded network
where congestion may occur at multiple hops, ECN cannot re�ect
this. Furthermore, a low ECN marking rate does not necessarily
indicate a vacant end-to-end path, especially when there are not
enough samples.

Given that neither RTT nor ECN can accurately indicate the
condition of an end-to-end path, to get the best of both, we com-
bine these two signals using a set of simple guidelines in Algo-
rithm 1. Speci�cally, we characterize a path to be good if both RTT
measurement and ECN fraction are low. In contrast, if both RTT
measurement and ECN fraction are high, we identify the path to be
congested – this is because a large RTT value alone may be caused
by the network stack latency at the end host, whereas a high ECN
fraction alone from a small number of samples may be inaccurate
as well. Otherwise, in all the other cases, we classify the path to be
gray. Table 5 summarizes the outcome of the algorithm and reasons
behind.
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Scheme Piggy-back Brute-force Power of two Hermes([23, 24]) Probing Choices
Visibility < 0.01 100 >3 >3
Overhead NA 100× 3× 3%

Table 6: Comparison of di�erent probing schemes in terms
of visibility and corresponding overhead. Recall that visibil-
ity is quanti�ed as the average number of concurrent �ows
a sender can observe on parallel paths to each end host
(§2.2.1), and overhead is de�ned as the sending rate of the
extra probe tra�c introduced over the edge-leaf link capac-
ity. Here we consider a 100×100 leaf-spine topology with 105
end hosts and 10Gbps link. A probe packet is typically 64
bytes and the probe interval is set to 500µs.

3.1.2 Sensing Failures.
Hermes leverages packet retransmission and timeout events to infer
switch failures such as packet blackholes and random drops.3

Recall that a switch with blackholes will drop packets from cer-
tain source-destination IP pairs (or plus port numbers) deterministi-
cally [19]. To detect a blackhole of a certain source-destination pair,
Hermes monitors �ow timeouts on each path. Once it observes
3 timeouts on a path, it further checks if any of the packets on
that path have been successfully ACKed. If none have been ACKed,
Hermes concludes that all packets on this path are being dropped
and identi�es it as a failed path. Blackholes including port numbers
can be detected in a similar way.

A switch experiencing silent random packet drops introduces
high packet drop rates. To detect such failures, we observe that
packet drops always trigger retransmissions, which can be captured
by monitoring TCP sequence numbers. Based on this observation,
Hermes records packet retransmissions on each path, and picks
out paths experiencing high retransmission rates (e.g., 1% under
DCTCP) for every τms . We set τ to be 10 by default. Congestion can
cause frequent retransmissions as well. Therefore, Hermes further
checks the congestion status, and identi�es uncongested paths with
high retransmission rates as failed paths (lines 8-9 in Algorithm 1).

3.1.3 Improving Visibility.
Hermes requires visibility into the network for good load balancing
decisions. However, visibility comes at a cost. One can exhaustively
probe all the paths to achieves full visibility, but it introduces high
probing overhead – 100× the capacity of a 10Gbps link (Table 6). In
contrast, piggybacking used in existing edge-based load balancing
solutions [23, 24] incur little overhead, but it provides very limited
visibility.

We seek a better tradeo� between visibility and probing overhead
by leveraging the well-known power-of-two-choices technique [28].
Unlike DRILL [16] that applies this for packet routing within a
switch, we adopt it at end hosts to probe path-wise information
with the following considerations.

First, we �nd that there is no need to pursue congestion informa-
tion for all the paths; instead, probing a small number of them can

3We note that existing diagnostic tools [19, 32] take at least 10s of seconds to detect
and locate switch failures. As a result, they cannot be directly adopted by Hermes as
load balancing requires fast reactions to these failures.
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Figure 6: A simpli�ed model to assess the cost and bene�t
of rerouting. Whether rerouting will shorten a �ow’s com-
pletion time depends on factors such as the rate di�erence
between the new (R2) and current (R1) paths, the gradient of
rate change, and the �ow size.

e�ectively improve the load balancing performance with a�ord-
able probing cost. Second, all path-wise congestion signals have at
least one RTT delay. Hence, probing only a small number of paths
reduces the risk of many end hosts making identical choices and
overwhelming one path while leaving others underutilized.4 Third,
in addition to the two random probes, we add an extra probe on the
previously observed best path. This brings better stability [16, 28]
and increases the chance of �nding an underutilized path [29].

As shown in Table 6, with such a technique, Hermes ensures
that each source can see the status of at least 3 parallel paths to
its destination, which can e�ectively guide load balancing deci-
sions. Meanwhile, it reduces the overhead by over 30× compared
to the brute-force approach. To further reduce the overhead, Her-
mes picks one hypervisor under each rack as the probe agent. In
each probe interval, these agents probe each other and share the
probed information among all hypervisors under the same rack.
This further reduces the overhead by 100×. Note that this approach
can introduce inaccuracies when the last hop latencies to di�erent
hosts under the same rack are signi�cantly di�erent.

Overall, Hermes achieves over 300× better visibility than pig-
gybacking. Its overhead is around 3%, which is over 3000× better
than the brute-force approach.

3.2 Timely yet Cautious Rerouting
Even with comprehensive sensing, reacting to the perceived un-
certainties is still non-trivial. As shown in §2.2.2, the challenges
are two-fold: �owlet switching is passive and cannot always timely
react to uncertainties, whereas vigorous rerouting adversely inter-
feres with transport protocols. To address these challenges, Hermes
employs timely yet cautious rerouting.

On the one hand, instead of passively waiting for �owlets, Her-
mes uses packet as the minimum switchable granularity so that it
is capable of timely reacting to uncertainties. On the other hand,
because vigorous rerouting can introduce congestion mismatch and
packet reordering, Hermes tries to be transport-friendly by reduc-
ing the frequency of rerouting. Unlike prior solutions that perform
random hashing [14, 21], round-robin [12, 20, 24], or always reroute
to the best path [5], Hermes cautiously makes rerouting decisions
based on both path conditions and �ow status.

4This herd behavior caused by delayed information update is elaborated in [27].



Resilient Datacenter Load Balancing in the Wild SIGCOMM ’17, August 21-25, 2017, Los Angeles, CA, USA

Figure 6 illustrates a simpli�ed cost-bene�t assessment Hermes
performs before making rerouting decisions. Consider a �ow that
has already sent some data, and due to changes in network condi-
tions, we need to determine whether to reroute. Rerouting to a less
congested path may result in packet reordering, which in turn can
halve its sending rate (R1 → 1

2R1), assuming TCP fast recovery is
triggered. In this case, whether a rerouting can improve the �ow’s
completion time depends on many factors, such as the sending
rate on the new path (R2), the current path (R1), and the remaining
�ow size. Note that it is a coarse-grained model because: (1) some
metrics such as R2 cannot be e�ectively measured; and (2) it does
not accurately capture the cost of congestion mismatch caused by
frequent rerouting. However, it highlights the need for caution and
helps us identify the following heuristics for cautious rerouting.

First, considering the rate reduction caused by rerouting and the
estimation error of R2 shown in Figure 6, we note that rerouting
is not always bene�cial if R2 is not signi�cantly larger than R1. As
a result, Hermes reroutes a �ow only when it �nds a path with
notably better condition (evaluated by an RTT threshold ∆RTT and
an ECN threshold ∆ECN in our implementation) than the current
path.

Second, it indicates that rerouting a �ow with a small remaining
size may bring limited bene�t; this is because it may �nish before its
sending rate peaks. As a result, Hermes uses the size a �ow already
sent to estimate the remaining size [7, 30] and reroutes �ows only
when the size sent exceeds a threshold S .

Finally, although we cannot accurately measure R2, we can mea-
sure R1 by using CONGA’s DRE algorithm [5]. If R1 is already high,
the potential bene�t of rerouting is likely to be marginal; moreover,
the cost would be high if we reroute to a wrong path (as shown
in the example of Figure 4b). Therefore, we avoid rerouting a �ow
whose sending rate exceeds a threshold R.

To summarize, Algorithm 2 shows the rerouting logic of Hermes.
It is timely triggered for every packet when (1) it belongs to a new
�ow or a �ow experiencing failure/timeout; or (2) the current path
is congested. In the former case (lines 3-12), Hermes �rst tries to
select a good path with the least sending rate rp in order to prevent
local hotspots. If it fails, Hermes further checks gray paths. If it
fails again, Hermes randomly chooses an available path with no
failure. For the latter case (lines 13-23), Hermes �rst tries to evaluate
the bene�t of rerouting. As discussed above, Hermes checks the
sending rate rf and size sent Ssent , and decides to reroute only
when both conditions for cautious rerouting are met (line 14). The
following rerouting procedure is similar to that in the former case,
except that the selected path should be notably better than the
current path (lines 15 and 19). The �ow stays on its original path if
no better path is found.

3.3 Parameter Settings
Hermes has a number of parameters as shown in Table 4. We now
discuss how we set them up. Note that in this section we only
provide several useful rules-of-thumb and leave (automatic) optimal
parameter con�guration as an important future work.

Recall that we use 3 parameters to infer congestion: TRTT _low ,
TECN andTRTT _hiдh (§3.1).TRTT _low is a threshold for good path;
we set it to be 20-40µs (20µs by default) plus one-way base RTT to

Algorithm 2: Timely yet Cautious Rerouting
1 for every packet do
2 Assume its corresponding �ow is f and path is p
3 if f is a new �ow or f .i ft imeout==true or p .type == f ailed

then
4 {p′ } = all good paths
5 if {p′ } , ∅ then
6 p∗ = Arдminp∈{p′} (p .rp )

/* Select a good path with the smallest

local sending rate */

7 else
8 {p′′ } = all gray paths
9 if {p′′ } , ∅ then

10 p∗ = Arдminp∈{p′′} (p .rp )
11 else
12 p∗ = a randomly selected path with no failure

13 else if p .type == conдested then
14 if f .ssent > S and f .rf < R then
15 {p′ } = all good paths notably better than p

/* ∀p′ ∈ {p′ }, we have p .tRTT − p′.tRTT > ∆RTT
and p .fECN − p′.fECN > ∆ECN */

16 if {p′ } , ∅ then
17 p∗ = Arдminp∈{p′} (p .rp )
18 else
19 {p′′ } = all gray paths notably better than p
20 if {p′′ } , ∅ then
21 p∗ = Arдminp∈{p′′} (p .rp )
22 else
23 p∗ = p /* Do not reroute */

24 return p∗ /* The new routing path */

ensure that a good path is only lightly loaded.TECN is an indicator
for congested path, we set it to be 40% to ensure the path is heav-
ily loaded. To set TRTT _hiдh , we use per-hop delay as a guideline.
Note that each fully loaded hop introduces a relatively stable de-
lay. This value can be calculated by ECN markinд threshold

Link capacity with
DCTCP [6]. We set TRTT _hiдh to be base RTT plus 1.5× of the one
hop delay. Such a value suggests that the path is likely to be highly
loaded at more than one hop. Due to di�erent settings, TRTT _hiдh
is con�gured to be 300µs in our testbed and 180µs in simulations.
Sensitivity analysis in §5.4 shows that Hermes performs well with
TRTT _hiдh between 140µ to 280µs in simulations.

For probing, our evaluation suggests that an interval of 100-
500µs brings good performance, and we set the default value as
500µs. For rerouting, the key idea is to ensure that each rerouting
is indeed necessary. ∆RTT is the RTT threshold to ensure a path is
notably better than another; we set it to be the one hop delay (80µs
in simulation and 120µs in testbed) to mask potential RTT mea-
surement inaccuracies. Similarly, we set the ECN fraction threshold
∆ECN to be 3-10% (5% by default). Moreover, we �nd that setting S
to be 100-800KB can avoid rerouting small �ows, and improve the
FCT of small �ows under high load. Also, setting R to be 20-40% of
the link capacity can avoid rerouting �ows with high sending rates,
which e�ectively improves the FCT of large �ows. The performance



SIGCOMM ’17, August 21-25, 2017, Los Angeles, CA, USA H. Zhang et al.

of Hermes is fairly stable with the above settings, and we set S to
be 600KB and R to be 30% of the link capacity by default.

4 IMPLEMENTATION
We have implemented a Hermes prototype and deployed it in our
testbed. We enforce the explicit routing path control at the end
host using XPath [22]. Note that our implementation is compatible
with legacy kernel network stacks and requires no modi�cation to
switch hardware.
End host module: The end host module is implemented as a
Linux kernel module, residing between TCP/IP stacks and Linux
qdisc. It can be installed and removed while the system is running
without recompiling the OS kernel. The kernel module consists of
four components: a Netfilter TX hook, a Netfilter RX hook,
a hash-based �ow table, and a path table. Note that it operates at
both TX and RX paths.

The operations in the TX path are as follows: (1) The Netfilter
TX hook intercepts all outgoing packets and forwards them to the
�ow table; (2) We identify the �ow entry the packet belongs to and
update its state (e.g., size sent, sending rate, sequence number, etc.);
(3) Then we compute the packet’s path using Hermes’s rerouting
algorithm; (4) Note that each path in XPath [22] framework can
be identi�ed by a unique IP address. So after obtaining the desired
path, we add an IP header to the packet and write the desired path
IP into the destination address �eld.

The operations in the RX path are as follows: (1) The Netfilter
RX hook intercepts all incoming packets; (2) We identify the �ow
entry of this packet and update its �ow state; (3) We identify the
path this �ow uses and update the path state; (4) After updating
information, we remove the outer IP header and deliver this packet
to the upper layer. In addition to the kernel module, we generate
probe packets using a simple client-server application.
System overhead: To quantify the system overhead introduced by
Hermes, we install it on a server with 4-core Intel E5-1410 2.8GHz
CPU and a Broadcom BCM57810 NetXtreme II 10Gigabit Ethernet
NIC. We generate more than 9Gbps of tra�c with more than 5000
concurrent connections. The extra CPU overhead introduced is less
than 2% compared to the case where the Hermes end host module
is not running. The measured throughput remains the same in both
cases.
Switch con�guration: We con�gure L3 forwarding table, ECN/RED
marking, and strict priority queueing (two priorities) at the switch.
Inspired by previous work [26], we classify pure ACK packets in
the reverse path into the high priority queue for more accurate RTT
measurements.

5 EVALUATION
We evaluate Hermes using a combination of testbed experiments
and large-scale ns-3 simulations. Our evaluation seeks to answer
the following questions:
How does Hermes perform under a symmetric topology?
Testbed experiments (§5.2) show that Hermes achieves 10-38% bet-
ter FCT than ECMP, outperforms CLOVE-ECN by up to 15%, and
achieves comparable performance to Presto. In a large simulated
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Figure 7: Tra�c distributions used for evaluation.

topology, we show that Hermes performs close to (and slightly bet-
ter than) CONGA for the web-search (and data-mining) workload
(§5.3.1).
How does Hermes perform under an asymmetric topology?
Testbed experiments with a link cut show that Hermes performs 12-
26% better than CLOVE-ECN (§5.2) and signi�cantly outperforms
Presto and ECMP at high loads. Moreover, we �nd that Hermes is
very competitive in a large simulated topology with a high degree
of asymmetry (§5.3.2): 1) For the web-search workload, Hermes
is within 4-30% of CONGA. Compared to LetFlow and CLOVE-
ECN, cautious rerouting in Hermes leads to up to 3.3× better FCTs
for small �ows at high loads; 2) For the data-mining workload,
Hermes outperforms CONGA by up to 10% due to its more timely
rerouting. With active probing, Hermes achieves up to 20% better
FCT than prior solutions with limited visibility (e.g., CLOVE-ECN
and LetFlow).
How e�ective is Hermes under switch failures? (§5.3.3) We
simulate both silent random packet drop and packet blackhole
scenarios, and our results show that Hermes can e�ectively sense
and avoid both types of failures, achieving more than 32% better
FCT compared to all other schemes.
How does each design component contributes and how ro-
bust isHermes under di�erent parameter settings? (§5.4) We
evaluate the bene�ts brought by good visibility and cautious yet
timely rerouting separately. Results show that both components
contribute to over 10% improvements in the overall outcomes. More-
over, we also �nd that Hermes’ performance is stable under a variety
of parameter settings.

5.1 Methodology

Transport: We use DCTCP as the default transport protocol. In
our testbed, we use the DCTCP implementation in Linux kernel
3.18.11 [1]. In our simulator, we implement DCTCP on top of ns-3’s
TCP New Reno protocol, faithfully capturing its optimizations. The
initial window is 10 packets. We set both initial and minimum value
of TCP RTO to 10ms . We set other parameters as suggested in [6].
Schemes compared: Besides ECMP, we compare Hermes with
the following solutions:
• CONGA [simulation] We simulate CONGA following the param-

eter settings in [5]. However, because DCTCP is less bursty than
TCP, the default 500µs �owlet timeout value is too big. For a fair
comparison against �owlet-based solutions, we tried di�erent
�owlet timeout values and adopted the best one (i.e., 150µs) in
our simulations.

• LetFlow [simulation] We simulate LetFlow with a �owlet time-
out value of 150µs (as we do for CONGA).
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Figure 8: [Testbed] Topology used for testbed experiments.

• Presto* [testbed, simulation] Similar to [14], we implement a
variant of Presto (Presto*) to isolate performance issues from
those caused by packet reordering. We spray packets instead
of �owcells, and implement a reordering bu�er to mask packet
reordering.

• CLOVE-ECN [testbed, simulation] We evaluated two versions
of CLOVE: Edge-Flowlet and CLOVE-ECN via both testbed ex-
periments and simulations. We only show the results of CLOVE-
ECN since it slightly outperforms Edge-Flowlet in most cases.
We do not simulate CLOVE-INT since it requires programmable
switches and it is shown to be outperformed by CONGA [24].
We set a 150µs �owlet timeout value in simulations. For testbed,
we pick the best �owlet timeout value (i.e., 800µs) after trying
di�erent values.

Remark: We do not compare against MPTCP [31] because there is a
lack of a reliable ns-3 simulation package, and the latest publicly
available MPTCP Linux release su�ers from performance instabil-
ity [20, 23]. Note that MPTCP su�ers from incast issues and has
been shown to be outperformed by CONGA in many cases similar
to those we consider. Moreover, we have implemented FlowBen-
der [23] on top of DCTCP in our testbed, and we follow the default
settings in [23]. However, the performance is close to ECMP. One
possible reason is that the workload or topology do not suit the de-
fault parameter settings. Hence, we omit the results of FlowBender
to avoid unfair comparison.
Workloads: We use two widely-used realistic workloads observed
from deployed datacenters: data-mining [18] and web-search [6]. As
shown in Figure 7, both distributions are heavy-tailed. Particularly,
the data-mining workload is more skewed with 95% of all data bytes
belonging to about 3.6% of �ows that are larger than 35MB, which
makes it more challenging for load balancing [5]. We adopt the �ow
generator in [8], which generates �ows between random senders
and receivers under di�erent leaf switches according to Poisson
processes with varying tra�c loads.
Metrics: We use �ow completion time (FCT) as the primary per-
formance metric. Besides the overall average FCT, we also break
down the FCT for small �ows (<100KB) and large �ows (>10MB)
in some cases to better understand the results. The results are the
average of 5 runs.

5.2 Testbed Experiments

Testbed setup: Our testbed consists of 12 servers connected to 4
switches. As shown in Figure 8a, the servers are organized in two
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Figure 9: [Testbed] Overall avg FCT in the symmetric case.

racks (6 servers each). We adopt the same topology as used in prior
work [5, 14, 24], and all servers and switches are connected with
1Gbps links. Given that, there is a 3:2 oversubscription at the leaf
level. We also consider an asymmetric case, where we cut one of
the links between a leaf switch and a spine switch as indicated in
Figure 8b.

Our servers have 4-core Intel E5-1410 2.8GHz CPU and a Broad-
com BCM5719 NetXtreme Gigabit Ethernet NIC. All the servers run
Linux kernel 3.18.11. The switches are Pronto 3295 48-port Gigabit
Ethernet switch. Since the base RTT of our testbed is around 100µs,
we set standard ECN marking threshold to 30KB accordingly. We
use a simple client-server application to generate tra�c according
to the two workloads discussed above and measure the FCT on the
application layer. We compare Hermes with ECMP, CLOVE-ECN,
and Presto*, all of which are implementable on our testbed.
The symmetric case: Figure 9 shows the results for both the
web-search and data-mining workloads in the symmetric case. We
see similar trends in both workloads. First, we �nd that Hermes
performs increasingly better (10-38%) compared to ECMP as the
load increases. This is as expected because ECMP su�ers more
from hash collisions at higher loads. Moreover, Hermes performs
9-15% better at 30-70% loads compared to CLOVE-ECN. This is
because Hermes has better visibility and can react to congestion
more timely than �owlet-based solutions, especially under low and
medium loads. Also, we observe that Hermes performs closely to
Presto*, which is shown to achieve near-optimal performance in
symmetric topologies [20].

Another observation is that Hermes outperforms Presto* by∼13%
at 90% load with the web-search workload. One possible reason is
that our testbed is not perfectly symmetric because links may not
have exactly the same capacity. As a result, Presto* may always be
constrained by the bottlenecked link similar to the case shown in
Example 2 of §2.2.2. Such congestion mismatch caused by imperfect
symmetry may a�ect Presto* under very high load. In comparison,
Presto* is more stable in the data-mining workload. We believe that
this is due to the more bursty nature of the web-search workload,
which has a smaller inter-�ow arrival time and a larger number of
small �ows.
The asymmetric case: We repeat the above experiments for the
asymmetric topology. Note that we only consider loads up to 70%
relative to the symmetric case, because the bisection bandwidth is
only 75% of the symmetric case.

First, we observe that the performance of ECMP deteriorates
after the load exceeds 40-50%. This is because the link between
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Figure 11: [Testbed] Web-search workload statistics in the
asymmetric case. Note that for large �ows we normalize the
FCT to Hermes to better visualize the results.

spine 1 and leaf 1 becomes fully loaded. Moreover, we observe that
Hermes performs 12-30% better than CLOVE-ECN at 30-65% loads —
with both workloads and among di�erent �ow size groups (Figure
11). Similar to the symmetric case, this demonstrates Hermes’s
better visibility and more timely reaction to congestion compared
with CLOVE-ECN. Note that CLOVE-ECN achieves comparable
performance to Hermes at 70% load. One possible reason is that
more �owlets are created at high loads, thus CLOVE-ECN can more
timely converge to a balanced load.

For Presto*, we take the path asymmetry into account and assign
weights for parallel paths statically to equalize the average load
[14]. However, we �nd that even with topology-dependent weights,
Presto* fails to match Hermes’s performance. We believe that the
root cause is congestion mismatch. As the load increases, di�erent
paths begin to experience di�erent levels of congestion because
the tra�c matrix is not symmetric. As a result, the congestion
window of Presto* is always constrained by the most congested
path, and ECN signals are also mismatched among di�erent paths.
Such mismatch greatly a�ects the normal transport behavior (as
shown in the Examples 2 and 3 of §2.2.2) and causes a dramatic
increase in FCT after the load exceeds 60%.

5.3 Deep Dive with Large Simulations
Due to testbed limitations, our experiments contain 4 switches, 1
Gbps links, and 1 link failure. Using simulations, we further evalu-
ate Hermes with a larger topology, di�erent degrees of asymmetry,
and multiple types of switch failures. Specially, we look into the
performance of di�erent schemes in detail, and many of our ob-
servations echo our design rationale of timely triggering, cautious
rerouting, and enhanced visibility.
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Figure 12: [Simulation] Overall avg FCT (baseline topology).

5.3.1 Baseline.
We �rst inspect the performance of Hermes under a symmetric 8×8
leaf-spine topology with 128 hosts connected by 10Gbps links. We
simulate a 2:1 oversubscription at the leaf level, typical of today’s
datacenter deployments [5]. Figure 12 shows the overall average
FCT for the web-search and data-mining workloads. For the web-
search workload, Hermes outperforms ECMP by up to 55% as the
tra�c load increases. As a readily-deployable solution, we observe
that Hermes is always within 17% of CONGA (requiring switch
modi�cations) at all levels of loads. For the data-mining workload,
Hermes is 29% better than ECMP at high load. Moreover, unlike the
web-search workload, we �nd that Hermes can slightly outperform
CONGA, by up to 4%.
Analysis: The distinction between CONGA and Hermes under
the data-mining and web-search workloads suggests the impor-
tance of visibility and timely reaction. On the one hand, CONGA
outperforms Hermes for the web-search workload. One key reason
is that CONGA achieves better visibility by keeping track of all
the �ows on a leaf switch, as shown in Table 2. On the other hand,
Hermes performs slightly better for the data-mining workload be-
cause of its timely reaction to congestion. To explain this, note that
the data-mining workload contains more large �ows; hence, it is
more challenging to deal with because multiple large �ows may
collide on one path [5]. Furthermore, the data-mining workload has
a much bigger inter-�ow arrival time. So when there are no bursty
arrivals of new �ows, the packet inter-arrival time of these large
�ows can be quite stable. Therefore, CONGA cannot always timely
resolve such bottlenecks because there are not enough �owlet gaps,
as shown in the Example 1 of §2.2.2. In comparison, Hermes can
timely reroute these �ows once congestion is sensed and a vacant
path is found.

5.3.2 Impact of Asymmetric Topology.
We further compare Hermes with CONGA, LetFlow, Clove-ECN
and Presto* under an asymmetric topology. We adopt the baseline
topology, and reduce the capacity from 10Gbps to 2Gbps for 20% of
randomly selected leaf-to-spine links. Note that we normalize the
FCT to Hermes in order to better visualize the results.
Under theweb-searchworkload: As shown in Figure 13, CONGA
performs over 10% better than the other schemes in most cases.
Hermes, CLOVE-ECN and LetFlow achieve similar performance.
This is because the web-search workload contains many small �ows
and is also more bursty. Dynamics such as frequent �ow arrival
are likely to create �owlet gaps to break large �ows into small
sized �owlets. With enough �owlets, CLOVE-ECN and LetFlow can
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Figure 13: [Simulation] FCT statistics for the web-search workload in the asymmetric topology (normalized to Hermes).
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Figure 14: [Simulation] FCT statistics for the data-mining workload in the asymmetric topology (normalized to Hermes).
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Figure 15: [Simulation] CONGA with di�erent �owlet time-
out values (web-search). To evaluate the impact of conges-
tionmismatch, we try to mask the impact of packet reorder-
ing by implementing a reordering bu�er [15].

quickly converge to a balanced load even without good visibility.
In comparison, recall that Hermes outperforms CLOVE-ECN by
9-15% with the web-search workload in testbed experiments. One
possible reason is that our 1Gbps testbed has a higher RTT, thus
CLOVE-ECN converges more slowly.

However, excessive rerouting opportunities may negatively af-
fect small �ows without cautious rerouting. As we can see in Figure
13b and 13d, the average and the 99th percentile FCTs for small �ows
grow dramatically for �owlet-based solutions as the load increases.
This is because small �ows are broken into several �owlets under
high loads; thus, they are heavily a�ected by packet reordering
and congestion mismatch. In comparison, Hermes outperforms the
competition by 1.5-3.3× at 90% load due to its cautious rerouting.
Under the data-miningworkload: Figure 14 shows that Hermes
outperforms CONGA by 5-10%. Compared to the baseline (Figure
12b), we observe that the timely reaction of Hermes brings more
obvious performance gains. This is perhaps because Hermes can
e�ectively resolve collisions of large �ows on the 2Gbps links. We

also observe that Hermes is 13-20% better than CLOVE-ECN and
LetFlow. This is because the data-mining workload is signi�cantly
less bursty. When there are not enough rerouting opportunities
(i.e., �owlets for CLOVE-ECN and LetFlow), solutions without good
visibility can hardly balance the tra�c.
Validating congestion mismatch: Similar to our testbed experi-
ments, we observe that Presto* with topology-dependent weights
fails to achieve comparable performance to others under the asym-
metric topology. To further validate the e�ect of congestion mis-
match caused by vigorous rerouting, we �x the tra�c load at 80%
and run CONGA with di�erent �owlet timeout gaps. We mask
packet reordering to rule out their impact. As shown in Figure
15, we �nd that reducing the �owlet timeout from 500µs to 150µs
improves FCT (by ∼6%) due to more rerouting opportunities. How-
ever, further reducing the timeout value to 50µs degrades FCT by
∼30%. This indicates that even congestion-aware solutions su�er
from congestion mismatch. With such a small �owlet gap, CONGA
changes path vigorously. This, in turn, negatively a�ects the normal
behavior of transport protocols as we showed in the Example 4 of
§2.2.2.

5.3.3 Impact of Switch Failures.
We next evaluate Hermes under failure scenarios. We adopt the
baseline topology and randomly select one core switch to simulate
silent random packet drop and packet blackhole [19]. Note that
because only 7 out of 8 core switches are working appropriately,
we consider tra�c loads up to 70%. We compare Hermes against
CONGA, Presto*, LetFlow, and ECMP.
Silent randompacket drop: To simulate the silent random packet
drop scenario, we set the drop rate to 2% on a randomly selected
core switch. Figure 16 shows the performance of di�erent schemes.



SIGCOMM ’17, August 21-25, 2017, Los Angeles, CA, USA H. Zhang et al.

0

5

10

15

20

25

30

30 40 50 60 70

F
C

T
(m

s)

Load (%)

ECMP CONGA
Hermes Presto*
LetFlow

(a) Overall avg FCT

0

1

2

3

4

30 40 50 60 70

F
C

T
(m

s)
Load (%)

ECMP CONGA
Hermes Presto*
LetFlow

(b) Small �ow (<100KB) avg

Figure 16: [Simulation] Performance with random packet
drops (web-search).
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Figure 17: [Simulation] Performance with packet blackhole
(web-search).

First of all, we observe that Hermes outperforms all other schemes
by over 32%; this is because it can e�ectively sense the failure and
avoid routing through the failed switch. ECMP has 1.7-2.3× higher
FCT compared to Hermes even at low loads; this is because about
1/8th of the �ows traverse the failed switch using ECMP and are
a�ected by the high packet drop rate. We also observe that CONGA
performs similarly to ECMP. To explain this, note that �ows travers-
ing the failed switch tend to have a low sending rate due to frequent
packet drops. Therefore, CONGA paradoxically shifts more tra�c
to such undesirable paths because it senses and balances tra�c
based on network utilization. Presto* is more heavily a�ected be-
cause all the �ows have to go through this failed switch and thus be
a�ected.5 LetFlow is comparatively less a�ected because random
packet drops create more rerouting opportunities on the a�ected
paths. However, without the ability to explicitly detect and avoid
failures, LetFlow still performs ∼1.5× worse than Hermes.
Packet blackhole: To simulate the packet blackhole scenario, we
drop packets for half of the source-destination IP pairs from Rack 1
to Rack 8 deterministically on one randomly selected switch. Figure
17 shows the performance of di�erent schemes.

As expected, Hermes can e�ectively detect the blackhole after 3
timeouts; hence, all the �ows can �nish, and Hermes achieves over
1.6× better FCT than others. For ECMP, a �xed group of �ows from
Rack 1 to Rack 8 will be hashed to the failed switch, which leads to a
∼1.5% of un�nished �ows (Figure 17b). The un�nished �ows greatly
enlarge the average FCT, which makes ECMP 9-22× worse than
Hermes. Similar to the random drop scenario, CONGA paradoxi-
cally shifts more �ows to the failed switch because it appears to be
5Note that we observe good average FCT for small �ows in case of Presto*. One possible
reason is that Presto* has a lower network utilization on all the paths, as all large �ows
are heavily a�ected and cannot send at high rates.
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Figure 18: [Simulation] Hermes deep dive (data-mining).
Here “without both" refers to Hermes without both probing
and rerouting.
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Figure 19: [Simulation] Sensitivity to TRTT _hiдh and ∆RTT .

less congested. This results in a higher portion of un�nished �ows
and higher FCT compared to ECMP. Presto* works in a round-robin
manner so all the �ows can �nish. However, the average FCT is still
greatly enlarged because all the corresponding �ows are a�ected.
Finally, we see that LetFlow performs the second best because it
can timely reroute the a�ected �ows. However, it is still over 1.6×
worse than Hermes because it cannot explicitly detect and avoid
failures.

5.4 Performance Breakdown and Robustness

E�ectiveness of probing and rerouting: We have already shown
that good visibility and timely yet cautious rerouting together bring
good performance. Now we further investigate the incremental ben-
e�ts of some key design components, e.g., probing and rerouting,
using the data-mining workload. Figure 18a shows that probing
and rerouting bring around 20% and 10% improvement to the over-
all average FCT respectively. A similar trend is observed for the
large and small �ows as well. This observation validates that ac-
tive probing can e�ectively increase the visibility of end hosts,
and timely rerouting can e�ectively resolve hotspots caused by
collisions among large �ows.
Impact of probe intervals: Figure 18b shows that compared to
Hermes without probing, a 500µs probe interval brings around
11-15% improvement, while reducing the probe interval to 100µs
brings around 1-3% improvement.
Sensitivity of parameter settings: We next study how di�erent
parameter settings a�ect the performance of Hermes. Figure 19a
and 19b show the sensitivity analysis for ∆RTT and TRTT _hiдh .
First, we observe that the FCT is relatively stable when these two
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parameters are set around the suggested values. Another observa-
tion is that the web-search and data-mining workloads experience
di�erent trends as TRTT _hiдh and ∆RTT increase. To understand
this, recall that the web-search workload is more bursty; so it tends
to create frequent rerouting opportunities. Therefore, a conserva-
tive parameter setting (i.e., highTRTT _hiдh and ∆RTT ) brings better
performance because it can prune excessive reroutings. However,
because the data-mining is less bursty, an aggressive parameter
setting leads to better performance. We have also tested other pa-
rameters and observed that Hermes performs well and relatively
stable around the settings suggested in §3.3.
Di�erent transport protocols: We �nally check the performance
of Hermes with TCP under the 8×8 topology in simulation. For Her-
mes, we rely only on RTT to sense congestion. Since TCP is more
bursty and has a larger RTT, we set∆RTT andTRTT _hiдh 1.5× larger
and keep all the other parameters unchanged. For CONGA, we set
the �owlet timout to be 500µs. Under the web-search workload,
Hermes is within 10-25% of CONGA at all loads in both baseline
and asymmetric topology. Under the data-mining workload, Her-
mes performs almost identically to CONGA in most cases (�gures
omitted due to space limitation). We have observed a similar trend
for DCTCP in §5.3, except that CONGA performs slightly better
relative to Hermes. This is because TCP is more bursty, thus more
likely to create su�cient �owlet gaps.

6 DISCUSSION
Hermes is not a panacea. Here, we discuss some design tradeo�s
and potential deployment concerns.
Endhost based sensing: The choice of pushing congestion aware-
ness to the network edge makes Hermes readily deployable and
resilient to uncertainties at the same time. However, we note that
visibility at end hosts, although enhanced by active probing, is still
limited in comparison to switch-based solutions [5, 25, 35]. Better
visibility often leads to better initial routing assignments, which
can be especially important for small �ows. For example, our eval-
uation shows that CONGA outperforms Hermes in the web-search
workload, which has a relatively smaller average �ow size.
E�ectiveness of the rerouting design: Compared to �owlet-
based solutions, the choice of timely yet cautious rerouting is the
key for faster reaction to congestion, especially when tra�c is
too steady to create enough �owlet gaps. As a result, Hermes out-
performs �owlet-based solutions under the relatively stable data-
mining workload (Figure 12b and 14). However, when �ows are
small and bursty, dynamics such as frequent �ow arrival are likely to
create enough �owlet gaps, making �owlet-based solutions equally
e�cient (Figure 13).
Number of parameters: Hermes introduces a number of parame-
ters to e�ectively sense path conditions and to make deliberate load
balancing decisions. As a result, deploying Hermes requires more
tuning compared to solutions with much simpler load balancing
logics. At this point, we provide some rules of thumb for param-
eter tuning. A full exploration of the optimal parameter settings
together with an automatic parameter tuning procedure would
greatly simplify the deployment of Hermes. We consider it as an
important future work.

Burst avoidance and stability: Hermes takes at least one RTT
to sense and react to uncertainties, and thus, it does not directly
handle microbursts [16]. As for stability, recent congestion-aware
load balancing solutions [5, 24, 25] have demonstrated that stable
performance can be achieved in practice as long as network state is
collected at �ne-grained timescales. Compared to these solutions,
Hermes can more e�ectively prevent path oscillations and bursts
caused by synchronized routing choices because: 1) Hermes lever-
ages the power of two choices to avoid the herd behavior; and 2)
Hermes does not reroute small �ows and �ows with a high sending
rate.

7 RELATEDWORK
The literature on datacenter load balancing is vast. Among them,
we only discuss some representative ones close to this work.

Presto [20], DRB [12] and RPS [13] are per-packet/�owcell based,
congestion-oblivious load balancing schemes. We have shown that
they su�er from congestion mismatch under asymmetry.

CONGA [5] and Expeditus [35] employ congestion aware switch-
ing on specialized switch chipsets to load balance the network.
HULA [25] and CLOVE-INT [24] leverage advanced programmable
switches [2, 11] to achieve better visibility.

LetFlow [14] leverages �owlet switching to automatically con-
verge to a balanced tra�c share among parallel paths. However, we
have shown that �owlets cannot always timely react to congestion
under stable tra�c patterns, which makes LetFlow converge slowly
and achieve suboptimal performance.

CLOVE-ECN [24] adopts per-�owlet weighted round-robin at
end hosts, where path weights are calculated based on piggybacked
ECN signals. Due to its limited visibility and slow reaction to con-
gestion, CLOVE-ECN performs up to 25% worse than Hermes under
an asymmetric topology.

MPTCP [31] is a transport protocol that routes several sub�ows
concurrently over multiple paths. Because sub�ows do not change
paths, MPTCP does not su�er from the congestion mismatch prob-
lem. However, MPTCP has some important drawbacks [5, 23, 24].
First, it modi�es the end host networking stacks, which makes it
challenging to deploy in multi-tenant environments. Moreover, it
performs poorly in incast scenarios because several connections
are maintained simultaneously for each �ow.

DRILL [16] is a switch-local, per-packet load balancing solution
with a major goal of resolving micro bursts under heavy load. DRILL
does not consider asymmetric topologies in their design, and it
reroutes every packet vigorously with only local information. As a
result, it also su�ers from congestion mismatch under asymmetry.

FlowBender [23] reroutes �ows blindly whenever congestion is
detected by end hosts. Such random and vigorous rerouting brings
sub-optimal performance under high loads.

Finally, all the aforementioned schemes lack the ability to timely
react to switch malfunctions, which results in signi�cant perfor-
mance degradation as we showed in §5.3.3.

8 CONCLUSION
This paper has introduced Hermes, a datacenter load balancer re-
silient to uncertainties such as tra�c dynamics, topology asym-
metry, and failures. Hermes leverages comprehensive sensing to
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detect uncertainties (including switch failures unattended before),
and reacts by timely yet cautious rerouting. We have implemented
Hermes with commodity switches and evaluated it through testbed
experiments and large simulations. We demonstrated that Hermes
handles uncertainties well: under asymmetries, Hermes achieves
up to 10% (20%) better FCT than CONGA (CLOVE); under switch
failures, it outperforms all other schemes by over 32%.
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