
FPGA-Based Hardware Accelerator of Homomorphic Encryption for Efficient
Federated Learning

Zhaoxiong Yang1 , Shuihai Hu2 , Kai Chen1,3

1SING Lab, Hong Kong University of Science and Technology
2Clustar, 3Peng Cheng Lab

zyangas@connect.ust.hk, shuihai@clustar.ai, kaichen@cse.ust.hk

Abstract
With the increasing awareness of privacy protection
and data fragmentation problem, federated learning
has been emerging as a new paradigm of machine
learning. Federated learning tends to utilize vari-
ous privacy preserving mechanisms to protect the
transferred intermediate data, among which homo-
morphic encryption strikes a balance between se-
curity and ease of utilization. However, the com-
plicated operations and large operands impose sig-
nificant overhead on federated learning. Maintain-
ing accuracy and security more efficiently has been
a key problem of federated learning. In this work,
we investigate a hardware solution, and design an
FPGA-based homomorphic encryption framework,
aiming to accelerate the training phase in federated
learning. The root complexity lies in searching for
a compact architecture for the core operation of ho-
momorphic encryption, to suit the requirement of
federated learning about high encryption through-
put and flexibility of configuration. Our frame-
work implements the representative Paillier homo-
morphic cryptosystem with high level synthesis for
flexibility and portability, with careful optimization
on the modular multiplication operation in terms of
processing clock cycle, resource usage and clock
frequency. Our accelerator achieves a near-optimal
execution clock cycle, with a better DSP-efficiency
than existing designs, and reduces the encryption
time by up to 71% during training process of vari-
ous federated learning models.

1 Introduction
In recent years, deep learning has made an unprecedented
leap in the ability of human discovering knowledge and com-
prehending the world. Nevertheless, the adoption of deep
learning is now faced with two barriers, namely data fragmen-
tation and privacy preservation[Yang et al., 2019]. Federated
learning has come up as a new machine learning paradigm to
tackle the issues, learning models from decentralized datasets
in a secure way.

To preserve data privacy, federated learning usually em-
ploys various mechanisms like differential privacy (DP), ho-

momorphic encryption (HE), secure multiparty computation
(SMC), etc. Whereas DP does not prevent data leakage com-
pletely, and the intricate protocols that SMC introduces to
the system renders it virtually impractical, HE achieves a
balance between security and operability. Moreover, one
of the HE scheme named Paillier encryption scheme[Pail-
lier, 1999] has been adopted to protect the data privacy in
neural networks[Ma et al., 2017], logistic regression[Hardy
et al., 2017], Bayesian network[Wright and Yang, 2004],
clustering[Bunn and Ostrovsky, 2007], showcasing its great
generality as a privacy preserving mechanism in machine
learning.

However, the complicated operations and large operands
of HE still impose overhead on federated learning that can-
not be ignored. Research community and industry have been
haunted by the question of how to provide secure, accurate,
and yet efficient federated learning. Previous effort such as
FATE[FAT, 2019], a cutting edge federated learning system,
has provided convenient interface to implement learning al-
gorithms secured by Paillier HE, but the learning throughput
is limited due to encryption by software. In this work, we
seek for a hardware solution to improve the training through-
put of federated learning, designing a homomorphic encryp-
tion framework based on FPGA, since FPGA acceleration
card has been commonly available in datacenters[Putnam,
2014] and usually achieve a lower power consumption than
GPU. The framework devises a customized FPGA implemen-
tation of the Paillier homomorphic encryption, and provides
support for federated learning models with secure informa-
tion exchange.

We demonstrate in this work that homomorphic encryption
is usually composed of iterative operations that are hard to
parallelize. Therefore, it is more reasonable to consider par-
allelism across data items to be encrypted, and make each
encryption core compact and resource efficient, so as to max-
imize the overall throughput to handle the massive data in
federated learning. The existing works fail to do that, as they
either try to exhaust the resource on a single FPGA chip to
produce one encryption unit to minimize the processing la-
tency, or they mainly utilize the common circuit units (usu-
ally termed CLB or LUT) without making use of the digital
signal processing (DSP) units, which are the powerful units
for high performance arithmetic operation on modern FPGA.
Moreover, most of them rely on the traditional register-level

ar
X

iv
:2

00
7.

10
56

0v
1

 [
cs

.C
R

]
 2

1
Ju

l 2
02

0

transfer (RTL) approach, lacking the flexibility of fast devel-
opment and reconfiguration. In this work, we base our de-
sign and implementation on high level synthesis (HLS) that
describe the FPGA circuit with high-level programming lan-
guage for flexibility, allowing the algorithm and operations to
be parametric and portable, and we try to derive an analytical
model that determines the encryption performance, carry out
optimization from multiple dimension.

Since the bulk of computation of Paillier cryptosystem
boils down to modular multiplication(ModMult), we focus
on designing compact architecture for ModMult operation.
We adopt the Montgomery algorithm[Montgomery, 1985] to
carry out the operation, which is FPGA-friendly as it elimi-
nates integer division operations. We figure out the key fac-
tors that determines the total en/decryption throughput on an
FPGA chip, conduct overall optimization on Paillier proces-
sors in terms of clock cycle, resource consumption, clock
frequency and memory usage respectively to attain the best
throughput.

The hardware module are built as OpenCL kernels and
incorporate into FATE as an encryption library. Each ker-
nel performs en/decryption for a batch of data to relieve
the kernel invocation overhead, and kernels are queued in
the OpenCL command queue to help overlap data transfer
with computation and hide latency. The proposed encryption
framework is general and does not require any change of the
model, while preserving the security and accuracy.

We perform extensive evaluation on the proposed frame-
work, demonstrating that it reduces the iteration time for
training linear models by up to 26%, and the encryption time
in each iteration by 71%. Our hardware framework delivers
an acceleration ratio of 10.6 for encryption and 2.8 for de-
cryption compared with software solutions. Our circuit for
ModMult operation achieves a better DSP-efficiency than ex-
isting FPGA solutions, with a comparable execution latency
but a lower usage of DSP blocks.

We summarize our contributions as follows.

• Introducing a hardware-based encryption framework for
federated learning, achieving high efficiency without
sacrifice of security and utility, supporting accelerated
computation in cloud datacenters.

• Presenting architectures for Paillier homomorphic cryp-
tosystem taking a scalable approach making efficient uti-
lization of the FPGA resources, especially DSP blocks.

• Incorporating the encryption framework into cutting-
edge federated learning framework, and showing an im-
provement on training throughput for federated learning
models.

The rest of the article will be organized as follows. In Sec-
tion 2 we will provide the background about federated learn-
ing and existing privacy preserving machine learning sys-
tems, and introduce the Paillier cryptosystem we work on.
Section 3 will present the design and implementation of the
framework in detail. Section 4 shows the methodology and
results of evaluation. Finally in Section 5 we conclude the
article.

2 Background
2.1 Federated learning with HE
Federated learning is a privacy-preserving, decentralized dis-
tributed machine learning paradigm. One effective method
of preserving privacy and securing computation is homomor-
phic encryption (HE), i.e. encryption schemes that allows en-
crypted values to be involved in computation. For the appli-
cations of HE in federated learning, we refer the readers to
[Hardy et al., 2017], [Gilad-Bachrach et al., 2016], [Aono et
al., 2017], [Liu et al., 2019], [Liu et al., 2018], [Chai et al.,
2019], which broadly cover machine learning models includ-
ing linear model, neural network and deep learning, boosting
tree, transfer learning and matrix factorization. Typically, HE
is employed to encrypt the intermediate data during computa-
tion, which will then be transferred and aggregated by homo-
morphic operation. For nonlinear operations composing the
model, such as activation function in a neural network, these
works usually rely on approximation to make the model agree
with HE computation.

2.2 Privacy-preserving ML systems
There has also been machine learning systems that take
privacy preservation into account, such as SecureML[Mo-
hassel and Zhang, 2017] that proposes a system for two
non-colluding party collectively training a model, and
Sage[L‘ecuyer et al., 2019] that presents a differentially pri-
vate machine learning platform. Among them, FATE[FAT,
2019] introduces a federated learning framework that pro-
vides the abstraction and utilities for implementing algorithm
and models, along with an architecture to enable distributed,
multiparty machine learning. It mainly utilizes Paillier homo-
morphic encryption to guarantee data security. However, it
purely relies on a software solution of encryption that greatly
harms the execution efficiency of federated training. Our goal
in the work is to find a hardware solution as a rescue to this
issue.

2.3 Paillier Homomorphic Encryption
Paillier HE is an additive homomorphic encryption scheme
allowing to perform addition and multiplication with scalar
on encrypted values without decrypting them. In federated
learning, usually multiple parties are involved, each one hav-
ing a private dataset and wanting to maintain a local model
learned from the aggregated dataset, and there may be a coor-
dinator to manage the computation and data exchange among
parties (Figure 1). The role of Paillier homomorphic encryp-
tion is to encrypt the intermediate data to transfer, so that in
each training iteration the coordinator receives the encrypted
local updates from parties, aggregates them with the homo-
morphic property, and sends back the result to each party
for decryption and updating local model. In this way, each
party obtain a model extracting information from the aggre-
gate dataset, without leaking its private information.

The Paillier HE scheme associates each party with a public
key (n, g) and a private key (λ, µ), where n, g, λ, µ are large
integers, typically 1024-bit in FATE. Messages and cipher-
texts are also represented as long integers. A message m can
be encrypted into ciphertext c by c = gmrn mod n2 with

Figure 1: General workflow of homomorphic encryption-based federated learning

random number r, and decryption is performed by m = ((cλ

mod n2)− 1)/n ∗ µ mod n2.
We can see from the formulation that the majority of

the computation of the Paillier en/decryption is related to
modular exponentiation (ModExp), which can be further de-
composed to a series of ModMult operations. Hence, the
execution of ModMult has a decisive effect on the over-
all performance. We choose the Montgomery ModMult
algorithm[Montgomery, 1985] to perform this operation be-
cause it is FPGA-friendly, in that it disposes of the costly in-
teger division. The Montgomery algorithm, shown in Algo-
rithm 1, computes XY · 2−l mod M for l-bit integers X , Y
and M . It divides integers into k-bit words. The body of the
algorithm is a two-level loop, where each outer iteration (line
2-8) aims to compute an intermediate result Si = X · Y i · 2k
mod M for the ith word of Y , and it further decomposes the
computation by each word of X and forms the inner loop
(line 4-6).

Algorithm 1: Montgomery Algorithm for Modular Mul-
tiplication with Radix 2k

Input: X =
∑l/k−1
j=0 Xj · 2jk, Y =

∑l/k−1
j=0 Y j · 2jk,

M =
∑l/k−1
j=0 M j · 2jk, r = 2k

Output: S = X · Y/2l mod M
1 S0 ← 0;
2 for i = 0 . . . l/k − 1 do
3 q ← ((Si +X ∗ Y i) · (−M−1)) mod r;
4 for j = 0 . . . l/k do
5 S̄ji+1 ← Sji +Xj ∗ Y i + q ∗M j ;
6 end
7 Si+1 ← S̄i+1/2

k

8 end
9 if Sl/k > M then

10 Sl/k ← Sl/k −M ;
11 end
12 return Sl/k

3 Design and Implementation
3.1 System Overview
The overall architecture of our encryption framework is
shown in Figure 2. The framework is envisioned to be hosted
on cloud servers belonging to geo-distributed parties of fed-
erated learning. It includes components residing on both the

Figure 2: Overview of Our Encryption Framework

host CPU and the FPGA, where a PCI-e bus provides com-
munication between them. The host CPU is responsible for
the normal training workload of a machine learning model,
while it batches the requests of encryption to sends to the
FPGA, and encodes the floating point number used by ma-
chine learning to integers agree with HE schemes. Apart from
these necessities, our main contribution is designing high per-
formance processors for Paillier computation on FPGA and
encapsulating the hardware module as OpenCL kernel for in-
vocation, which we will detail in Section 3.2 and 3.3 respec-
tively.

3.2 Micro-architecture for Montgomery ModMult
A Paillier processor encapsulates units for operations in-
volved, i.e. modular multiplication, random number genera-
tor and integer divisor, along with its local storage. We repli-
cate Paillier processors in HLS to deploy multiple copies, and
the top level function is responsible for dispatching input data
and collecting results. Since the Paillier processors are inde-
pendent and work in parallel, the overall throughput of an
FPGA chip can be determined by

Throughput =
Total amount of resource

Latency× Resource consumption per core
,

where resource broadly refers to multipliers, adders, memory,
etc., and latency can be further decomposed to clock cycle of
execution× clock frequency. Therefore, our design guideline
is to optimize the Montgomery ModMult operation lying at
the heart of Paillier cryptosystem, with respect to clock cycle,
resource allocation, clock frequency, in addition to memory
usage. We elaborate on the optimization on these dimensions
as below.

Clock Cycle
Generally, the clock cycle required by an algorithm is intrin-
sically lower bounded by the number of operations and the

critical path in the dependency graph. As shown in Algo-
rithm 1, the body of the Montgomery algorithm is a two-level
loop, consisting of 2(l/k)(l/k + 1) multiplications. Thus,
the ideal clock cycle will be 2(l/k)(l/k + 1) divided by the
number of multipliers, even if we ignore the rest of the op-
erations. On the other hand, as the execution of each inner
iteration depends on the iteration before, it is hard to force a
parallel execution of the inner iterations. Our goal is to de-
ploy two multipliers for an inner iteration, and obtain a clock
cycle number as close to (l/k)(l/k + 1) as possible.

Another dependency issue that deserves attention is the
computation of q in each outer iteration. In the ith iteration,
q depends on the value of Si−1, while it is necessary in the
computation of inner loops. However, if q is computed be-
fore the start of inner loop, the latency will be magnified by
the number of outer iterations.

To enforce a tight scheduling, we make the following opti-
mizations in HLS:
• Unrolling the inner loop. This can be done through an

UNROLL directive in HLS, or manually repeat part of
the loop. Unrolling the loop does not lead to parallel
execution of iterations. However, this is the only way
to disassemble all the operations composing the loop,
achieving the flexibility of scheduling to overlap opera-
tions as much as possible. Also, without unrolling we
are not able to insert the computation of q into the mid-
dle of an inner loop.
• Interleaving the q computation with the inner loop. As

discussed before, the q value used in each inner loop
must be computed before. Since the q value for com-
puting Si only relies on first few words of Si−1, it is
possible to start generating q in the last inner loop when
those words are ready. In this way we can obtain q in
advance and hide its latency.
• Pipelining the outer loop. We achieve this by inserting

a PIPELINE directive in HLS, with the initiation inter-
val set to the number of iterations contained in an in-
ner loop. The final step of schedule enforcement is to
pipeline all the iterations. We aim to pipeline both the
outer loop and the inner loop by unrolling the inner loop,
and pipelining the outer loop, so that the inner loop is
naturally pipelined by scheduling the disassembled op-
erations, and the outer loop try to start an interaction
each time when a whole inner loop is initiated.

The resulted scheduling is shown in Figure 3. We illus-
trate with an example with operands 4 words in length (i.e.
l/k = 4), and the computation of each inner iteration takes
4 clock cycles to complete. Initially, the schedule computes
q for the first inner loop (not shown in the figure), and then
initiates the inner iterations sequentially. In the meantime, as
soon as S0 is ready, it can be used to compute q for the next
inner loop. Hence, when the last inner iteration ends, the first
iteration of the next inner loop can start immediately with
the precomputed q. Therefore, we enable a tight schedule
that initiates an inner iteration each clock cycle. The resulted
execution clock cycle is (l/k)(l/k + 1), plus the number of
pipeline stages, and a few cycles for data read-in and write-
out.

Resource Allocation
In this work, we utilize the embedded DSP blocks on the
FPGA chip to construct pipelined multipliers. For the re-
maining logic, including adder, multiplexer, integer compari-
son, finite state machine, etc., we leave them to lookup-table
(LUT). As DSP on FPGA is scarce and expensive, we use
them to carry out the heavy multiplication only. Further, we
will show purely relying on LUT to implement ModMult op-
eration is not economic (Section 4). Therefore, we will focus
on the usage of LUT and DSP, and reduce the area and DSP
usage without sacrificing the performance.

We encapsulate the operations comprising an inner itera-
tion into a processing element (PE), as shown in Figure 4.
Each PE contains two multipliers to perform the two indepen-
dent multiplications x ∗ y and q ∗m. Then it accepts Sji−1 of
the last outer iteration, and a carry word (not shown in the fig-
ure), adds them with the multiplication results, and then out-
puts Sji and a carry word. Then we limit the number of PE to
1, with an ALLOCATION directive in HLS. This is to avoid
the resource bloating owing to loop unrolling, so that only re-
source for computing one inner iteration is actually allocated,
and to reduce the overall area of the micro-architecture.

We also employ the Karatsuba algorithm to construct DSP-
conservative multipliers. As shown in Algorithm 2, Karat-
suba algorithm performs an integer multiplication by recur-
sively breaking it into three of half size. Its efficiency is at-
tributed to one multiplication less than the schoolbook algo-
rithm, and we take advantage of it to allocate DSPs according
to the actual number of operations. For instance, a DSP48E1
block is able to carry out 18 × 25-bit multiplication, and a
32× 32 one can be divided into 16× 16 ones, and takes up 3
DSP blocks.

Algorithm 2: Karatsuba algorithm
Input: Operands X and Y , the length of operand k
Output: S = X ∗ Y

1 Let X = XhXl, Y = YhYl, where Xh, Xl, Yh, YL are
k/2-bit integers;

2 HH ← Karatsuba(Xh, Yh);
3 LL← Karatsuba(Xl, Yl);
4 HL← Katatsuba(Xh +Xl, Yh + Yl);
5 S ← HH ∗ 2k + (HL−HH − LL) ∗ 2k/2 + LL;
6 return S

Clock Frequency
The DSP units on the Xilinx FPGA run at a maximum fre-
quency of 400-500MHz. To approach the frequency limit,
we need to pay attention to the following measures:

• Declare the multipliers as pipelined multipliers. A
pipelined multiplier takes multiple cycles to accomplish
a multiplication, distributing its workload and relieving
the burden of each cycle. It does no harm to the multi-
plication throughput since we have resolved the depen-
dency between its input and output.
• Restrict bitwidth of operands. The clock frequency is

constraint by the critical path of the circuit, i.e. the

Figure 3: Pipeline Execution of the Montgomery ModMult Operation Figure 4: Processing Element Imple-
menting the Inner Loop of Algorithm 1

longest path of gates a signal needs to pass through dur-
ing one cycle. Arithmetic on integers such as addition
or comparison usually results in a long carry chain, and
thus we need to avoid computation on very long integers
directly. In this work, we use 32-bit as the operand size,
and the maximum bitwidth involved is 64 bits.

• Simplify the control logic. For the finite state machine in
charge of controlling the compute units, we use one-hot
encoding scheme to represent the states for a fast lookup
and match. The number of states is related to the number
of iterations of each loop and thus one-hot encoding will
be acceptable.

Memory Usage
Our design allocate each Paillier processors its own block
RAM (BRAM) as local buffer, to hold the input/output data
and the intermediate large integers involved in the computa-
tion. We do not share storage among processors to prevent
data access contention.

Large integers are normally stored as arrays of words in the
BRAM. However, we notice that the input data for encryp-
tion, which are encoded from floating point numbers used in
machine learning, have few effective digits compared with the
length of large integers. Therefore, we are able to store the
input data as a sparse vector, i.e. only recording the non-zero
elements and their indices, reducing the memory footprint.

3.3 Implementation
We develop our encryption framework with the AWS F1 in-
stance and Xilinx SDAccel development suite. The basic
logic of the encryption and decryption function is imple-
mented with Xilinx high level synthesis (HLS), allowing to
transform an algorithm described in C/C++ into tailor-made
implementation on FPGA. Directives like loop pipelining and
instance allocation are inserted into the HLS code to fine tune
the performance of the resulted architecture.

On the host side, we use the OpenCL API to access the ac-
celeration hardware. The OpenCL API provides an abstrac-
tion of the computing device like CPU, GPU and FPGA. An
invocation to the device function is named a kernel. OpenCL
is used to manage the data transfer between host and device,
queue and invoke kernels, and monitor the execution events.
We adopt the PyOpenCL APIs to implement a module that

makes use of the FPGA device for cryptographic processes
and incorporate it into the FATE framework.

The requests from the host side are divided into fixed size
batches, and each batch invokes a kernel on device. Multiple
kernels will be queued in the OpenCL command queue. This
helps overlap data transfer with computation and hide latency.
We also preallocate buffers on the device, arranging them as a
ring buffer, in order to reuse buffers among kernels and avoid
frequent memory allocation.

Figure 5: Queueing kernels for execution

4 Evaluation
We conduct experiments aiming to perform an extensive eval-
uation on the proposed encryption framework. We first per-
form a microscopic examination, comparing the implementa-
tion of Paillier algorithm and ModMult operation with soft-
ware solutions and existing FPGA designs. Then we study
its improvement on the overall performance of training pro-
cess of federated learning. The training tasks are carried out
on the open-sourced version of the FATE machine learning
framework. We choose two linear models, and adopt Kaggle
datasets on breast cancer1 and motor temperature2 and parti-
tion the datasets vertically.

We attempt to answer the following questions empirically
with the evaluation experiments:

• How do the Paillier processors perform, especially for
the ModMult operation, in terms of throughput and
resource-efficiency?
• How does the hardware framework compare with soft-

ware solutions of Paillier cryptosystem in terms of
en/decryption throughput?
• How much does the framework affect the training

throughput of federated learning with respect to different
models or algorithms?

1https://www.kaggle.com/uciml/breast-cancer-wisconsin-data
2https://www.kaggle.com/wkirgsn/electric-motor-temperature

Implementation Area(slice) DSP Clock frequency(MHz) Execution time(us) Throughput per DSP(op/s)

This work 483 9 500 8.81 12626
[San and At, 2014] 567 13 490 8.64 8903
[Song et al., 2010] 180 1 447 135.4 7385

[Huang et al., 2011] 9268 NA 129 18.70 NA

Table 1: Comparison of ModMult operaion

Given the broad adoption of the ModMult operation, many
implementation has been proposed by researchers, and we
compare ours with them in Table 1. Since we are targeting
datacenter acceleration chips and applications, the DSP effi-
ciency is a key factor evaluating an implementation. Com-
paring with the state of the art solution [San and At, 2014],
our ModMult module delivers a close latency but uses fewer
DSPs due to our precise limit on resource usage. The authors
of [Song et al., 2010] proposes an implementation using only
one DSP and one block RAM. However, without employing
the Karatsuba algorithm, their version turns out to be less effi-
cient than ours. [Huang et al., 2011] gives an implementation
using circuit elements entirely without DSP, and it shows that
an such a ModMult module consumes much area and limits
the clock frequency, and hence not recommendable. More-
over, most of existing solutions are based on register-transfer
level (RTL) that describes the circuit directly, but lacks the
flexibility of parametrizing and reusing the ModMult module
as our HLS version does.

To evaluate the effectiveness of the scheduling of Mod-
Mult operation, we compare the number of execution clock
cycles with the theoretically ideal clock cycle, given as T =
(l/k)(l/k + 1) (Section 3). As shown in Figure 6, for differ-
ent sizes of operands, our implementation keeps no more than
10% higher than the ideal. The gap is mainly due to pipeline
stages, time for initialization and data transfer.

 0
 2000
 4000
 6000
 8000

 10000
 12000
 14000
 16000
 18000

 1000 1500 2000 2500 3000 3500 4000 4500

N
um

be
r o

f e
xe

cu
tio

n
cl

oc
k

cy
cl

e

Length of operand(bit)

Our impl.
Ideal

Figure 6: Number of execution
clock cycles of ModMult opera-
tion

 0

 1000

 2000

 3000

 4000

 5000

 6000

1 core 2 cores 8 cores FPGA

O
pe

ra
tio

n
th

ro
ug

hp
ut

(o
p/

s)

Encryption
Decryption

Figure 7: Throughput of FPGA
and multicore processor

 0

 1000

 2000

 3000

 4000

 5000

 6000

1024 2048 3072

O
pe

ra
tio

n
th

ro
ug

hp
ut

(o
p/

s)

Public key size(bit)

PHE(CPU)
Ours

Figure 8: Encryption Through-
put Compared with Software

 0

 1000

 2000

 3000

 4000

 5000

 6000

1024 2048 3072

O
pe

ra
tio

n
th

ro
ug

hp
ut

(o
p/

s)

Public key size(bit)

PHE(CPU)
Ours

Figure 9: Decryption Through-
put Compared with Software

To investigate the performance of FPGA and software solu-
tion, we compare the framework with PHE, a popular Paillier
library, as shown in Figure 8 and 9. We can see that for a
1024-bit public key, our framework delivers an acceleration
ratio of 10.62× and 2.76× for encryption and decryption, re-
spectively. We also compare FPGA with a multicore proces-
sor using libpaillier library, as shown in Figure 7. It
shows that an FPGA effectively outperforms a multicore CPU
and is advisable to be used in accelerating computational in-
tensive applications.

Additionally, we test the modified FATE with linear mod-
els and the breast and motor datasets. We train a logistic re-
gression and a linear regression model on the two datasets
respectively for 10 iterations, and record the timing. Figure
10 and Figure 11 show the training iteration time and the en-
cryption time in each iteration respectively. It demonstrates
that for linear models, our framework reduce the training iter-
ation time by up to 26%, and the encryption time during one
iteration by 71.2%.

 0

 1

 2

 3

 4

 5

Logistic regression Linear regression

Ite
ra

tio
n

tim
e(

s)

Vanilla FATE
Ours

Figure 10: Improvement on Iter-
ation Time

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

Logistic regression Linear regression
En

cr
yp

tio
n

tim
e(

s)

Vanilla FATE
Ours

Figure 11: Improvement on En-
cryption Time Per Iteration

5 Conclusion
In this paper, we have demonstrated the significance of ac-
celerating homomorphic encryption and modular operations.
We explored a compact architecture for Paillier cryptosystem
with an HLS-based approach, investigating how to optimize
the performance, and incorporated the FPGA framework into
a federated learning system. We conducted extensive exper-
iments to present the effectiveness and efficiency of our en-
cryption framework.

References
[Aono et al., 2017] Yoshinori Aono, Takuya Hayashi, Li-

hua Wang, Shiho Moriai, et al. Privacy-preserving
deep learning via additively homomorphic encryption.
IEEE Transactions on Information Forensics and Security,
13(5):1333–1345, 2017.

[Bunn and Ostrovsky, 2007] Paul Bunn and Rafail Ostro-
vsky. Secure two-party k-means clustering. pages 486–
497, 2007.

[Chai et al., 2019] Di Chai, Leye Wang, Kai Chen, and
Qiang Yang. Secure federated matrix factorization. arXiv
preprint arXiv:1906.05108, 2019.

[FAT, 2019] Federated ai ecosystem. https://fate.fedai.org/,
2019.

[Gilad-Bachrach et al., 2016] Ran Gilad-Bachrach, Nathan
Dowlin, Kim Laine, Kristin Lauter, Michael Naehrig, and
John Wernsing. Cryptonets: Applying neural networks to
encrypted data with high throughput and accuracy. In In-
ternational Conference on Machine Learning, pages 201–
210, 2016.

[Hardy et al., 2017] Stephen Hardy, Wilko Henecka,
Hamish Ivey-Law, Richard Nock, Giorgio Patrini, Guil-
laume Smith, and Brian Thorne. Private federated learning
on vertically partitioned data via entity resolution and
additively homomorphic encryption. arXiv preprint
arXiv:1711.10677, 2017.

[Huang et al., 2011] Miaoqing Huang, Kris Gaj, and
Tarek A. El-Ghazawi. New hardware architectures for
montgomery modular multiplication algorithm. IEEE
Trans. Computers, 60(7):923–936, 2011.

[L‘ecuyer et al., 2019] Mathias L‘ecuyer, Riley Spahn, Ki-
ran Vodrahalli, Roxana Geambasu, and Daniel Hsu. Pri-
vacy accounting and quality control in the sage differ-
entially private ml platform. SIGOPS Oper. Syst. Rev.,
53(1):75–84, July 2019.

[Liu et al., 2018] Yang Liu, Tianjian Chen, and Qiang Yang.
Secure federated transfer learning. arXiv preprint
arXiv:1812.03337, 2018.

[Liu et al., 2019] Ximeng Liu, Robert Deng, Kim-
Kwang Raymond Choo, and Yang Yang. Privacy-
preserving reinforcement learning design for patient-
centric dynamic treatment regimes. IEEE Transactions on
Emerging Topics in Computing, 2019.

[Ma et al., 2017] Yukun Ma, Lifang Wu, Xiaofeng Gu,
Jiaoyu He, and Zhou Yang. A secure face-verification
scheme based on homomorphic encryption and deep neu-
ral networks. IEEE Access, 5:16532–16538, 2017.

[Mohassel and Zhang, 2017] Payman Mohassel and Yupeng
Zhang. Secureml: A system for scalable privacy-
preserving machine learning. In 2017 IEEE Symposium
on Security and Privacy (SP), pages 19–38. IEEE, 2017.

[Montgomery, 1985] Peter L Montgomery. Modular multi-
plication without trial division. Mathematics of computa-
tion, 44(170):519–521, 1985.

[Paillier, 1999] Pascal Paillier. Public-key cryptosystems
based on composite degree residuosity classes. theory and
application of cryptographic techniques, pages 223–238,
1999.

[Putnam, 2014] Andrew Putnam. Large-scale reconfigurable
computing in a microsoft datacenter. In 2014 IEEE Hot
Chips 26 Symposium (HCS), pages 1–38. IEEE, 2014.

[San and At, 2014] Ismail San and Nuray At. Improving the
computational efficiency of modular operations for em-
bedded systems. Journal of Systems Architecture - Em-
bedded Systems Design, 60(5):440–451, 2014.

[Song et al., 2010] Bo Song, Kensuke Kawakami, Koji
Nakano, and Yasuaki Ito. An RSA encryption hardware al-
gorithm using a single DSP block and a single block RAM
on the FPGA. In First International Conference on Net-
working and Computing, ICNC 2010, Higashi Hiroshima,
Japan, November 17-19, 2010. Proceedings, pages 140–
147, 2010.

[Wright and Yang, 2004] Rebecca N Wright and Zhiqiang
Yang. Privacy-preserving bayesian network structure com-
putation on distributed heterogeneous data. pages 713–
718, 2004.

[Yang et al., 2019] Qiang Yang, Yang Liu, Tianjian Chen,
and Yongxin Tong. Federated machine learning: Concept
and applications. arXiv: Artificial Intelligence, 2019.

	1 Introduction
	2 Background
	2.1 Federated learning with HE
	2.2 Privacy-preserving ML systems
	2.3 Paillier Homomorphic Encryption

	3 Design and Implementation
	3.1 System Overview
	3.2 Micro-architecture for Montgomery ModMult
	Clock Cycle
	Resource Allocation
	Clock Frequency
	Memory Usage

	3.3 Implementation

	4 Evaluation
	5 Conclusion

