
1 Automatically configuring
2 the network layer of data
3 centers for cloud computing

C. Hu
M. Yang
K. Zheng
K. Chen
X. Zhang

B. Liu
X. Guan4 With the requirement of very large data centers for cloud computing,

5 the challenge lies in how to produce a scalable and inexpensive
6 design to interconnect a large number of servers in data centers
7 while providing fault tolerance and high network capacity. Internet
8 Protocol (IP)-based data center networks (DCNs) can support a
9 sufficiently large number of machines and dynamic multi-path

10 routing. However, the complex and error-prone manual
11 configuration of IP-based DCNs hinders its deployment. In this
12 paper, we propose DCZeroconf, a fully automatic IP address
13 configuration mechanism, to eliminate the burden of manual
14 configurations of the IP addresses of servers and switches in data
15 centers. We have implemented a prototype system to validate the
16 effectiveness of DCZeroconf via extensive experiments and
17 simulations. The evaluation results demonstrate that DCZeroconf
18 supports different topologies, and the assigned IP addresses can be
19 automatically adjusted upon dynamic topology changes. In addition,
20 the entire automatic process can be completed in seconds or less.

21 Introduction
22 The design of a more efficient and scalable data center
23 network (DCN) has attracted tremendous interest in both
24 research and operation communities, where the physical
25 topology, addressing, and routing mechanisms are
26 accentuated as the three primary issues to be considered
27 [1, 2]. In general, most of the recent research proposals
28 follow four directions. First, the scaling and multi-path
29 routing problem is solved by adding Layer 3 Internet
30 Protocol (IP) switches or routers to inherit the scalability
31 characteristics and equal-cost multi-path (ECMP) forwarding
32 features from IP networks. Given the proven spectacular
33 success of IP networks for interconnecting billions of hosts in
34 the Internet, many practical data centers are already
35 constructed from multiple IP subnets [3, 4]. The second
36 direction involves the construction of DCNs based on
37 Ethernet, because of its low cost, high bandwidth, preset
38 addressing, and automatic configurations. However,
39 traditional Ethernet and its spanning-tree-based forwarding
40 cannot support two required features of data centers:
41 large-scale characteristics (thousands of millions of servers)
42 and multi-path forwarding [5]. Therefore, the Ethernet

43proponents seek methods, such as EtherProxy [6],
44SEATTLE [7], and SPAIN [5], to scale the data centers and
45to utilize the redundant physical paths. The third direction is
46the new design of the physical DCN topology construction
47and addressing, as well as the routing algorithm, e.g.,
48Fat-Tree [1], DCell [2], and BCube [8]. Each of these designs
49usually provides a unique interconnection topology, designs
50a specific addressing mechanism based on the topology, and
51proposes a specific routing mechanism according to the
52topology and the addressing. Most recently, a fourth
53direction of study focuses on a way to build hybrid electrical/
54optical data centers by making use of the very large
55bandwidth advantage of optical circuit switching
56technologies such as C-Through [9] and Helios [10].
57Compared to other categories of approaches sketched
58above, IP-based DCNs can elegantly support a sufficiently
59large number of machines, along with dynamic, flexible load
60balancing and routing with available protocol stacks and
61devices. However, an underlying drawback of the IP-based
62large-scale DCNs is the complex configurations of its
63network layer. The IP addresses of the servers and
64intermediate Layer 3 switches or routers (in the remainder of
65this paper, we use the general term Bswitch[to refer to a
66Layer 3 switch) need to be configured before the routing

�Copyright 2011 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each reproduction is done without
alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of this paper may be copied by any means or distributed

royalty free without further permission by computer-based and other information-service systems. Permission to republish any other portion of this paper must be obtained from the Editor.

Digital Object Identifier: 10.1147/JRD.2011.2165751

C. HU ET AL. 3 : 1IBM J. RES. & DEV. VOL. 55 NO. 6 PAPER 3 NOVEMBER/DECEMBER 2011

0018-8646/11/$5.00 B 2011 IBM

67 table can be automatically computed. The configuration
68 becomes more complex, difficult to manage, and error-prone
69 for the network administrators, especially when a large
70 number of virtual machines (VMs) dynamically migrate
71 among physical servers. In this paper, we investigate the
72 solution of automatically configuring the network layer of
73 IP-based DCNs.

74 Motivations and goals
75 Several benefits motivate us to seek a fully automatic
76 solution that can configure the IP addresses for VMs, servers,
77 and switches inside the IP-based DCNs. First, the cost of
78 maintaining a data center, especially the overhead on manual
79 IP address configuration, which currently accounts for
80 15%–30% of total capital expense,1 can be significantly
81 reduced. Second, manually configuring today’s data
82 networks is error-prone [11], and curbing manual
83 configuration activities in DCNs can substantially minimize
84 the risk of human errors. Third, the scale of DCN changes
85 according to the customer’s demand on applications, which
86 requires frequent configuring and re-configuring of the IP
87 addresses of the machines inside the DCN; therefore, the cost
88 and overhead of evolving (i.e., changing the scale of) the
89 DCNs can be reduced by an automatic address configuration
90 mechanism.
91 The goal of this paper is to design a mechanism that
92 requires zero manual intervention during the configurations
93 on the IP addresses of DCNs with the following specific
94 features. First, each VM/server and each switch port can be
95 automatically and correctly configured with a proper IP
96 address regardless of what physical topology is employed to
97 interconnect the machines. Second, when the DCN topology
98 changes, e.g., due to plugging in or removing a VM/host/
99 switch, the IP addresses can be adaptively adjusted upon

100 the change. Third, the mechanism is scalable to a large
101 number of devices, e.g., hundreds of thousands of machines,
102 and the configuration time for such a large DCN is as fast
103 as seconds or less. Finally, the mechanism should be easy
104 to deploy in today’s DCNs and future DCNs. The main
105 contribution of this paper is the design and implementation of
106 an automatic address configuration mechanism for IP-based
107 data centers, which achieves the above goals.

108 Related work and challenges
109 Dynamic Host Configuration Protocol (DHCP) [12] is the
110 most widely deployed scheme for automatic configuration of
111 IP addresses within the same subnet. One or more DHCP
112 servers are employed to record the available IP addresses and
113 to eliminate allocation conflicts of addresses to hosts. When
114 a new host joins the subnet, the host seeks a DHCP server
115 and then requests an unused IP address from the DHCP

116server. The hosts and the DHCP servers should be in the
117same subnet so that the broadcast of the DHCP protocol
118messages can be received by a requesting host and the DHCP
119server. To apply DHCP into data centers, the configuration of
120the DHCP servers in each subnet, or the creation of virtual
121network cards on a single DHCP server for each subnet, also
122requires manual efforts in all the subnets, and the number
123of the subnets could be in the thousands. In addition, if the
124DHCP relay were employed in a large-scale date center with
125hundreds of thousands of machines, the inefficient global
126broadcast of DHCP messages would be a large traffic burden.
127Zeroconf [13] can also be used for automatically assigning
128IP addresses. A Zeroconf-enabled host first randomly
129selects an address and validates its availability by
130broadcasting queries to the network. The address will be
131reserved for the host if no reply shows that the address has
132already been occupied; otherwise, the host randomly selects
133another address and repeats the validation process. Since
134the number of servers in a DCN could be as large as
135hundreds of thousands, naive modifications on switches to
136allow Zeroconf broadcasting inside such a large DCN will be
137costly and inefficient.
138In the context of DCNs, Portland [14] and DAC [15]
139can automatically assign addresses. Portland develops a
140distributed location discovery protocol (LDP) to allocate the
141physical media access control (PMAC) addresses of servers
142and switches. PMAC is the private address dedicated for
143multi-rooted tree topology, e.g., Fat-Tree [1]. Therefore, the
144specific design of Portland on PMAC is not easily extended to
145other network topologies. DAC has a centralized server that
146learns the physical topology of the network and maps it to the
147logical addresses with the help of a blueprint. DAC is a generic
148method to configure all kinds of addressing on an arbitrary
149topology; however, it focuses on the initial setup of a DCN
150and does not seriously consider the cases in which the data
151center topology changes. To solve the topology-change
152problem with DAC, manual intervention is still required to
153input a new blueprint, which depicts the changed topology
154and corresponding addresses. Furthermore, the configurations
155of VMs by DAC are also left unknown in its proposal.
156By reviewing the related work in the literature, we
157summarize the following challenges to achieve all the goals
158mentioned above. First, for scalability reasons, large-scale
159data centers are divided into a considerable number of
160subnets (e.g., thousands of subnets), and this feature limits
161the power of DHCP or Zeroconf in DCN, which can only
162solve the address conflicts in a single subnet.
163Second, assigning IP addresses to intermediate devices like
164switches and routers also constitutes an indispensable
165configuration procedure to enable the devices to forward
166ordinary IP packets. However, the traditional DHCP or
167Zeroconf only configures the IP addresses for end hosts
168but not for the intermediate IP switches or routers used to
169build up the underlying communication channels.

1This information comes from an internal IBM report on information technology (IT) for cloud
computing in 2009.

3 : 2 C. HU ET AL. IBM J. RES. & DEV. VOL. 55 NO. 6 PAPER 3 NOVEMBER/DECEMBER 2011

170 Third, in the context of cloud computing, emerging
171 applications or services will be constantly changed or
172 reconfigured by the providers to adapt to new customer
173 demands or marketing feedbacks [3]. Currently, the topology
174 change is not uncommon in the data centers. New servers
175 will be added to a data center if the computing demand on the
176 data center is increased. As the demand continues to increase,
177 the scale of the DCNs continues to evolve. Therefore, it is
178 crucial, yet challenging, that the IP address configurations
179 can automatically adapt to such topology changes.

180 System overview
181 In this paper, we propose DCZeroconf to automatically
182 configure the network layer of DCN. Before delving into the
183 design details, we first define the terminologies as follows.
184 In modern data centers, the servers are placed in racks and
185 the servers in the same rack are usually connected to the same
186 switch. Such a switch is known as a top-of-rack (TOR)
187 switch. The servers and TOR switches form the access layer
188 of a data center, and to connect the TOR switches in an
189 access layer, more Layer 3 switches are employed. For the
190 topology used to connect the racks, DCZeroconf makes no
191 specific assumptions about it.
192 DCN should support rapid VM migration, which in
193 turn calls for separating names from locations. We follow
194 the naming convenience discussed in [3], where an
195 application-specific address (AA) and a location-specific
196 address (LA) are maintained for each VM. DCZeroconf will
197 assign a LA to a physical server, and the LA is routable

198inside the data center. An AA will be assigned to a VM, with
199which the applications can identify a service running on a
200specific server/VM. When a VM is migrated from one server
201to another, the routable LA has to be changed, while the
202AA remains the same. Also, the mapping between the AA
203and LA will be changed, and the directory service will keep
204the latest mapping between AA and LA. With the mapping
205between an AA of a specific server/VM and the LA of
206the physical server it locates, one can find and reach the
207service running on that server/VM.
208The DCZeroconf system is a two-tier mechanism that
209automatically configures the IP addresses inside the data
210center. We have a top configuration server called a Central
211Regulator (CR) and a configuration server called a Rack
212Regulator (RR) in each rack. Note that one RR is required for
213each broadcast domain if several broadcast domains are in a
214same rack. Figure 1 provides an overview of how
215DCZeroconf works and can be understood as follows.
216In the first step, the network administrator determines an
217available IP address pool that can be used in the data center
218and provides it as input to the CR, and this is the only manual
219effort required by DCZeroconf during the automatic
220configuration. For the example in Figure 1, the IP addresses
221for the servers inside the data center could be employed
222for internal use only, and a Network Address Translation
223(NAT) is functioning at the gateway; thus, the entire 32-bit
224address space (for IPv4) can be the pool for the CR.
225Next, the CR partitions the available IP addresses into
226blocks and informs each RR regarding the block(s) that can

Figure 1

Addressing hierarchy.

C. HU ET AL. 3 : 3IBM J. RES. & DEV. VOL. 55 NO. 6 PAPER 3 NOVEMBER/DECEMBER 2011

227 be used to configure the servers and switches within the
228 corresponding rack. For instance, the CR will send an
229 address block 192.168.1.1–192.168.1.255 to a RR when
230 receiving a request.
231 After the RR is configured, it then automatically assigns
232 the IP addresses to each VM, server, and switch. We may
233 continue with the example above for which the address block
234 192.168.1.1–192.168.1.255 is assigned to the RR. The RR
235 selects one address from the block to configure itself first,
236 e.g., 192.168.1.1. Then, the RR replies to the address
237 configuration request from the port of any switch with one of
238 the addresses in the block, e.g., 192.168.1.2. In addition, the
239 RR will send an IP address segment to any server in the same
240 rack after receiving an address configuration request from
241 the requesting server, e.g., 192.168.1.128–192.168.1.159.
242 Each VM in that server will be allocated with one IP address
243 from the address segment.
244 During the procedure associated with DCZeroconf, the
245 difficulty lies in how to coordinate the address assignment
246 between 1) CR and RR, 2) RR and servers/VM, and 3) RR
247 and switches.

248 Address assignment between CR and RR
249 To assist the negotiation between the CR and RR,
250 connections between each RR and the CR are required that
251 form a control plane path over the data path for traffic
252 forwarding. The introduction of such an extra control plane is
253 not associated with a large cost, and many literature studies
254 make use of a center regulator/scheduler to control the
255 switches/servers in a data center and indicate such a control
256 plane [3, 14, 16]. In fact, there is no critical bandwidth
257 requirement on a control plane, so that a commodity switch
258 fabric can be used to construct the communication channel.
259 Aside from connecting them with direct cables, a wireless
260 networking with encrypted communication channel for
261 configuration purposes could also be a viable option.
262 Constructing such a wireless control plane network does
263 increase capital investment, but it is relative small compared
264 to the cost of manual efforts that could be reduced. Only one
265 wireless network interface card (NIC) is needed for each
266 rack, and in each rack there could be 30–126 servers.
267 Suppose the cost of one server is $1,000, and the cost of one
268 wireless NIC is $10. Even without considering the cost on
269 the switches and routers, the increased cost compared to the
270 cost of servers is only 0.008%–0.03%. In addition, the
271 communication range of 802.11 could be 100 meters, i.e., it
272 can serve a 20,000-m2 square room, which is sufficient to
273 accommodate a large DCN. Furthermore, there should be no
274 concern with the configuration on wireless networking for
275 each NIC. The same script could be copied to each RR and
276 CR to connect to the access point when the server boots.
277 A RR is a lightweight process that can be run in any of the
278 servers in a rack. A RR first requests an IP address block
279 (a number of continuous IP addresses) from the CR, which

280can be assigned to VMs, servers, and switches. On receiving
281a valid request, the CR assigns RR with the IP address block
282as well as the corresponding lease (length of time when the
283allocation is valid). The lease is employed to detect any
284physical detachment of a certain rack, and each RR should
285renew its contract with the CR before the lease expires.
286Otherwise the CR will reclaim the assignment, and the
287corresponding address block is available for reassignment.
288The procedure is typically initiated immediately after RR
289being booted, and a RR can start the assignment of the IP
290addresses to VMs/servers in the same rack and switches upon
291receiving the allocated address block from the CR. If any
292message in each step is lost, retransmission will be activated
293in order not to fail the procedure.

294Address assignment between the
295RR and servers/VMs
296The servers/VMs and RR in a rack should be in a flat
297Layer 2 network, i.e., the same Layer 2 broadcasting domain
298such as Ethernet or a virtual local area network (VLAN).
299When a RR is allocated with an IP address block from the
300CR, it works in a similar way as a DHCP server to assign
301IP addresses to the local servers/VMs. The only difference
302with a DHCP server is that RR can assign multiple IP
303addresses in a batch to a single server in the same rack,
304while a DHCP server assigns only one IP address to a single
305host. This difference is due to the existence of several VMs
306in a single server.
307As opposed to assigning one IP address for a VM each
308time, we propose a Bbatch mode[that assigns multiple
309addresses at once, which is more efficient. A server in a rack
310first initiates a broadcasting Discover message seeking the
311RR server. On receiving the Discover message, the RR sends
312an Offer message to notify the requesting server. Then, the
313server sends a Request message to request an address from
314the RR, and the RR in turn replies with an Acknowledgement
315(ACK) message to assign a number of addresses, i.e., an
316address blocks. To identify an address block that can be
317allocated to the VMs on the requesting server, the ACK
318message contains the first IP address and the length of the
319address block. If no address block is available, a Negative
320Acknowledgement (NACK) message will be generated. Upon
321receiving the address block on the server side, a hypervisor in
322the server, which allows multiple VMs to run concurrently on
323a server, performs the address assignment among the local
324VMs in the server.
325Original DHCP can be an alternative option for the
326operation between the RR and servers. The servers and the
327RR in a rack are in a same Layer 2 network. When the RR is
328equipped with the IP address block from CR, in order to
329assign IP addresses to servers in the same rack, it works like a
330classic DHCP server. Servers in each rack act as DCHP-
331enabled clients. If there are several VMs in one server, each
332VM triggers an IP address assignment process via DHCP.

3 : 4 C. HU ET AL. IBM J. RES. & DEV. VOL. 55 NO. 6 PAPER 3 NOVEMBER/DECEMBER 2011

333 Although the DHCP mechanism can be used between the RR
334 and VMs, the Bbatch[mode mentioned provides a more
335 efficient way that configures several machines
336 simultaneously.
337 If one RR runs out of the available IP addresses that can be
338 allocated to servers/VMs, it redirects the query message to
339 another RR. The redirection follows a pre-determined order
340 managed by a cyclic linked list and each RR is informed of
341 the next RR to resort to when the CR configures the RR.

342 Address assignment between the RR and switches
343 In this section, we first describe how the RRs and switches
344 exchange messages followed by the communication among
345 them to assign addresses. For the ease of presentation yet
346 without loss of generality, we depict a simple tree-based
347 topology in Figure 2 as an example topology. S1 through S7
348 are switches, and a/b/c in each switch denotes the different
349 ports. RR1 through RR4 are rack regulators.
350 The switches can query an arbitrary RR for obtaining
351 available IP addresses. However, switches cannot form
352 Layer 3 routing paths until they are assigned with IP
353 addresses, and the switches also forbid the broadcast among
354 themselves by default. A brute-force approach is to allow
355 Layer 2 broadcasting of all the protocol messages in the
356 entire DCN. Although the protocol messages in the control
357 plane contribute relatively little traffic to the traffic in the data
358 plane, brute-force broadcasting is inefficient and requires
359 more time to perform the configuration. To enable a switch to
360 communicate with a RR for requesting IP addresses,
361 DCZeroconf follows a bottom-up approach and utilizes

362Layer 2 bridging to relay the DCZeroconf protocol messages
363among switches and RRs, akin to a path-vector protocol.
364Each switch periodically sends a message to all its
365neighbors (i.e., servers and other switches), requesting BCan
366you reach a RR?[until the switch receives a reply indicating
367a valid next hop to a RR. During the bootstrapping phase,
368only the switches directly connected with a RR can receive a
369reply from the RR specifying, BI am a RR.[Then,
370recursively, such a switch S will answer the requests from its
371neighbors with the path from S to the RR that S has
372discovered (S prepends itself in the path). If there is more
373than one path received by a certain switch S, only the first
374received path is used by S to reach the RR and is further
375propagated to its neighbors. The first received path is likely
376to indicate the path with the least delay from the switch to a
377RR, since switches relay answers with path information,
378hop-by-hop from the RRs. For example, consider Figure 2.
379S1 through S7 periodically send path queries. S4, S5, S6, and
380S7 first receive replies from RR1, RR2, RR3, and RR4,
381respectively. S2 will then receive path information of BS4
382RR1[and BS5 RR2[from S4 and S5, respectively. S2 selects
383one of these two paths, and places itself in the path, i.e.,
384BS2 S5 RR2.[
385RR only sends messages to switches after receiving
386messages from switches. When sending a message packet
387from a switch to the RR, the intermediate switches will add the
388path information to the packet. The path information can be
389treated as a stack. The source switch and all the intermediate
390nodes along the path to the RR will push their addresses to the
391stack. This path information is also kept in the packet back to

Figure 2

Example of a switch configuration. S1 through S7 in the figure are switches. In each switch, a, b, and c denote the different ports, and RR1 through RR4
are rack regulators.

C. HU ET AL. 3 : 5IBM J. RES. & DEV. VOL. 55 NO. 6 PAPER 3 NOVEMBER/DECEMBER 2011

392 the switch from the RR. Thus, the reply messages from the RR
393 to the switch always can find their reverse way, making use of
394 the encapsulated path information in the packet. In the
395 example of Figure 2, when S1 sends a message to RR, the
396 packet carries the path information BS1 S2 S5 RR2.[RR (here,
397 in this example, is RR2) can compute the reverse path for
398 its reply message BS5 S2 S1.[The RR pops the first element
399 and send reply packet to S5. Now, when S5 receive the packet,
400 the reverse path information is BS2 S1.[S5 also pops an
401 element from the path stack and finds the next hop as S2. This
402 process continues, and eventually the packet can reach S1.
403 This part is similar to source-routing, and the switches do not
404 keep a forwarding table but just examine the packets for the
405 path information.
406 Address aggregation is usually used for the sake of
407 scalability and is able to keep the routing table small. To
408 utilize address aggregation for constructing a space-efficient
409 routing table in each switch, the addresses of the two ends of
410 a link between two switches are always within the same
411 /31 prefix. (Here, the number following the slash is the prefix
412 length, the number of shared initial bits, counting from the
413 most-significant bit of the address. Thus, the /31 prefix is
414 an address block with a 31-bit prefix.) Whenever a RR
415 receives an address request from a switch S for a certain
416 port p, RR returns two continuous IP addresses for this port
417 and the port in the neighboring switch of S that connected
418 with p. With the two returned IP addresses, the switch S
419 selects one of them and attempts to assign this address to the
420 connected port in the neighboring switch. The port of the
421 neighboring switch accepts the assignment and configures its
422 IP address as indicated in the message if this port has not
423 received any address assignment from any RR. In case a
424 certain port p of switch S receives two assignments from both
425 the RR and a neighboring switch N, switch S compares
426 the media access control (MAC) addresses of the two ends of
427 the link. The address assigned from the switch port with a
428 larger MAC address will be accepted. An ACK/NACK
429 message will be then triggered to accept/decline the
430 assignment from the RR or a neighboring switch.
431 Consider Figure 2 again as an illustration. S2.a requests
432 a pair of addresses from the RR and the RR replies with a
433 pair of addresses, A1 and A2. S2.a first selects one address,
434 say A2, to allocate to S4.b. If S4.b returns an ACK, S2.a
435 configures itself with A1 and sends an ACK to RR. In the
436 case where S4.b sends another IP address, e.g., A3 to S2.a,
437 S2.a compares its MAC address with S4.b. If the MAC
438 address of S4.b is larger than S2.a, S2.a selects A3 as its
439 address; otherwise, S2.a resends an address assignment
440 message to S4.b, and an ACK is expected to arrive later.
441 If the RR does not find any available IP addresses that
442 can be allocated, it redirects the query message to another
443 RR. The redirection follows a predetermined order managed
444 by the CR. The CR is aware of all the configured RRs,
445 and it keeps a cyclic linked list for the RRs.

446Evaluations
447The major performance metric of DCZeroconf is the time
448it takes to configure a given DCN. In this section, we first
449examine the configuration time on a small-scale testbed
450and then check the larger-scale DCNs via simulations.
451Moreover, experiments are also performed to investigate
452the configuration time of DCZeroconf when topology
453changes.

454Experiments on testbed
455We first examine the performance of DCZeroconf on an
456eight-node prototyping testbed. In this testbed, we also
457emulate two racks, each of which has one RR and a server
458with two VMs. A CR is connected with two RRs, over a
459wireless connection. The wireless connection among CR and
460RRs is a 54-Mb/s 802.11g connection, and the connections
461among CR, RR, servers, and switches are all with 100-Mb/s
462Ethernet. In addition, three desktop computers are
463deployed with the eXtensible Open Router Platform (XORP)
464[17] and act as the Layer 3 switches. Switch no. 1 connects
465with Switch no. 2 and Switch no. 3, and Switch no. 2 or 3 has
466two links connecting with the two emulated racks.
467The entire configuration of DCZeroconf contains four
468phases: 1) RR configuration phase, in which the CR
469configures the RRs; 2) server configuration phase, during
470which servers are configured; 3) communication channel
471construction (CCC) phase, which builds the communication
472channel among switches and RRs for IP address allocation;
473and 4) switch configuration phase that configures the IP
474addresses for all the ports of each switch. We use TRR, Tserver,
475TCCC, and Tswitch to denote the configuration time of the
476above four phases, respectively. Servers periodically send
477discover messages to RR before RR is configured, and
478switches will resend request messages until any reply is
479received in an interval. These two processes in our
480implementation have the same retry interval, which is
481denoted as Tinterval. By performing experiments on the
482testbed, we are able to obtain the time of the four
483configuration phases, as well as the total time to configure all
484the switches/servers/VMs.
485The experiments are divided into three groups. In each
486group, we repeat the experiments 10 times, and Tinterval is set
487to be 10 ms, 50 ms, or 100 ms in the three groups,
488respectively. We average the measured results in each group
489and illustrate them in Table 1. From the results, we make
490several observations. First, the value of Tinterval does not
491affect TRR, Tswitch, TCCC, and Tserver significantly, which is
492in accord with the design of DCZeroconf.
493Second, the time for the BCCC phase[and the BSwitch
494configuration phase[is much larger than the other two
495phases, because the protocol messages in these two phases
496are propagated hops away, while the BRR configuration
497phase[and BServer configuration phase[only exchange
498protocol messages in a same broadcast domain. In addition,

3 : 6 C. HU ET AL. IBM J. RES. & DEV. VOL. 55 NO. 6 PAPER 3 NOVEMBER/DECEMBER 2011

499 CCC phase[needs to record the forwarding paths and port
500 into its local memory. This is why the dominant time in the
501 entire configuration appears to be the construction of the
502 communication channel.
503 Third, we analyze the range of the configuration times
504 and check whether our testing falls into the range. The
505 BRR configuration phase[and the BCCC phase[can be
506 started at the same time. Once RRs being configured, the
507 BServer configuration phase[starts to assign IP addresses
508 to servers/VMs, while the BSwitch configuration phase[
509 starts to work when BRR configuration phase[and
510 BCCC phase[are completed. Further, with the desperate
511 retry interval Tinterval and the second observation, we
512 derived the range of the entire configuration time as
513 the following:

TCCC þ Tswitch � Ttotal � TCCC þ Tswitch þ Tinterval: (1)

514 The measured results in Table 1 are obviously in this range.
515 Moreover, as indicated in (1) and Table 1, increasing Tinterval
516 increases the total configuration time. A very short Tinterval
517 will increase the burden on servers, switches and the
518 network, and we set it to be 100 ms in the remainder of the
519 evaluation experiments.

520 Simulations
521 We analyze the parameters required in the simulation and
522 then determine the values by measuring using the testbed.
523 By substituting the values of these parameters, we estimate
524 the configuration time of DCZeroconf using larger-scale
525 DCNs.
526 In [15], the authors evaluate DAC under several data
527 center topologies. To compare with DAC, we also examine
528 the configuration time of DCZeroconf on the same
529 topologies. The experimental topologies include BCube [8],
530 Fat-Tree [1], VL2 [3], and DCell [2]. Although in the original
531 proposals of BCube, Fat-Tree, and DCell, the authors
532 have also introduced specific addressing methods instead
533 of IP addressing, the physical topologies of BCube,
534 Fat-Tree, and DCell could also be used to employ
535 IP-based DCNs.
536 We use simulation to estimate the time for DCZeroconf
537 to complete the configuration of an IP-based DCNs on
538 different topologies, and the detailed results are illustrated
539 in Table 2. The results of DAC are cited from [15],

540which utilizes the specific addressing for the corresponding
541topology. The difference in addressing does differ with
542the protocol messages, but we believe that this effect is minor
543since the length of address does not vary very much.
544Furthermore, since DAC does not support server
545virtualization, the number of VMs is set to one in all
546the simulations using DCZeroconf.
547Table 2 shows that the configuration time of DCZeroconf
548is shorter than the delay of DAC, and the gap is substantial
549for large topologies. The reason for the significant gaps in
550large topologies comes from the computation of a Bmapping[
551between logical identification (ID) and physical ID for
552DAC. It is demonstrated in [15] that the time for mapping
553dominates the entire configuration time for large topologies.
554DCZeroconf does not consider such mapping during its
555configuration. However, as we mentioned in the introduction,
556it is just one of the useful characteristics of IP-based DC,
557which does not require us to embed the location information
558into the network ID.
559Note that, when we set our simulation environment, all the
560parameters are measured from the test-bed with 100-Mb/s
561links. If the connections increase to 1 Gb/s as researchers in a
562DAC paper [3] used for their experiments, the configuration
563time of DCZeroconf could be shorter.

564Configuration time when topology changes
565It is quite common that a data center will enlarge its scale by
566gradually adding new servers and switches. In this section,
567we evaluate the configurations time in such cases.

Table 1 Time (ms) consumed during the configuration on the testbed.

Table 2 Configuration time (ms) in different topolo-
gies. The reader is referred to [15] for an explanation of
the numbers in parentheses in the first column.

C. HU ET AL. 3 : 7IBM J. RES. & DEV. VOL. 55 NO. 6 PAPER 3 NOVEMBER/DECEMBER 2011

568 First, we study the case when adding servers. The required
569 configuration time versus the number of the increased
570 servers is depicted in Figure 3. This figure shows two
571 extreme cases when adding servers. The solid line represents
572 the case in which all the servers are added in a same rack.
573 The dashed line indicates the results for the case when all the
574 servers are evenly added to all the racks (in this experiment,
575 the number of racks is 20). The increased configuration
576 time is very small and even when we increase by 100 servers
577 in one rack, the configuration time is less than 24 ms. The
578 results demonstrate a linear bound of the scalability when
579 adding servers: the configuration time linearly increased
580 with the increase of the number of the servers. Since the
581 configuration in different racks can be performed in parallel,
582 the slope of the dash line is much smaller than the solid

583line. Please note that the configuration time of any other
584tested cases is within the range of these two curves
585in Figure 3.
586Second, we investigate the performance of DCZeroconf
587when adding switches. The required configuration time
588versus the number of the newly added switches is depicted in
589Figure 4. In this simulation, we first generate a partially
590connected DCN and then add switches to randomly selected
591locations. It is worth noting that in this experiment, Tswitch
592and TCCC do not apply, and the configuration time consists
593of Tswitch and TCCC. We run the experiment for 1,000 times,
594and the results in Figure 4 are the average value (the result
595is for a classical tree-based topology). The shaded area in
596Figure 4 indicates the difference between Tswitch and TCCC.
597The total configuration time, as well as Tswitch=TCCC,

Figure 3

Configuration time when adding servers.

Figure 4

Configuration time when adding switches.

3 : 8 C. HU ET AL. IBM J. RES. & DEV. VOL. 55 NO. 6 PAPER 3 NOVEMBER/DECEMBER 2011

598 increases sublinearly with the number of the added switches,
599 and this fact indicates that DCZeroconf is scalable with
600 the enlargement of the data center. In addition, the entire
601 configuration time including TCCC and Tswitch is less than
602 136 ms if we add 100 switches.

603 Conclusion
604 In this paper, we have designed and implemented the
605 DCZeroconf mechanism to automatically configure the
606 IP addresses inside the data center. DCZeroconf successfully
607 achieves the goals illustrated in the Introduction. First, it
608 eliminates the possible IP address conflicts in different
609 subnets without any assumption on the data center topology.
610 Second, as the topology changes, DCZeroconf does not
611 need to reconfigure the entire network; instead, RR
612 only assigns the new devices with IP addresses. Third,
613 the configuration of DCZeroconf is fast. It requires
614 200.1–266.5 ms to configure a real testbed with eight nodes
615 and about 3.3 seconds in the simulation with more than
616 3 million devices. The experiments on the topology
617 changes also indicate its scalability to large-scale DCNs
618 (e.g., clouds of clouds). Finally, DCZeroconf is
619 incrementally deployable in existing and future DCNs,
620 as it only requires minimal modifications on the software
621 stack of the current switches and servers.

622 Acknowledgments
623 This work was partly supported by National Nature Science
624 Foundation of China (NSFC) (60903182, 60921003,
625 60873250, 60736027), 973 plan (2007CB310702),
626 863 plan (2007AA01Z480), Tsinghua University Initiative
627 Scientific Research Program, open project of State Key
628 Laboratory of Networking and Switching Technology,
629 and 111 International Collaboration Program of China.

630 References
631 1. M. Al-Fares, A. Loukissas, and A. Vahdat, BA scalable,
632 commodity data center network architecture,[in Proc. SIGCOMM,
633 Seattle, WA, 2008, pp. 63–74.
634 2. C. Guo, H. Wu, K. Tan, L. Shi, Y. Zhang, and S. Lu, BDCell:
635 A scalable and fault-tolerant network structure for data centers,[in
636 Proc. SIGCOMM, Seattle, WA, 2008, pp. 75–86.
637 3. A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim,
638 P. Lahiri, D. A. Maltz, P. Patel, and S. Sengupta, BVL2: A scalable
639 and flexible data center network,[in Proc. SIGCOMM, Barcelona,
640 Spain, 2009, pp. 51–62.
641 4. D. Roisman, BData center top-of-rack switch redundancy models,[
642 in Proc. NANOG 46, Philadelphia, PA, 2009.
643 5. J. Mudigonda, P. Yalagandula, M. Al-Fares, and J. Mogul,
644 BSPAIN: COTS data-center Ethernet for multipathing over
645 arbitrary topologies,[in Proc. NSDI, San Jose, CA, 2010,
646 pp. 265–280.
647 6. K. Elmeleegy and A. Cox, BEtherProxy: Scaling Ethernet by
648 suppressing broadcast traffic,[in Proc. INFOCOM, Rio de Janeiro,
649 Brazil, 2009, pp. 1584–1592.
650 7. C. Kim, M. Caesar, and J. Rexford, BFloodless in SEATTLE:
651 A scalable Ethernet architecture for large enterprises,[in Proc.
652 SIGCOMM, Seattle, WA, 2008, pp. 3–14.
653 8. C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian, Y. Zhang,
654 and S. Lu, BBCube: A high performance, server-centric network

655architecture for modular data centers,[in Proc. SIGCOMM,
656Barcelona, Spain, 2009, pp. 63–74.
6579. G. Wang, D. G. Andersen, M. Kaminsky, K. Papagiannaki,
658T. E. Ng, M. Kozuch, and M. Ryan, BC-Through: Part-time optics
659in data centers,[in Proc. SIGCOMM, New Delhi, India, 2010,
660pp. 327–338.
66110. N. Farrington, G. Porter, S. Radhakrishnan, H. H. Bazzaz,
662V. Subramanya, Y. Fainman, G. Papen, and A. Vahdat, BHelios:
663A hybrid electrical/optical switch architecture for modular data
664centers,[in Proc. SIGCOMM, New Delhi, India, 2010,
665pp. 339–350.
66611. C. Kim, BScalable and efficient self-configuring networks,[
667Ph.D. dissertation, Princeton Univ., Princeton, NJ, 2009.
66812. R. Droms, BDynamic host configuration protocol,[RFC 2131,
6691997. [Online]. Available: http://www.ietf.org/rfc/rfc2131.txt
67013. B. A. S. Cheshire and E. Guttman, BDynamic configuration of
671IPv4 link-local addresses, Zeroconf,[DFC 3927, 2002. [Online].
672Available: http://www.ietf.org/rfc/rfc3927.txt
67314. R. Niranjan Mysore, A. Pamboris, N. Farrington, N. Huang,
674P. Miri, S. Radhakrishnan, V. Subramanya, and A. Vahdat,
675BPortland: a scalable fault-tolerant layer-2 data center
676network fabric,[in Proc. SIGCOMM, Barcelona, Spain,
6772009, pp. 39–50.
67815. K. Chen, C. Guo, H. Wu, J. Yuan, Z. Feng, Y. Chen, S. Lu, and
679W. Wu, BGeneric and automatic address configuration for data
680center networks,[in Proc. SIGCOMM, New Delhi, India, 2010,
681pp. 39–50.
68216. M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and
683A. Vahdat, BHedera: Dynamic flow scheduling for data center
684networks,[in Proc. NSDI, San Jose, CA, 2010, p. 19.
68517. XORPDownload code of Xorp. [Online]. Available: http://www.
686xorp.org/downloads.html

687

688Received January 31, 2011; accepted for publication
689March 19, 2011

690Chengchen Hu MOE Key Lab for Intelligent Networks and
691Network Security, Department of Computer Science and Technology,
692School of Electronic and Information Engineering, Xi’an Jiaotong
693University, Xi’An, 710049 China; also guest researcher with SKLNST
694Lab, Beijing University of Posts and Telecommunications, Beijing
695100876, China (huc@ieee.org). Dr. Hu received his Ph.D. degree from
696the Department of Computer Science and Technology of Tsinghua
697University in 2008. He worked as an assistant research professor in
698Tsinghua University from June 2008 to December 2010 and is currently
699an Associate Professor in the Department of Computer Science and
700Technology of Xi’an Jiaotong University. His main research interests
701include computer networking systems and network measurement and
702monitoring.

703Mu Yang Department of Computer Science and Technology,
704Tsinghua University, Beijing 100084, China (yangmu266@gmail.com).
705Mr. Yang is an undergraduate student in the Department of computer
706science and technology, Tsinghua University.

707Kai Zheng IBM Research Division, China Research Laboratory,
708Beijing 100074, China (zhengkai@cn.ibm.com). Dr. Zheng received his
709M.S. and Ph.D. degrees both in computer science from Tsinghua
710University, Beijing, China, in 2003 and 2006, respectively. He is
711currently working with IBM Research China. His research interests
712include high-speed packet forwarding, pattern matching associated with
713network-security issues, and new data center network architecture
714design.

715Kai Chen Department of Electrical Engineering and Computer
716science, Northwestern University, Evanston, IL, 60201 USA
717(kchen@northestern.edu). Mr. Chen is currently a Ph.D. student in the
718EECS Department at Northwestern University, Evanston, IL. Prior
719to this, he received his B.S. and M.S. degrees in computer science in

C. HU ET AL. 3 : 9IBM J. RES. & DEV. VOL. 55 NO. 6 PAPER 3 NOVEMBER/DECEMBER 2011

dannucci
Sticky Note
<AU: The URL for reference 17 is not available; please update>

720 2004 and 2007, respectively, both from University of Science and
721 Technology of China, Hefei, China. He is interested in finding simple
722 yet elegant solutions to real networking and system problems.

723 Xin Zhang Computer Science Department, Carnegie Mellon
724 University, Pittsburgh, PA 15213 USA (xzhang1@cs.cmu.edu).
725 Mr. Zhang is currently a Ph.D. candidate in the computer science
726 department at Carnegie Mellon University since 2006, working with
727 Dr. Adrian Perrig and Dr. Hui Zhang. He received his B.S. degree in
728 Department of Automation in 2006 from Tsinghua University. His
729 academic interests include network security, applied cryptography,
730 Internet routing, and clean-slate network architectural design. He is also
731 passionate about web technologies and web application development.

732 Bin Liu Department of Computer Science and Technology,
733 Tsinghua University, Beijing 100084, China (liub@tsinghua.edu.cn).
734 Professor Liu is currently a full Professor in the Department of
735 Computer Science and Technology, Tsinghua University. His current
736 research areas include high-performance switches/routers, network
737 processors, high-speed security, and making Internet use more energy
738 efficient. Professor Liu has received numerous awards from China
739 including the Distinguished Young Scholar of China.

740 Xiaohong Guan MOE Key Lab for Intelligent Networks and
741 Network Security, School of Electronic and Information
742 Engineering, Xi’an Jiaotong University, Xi’An, 710049 China
743 (xhguan@mail.xjtu.edu.cn). Dr. Guan received his B.S. and M.S.
744 degrees in control engineering from Tsinghua University, Beijing,
745 China, in 1982 and 1985, respectively, and his Ph.D. degree in
746 electrical engineering from the University of Connecticut in 1993.
747 He was a senior consulting engineer with PG&E (Pacific Gas and
748 Electric Company) from 1993 to 1995. He visited the Division of
749 Engineering and Applied Science, Harvard University, from January
750 1999 to February 2000. Since 1995, he has been with the Systems
751 Engineering Institute, Xi’an Jiaotong University, and was appointed
752 IEEE fellow in 2007, Cheung Kong Professor of Systems Engineering
753 in 1999, and dean of the School of Electronic and Information
754 Engineering in 2008. Since 2001, he has been the director of the Center
755 for Intelligent and Networked Systems, Tsinghua University, and
756 served as head of the Department of Automation, 2003–2008. He is
757 an Editor of IEEE Transactions on Power Systems and an Associate
758 Editor of Automatica. His research interests include optimization and
759 security of networked systems, computer network security, and sensor
760 networks.

3 : 10 C. HU ET AL. IBM J. RES. & DEV. VOL. 55 NO. 6 PAPER 3 NOVEMBER/DECEMBER 2011

AUTHOR QUERY

AUTHOR PLEASE ANSWER QUERY

Note that Ref. [17] has a web address that is not available. Please check.

END OF AUTHOR QUERY

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

