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Abstract—Network monitoring is vital in modern clouds and
data center networks that need diverse traffic statistics ranging
from flow size distributions to heavy hitters. To cope with
increasing network rates and massive traffic volumes, sketch
based approximate measurement has been extensively studied
to trade the accuracy for memory and computation cost, which
unfortunately, is sensitive to hash collisions.

This paper presents a clustering-preserving sketch method
to be resilient to hash collisions. We provide an equivalence
analysis of the sketch in terms of the K-means clustering.
Based on the analysis result, we cluster similar network flows
to the same bucket array to reduce the estimation variance and
use the average to obtain unbiased estimation. Testbed shows
that the framework adapts to line rates and provides accurate
query results. Real-world trace-driven simulations show that LSS
remains stable performance under wide ranges of parameters and
dramatically outperforms state-of-the-art sketching structures,
with over 103 to 105 times reduction in relative errors for per-
flow queries as the ratio of the number of buckets to the number
of network flows reduces from 10% to 0.1%.

Index Terms—sketch, random projection, hash collision, clus-
tering

I. INTRODUCTION

Network measurement is of paramount importance for traf-
fic engineering, network diagnosis, network forensics, intru-
sion detection and prevention in clouds and data centers, which
need a variety of traffic measurement, such as delay, flow
size estimation, flow distribution, heavy hitters [1], [2], [3].
Recently, the self-running network proposal [4], [5] highlights
an automatic management loop for large-scale networks with
timely and accurate data-driven network statistics as the driv-
ing force for machine learning techniques.

Network-flow monitoring is challenging due to ever increas-
ing line rates, massive traffic volumes, and large numbers of
active flows [6], [7], [8], [9]. Traffic statistics tasks require
advanced data structures and traffic statistical algorithms.
Many space- and time-efficient approaches have been studied,
e.g., traffic sampling, traffic counting, traffic sketching. Com-
pared to other approaches, the sketch has received extensive
attentions due to their competitive trade off between space
resource consumption and query efficiency. Further, multiple
sketch structures can be composed for joint traffic analytics.

Existing sketch structures [10], [11], [12], [13] hash in-
coming packets to randomly chosen buckets and take the
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accumulated counter in these buckets as the estimator. Re-
cently, OpenSketch [14], UnivMon [15], SketchVisor [16],
ElasticSketch [17], and SketchLearn [18] further extend the
generality of the sketch structure to support diverse monitoring
tasks.

The sketch based monitoring approach has a degree of
approximation error due to hash collisions of incoming items,
as multiple keys may be mapped to the same bucket. Hash
collisions are inevitable due to the randomness of the hash
functions. Thus existing methods typically keep multiple in-
dependent copies of the sketch structure and find the least
affected ones as the estimator. However, this approach wastes
the space significantly. Recently, several approaches [17], [18]
propose to separate large items from the rest into a hash table
to reduce the estimation error. Unfortunately, the hash table
needs to allocate dedicated space for new items, thus it is less
efficient than the sketch with a constant-size bucket structure.
Thus, finding a space-efficient approach that is resilient to hash
collisions is an open question.

We present a new class of sketch called locality-sensitive
sketch (LSS for short) that is resilient to hash collisions.
LSS approximately minimizes the estimation error based on
a theoretical equivalence relationship between the sketching
error and the approximation error of the K-means clustering in
Sec. IV. This equivalence provides two important insights for
the sketching methodology: clustering similar items together
reduces the approximation error, and averaging the bucket
counter obtains an unbiased estimator. We exploit these two
theoretical insights to the design of a locality-sensitive sketch
structure.

We adapt to online and dynamic network flows with back-
ground clustering and lightweight temporal caching tech-
niques. First, we maintain the clustering model in a back-
ground and periodical process, which obtains close-to-date
samples and trains a clustering model that enables mapping
online flow records with up-to-date cluster centers. Second, the
insertion process should deal with incremental flow counters,
since the flow size grows as packets are delivered. We adapt to
monodically increasing flow counters with a temporal cache
based on a lightweight Cuckoo hash table [19], [20], [21].

We perform extensive evaluation in Section VI. Testbed
shows that the framework adapts to line rates and provides
accurate query results. Trace-driven study reveals that LSS
remains stable performance under wide ranges of parameters
and dramatically outperforms state-of-the-art sketching struc-
tures, with over 103 to 105 times reduction in relative errors



for per-flow queries as the ratio of the number of buckets to
the number of network flows reduces from 10% to 0.1%.

We summarize our contributions as follows:
• We provide a random-projection framework to quantify

the expectation and the variance of the estimation error
of the sketch structure.

• We establish the equivalence between the K-means clus-
tering and the optimization of the sketch accuracy, from
which we present a normalized sketch structure based on
the clustering equivalence.

• We present the design and implementation of a locality-
sensitive sketch for scalable and resilient network flow
monitoring.

• We conduct extensive performance evaluation with
testbed and trace-driven simulation, and confirm that the
proposed sketch based monitoring application dramati-
cally reduces the estimation error under the same memory
footprint.

The rest of the paper is organized as follows. Sec. II pro-
vides background of the sketch based network flow monitoring
process and summarizes related studies that are most related
to our work. Sec. III presents a random-projection approach
to accurately capture the expectation and the variance of the
sketch’s estimation error. Sec. IV establishes the connection
between the optimized sketch and the K-means clustering
and presents a normalized sketching methodology inspired by
this connection. Sec. V next presents the design and imple-
mentation of the locality-sensitive sketch based monitoring
solution. Sec. VI conducts extensive performance evaluation
with testbed and trace datasets. We finally conclude in Sec.
VII.

II. BACKGROUND AND RELATED WORK

We present the background and related work in this section.
Key notations include: N : Number of unique keys; X: Key-
value streams; X̂: Estimated key-value streams; A: Indicator
matrix; {Ci}: Cluster centers; a: Bucket array; k: Number of
cluster centers; m: Number of buckets.

A. Background

A sketch based monitoring application typically comprises
an ingestion component that intercepts incoming packets from
the physical network interface and generates key-value input
for the sketch, a sketching component that feeds the key-
value input to a sketch structure that approximates these key-
value pairs with one or multiple hash based bucket arrays.
For instance, existing sketch based monitoring applications
directly ingest packet streams. Each flow is typically repre-
sented as a key-value pair, where the key is defined by a
combination of packet-header fields and the value summarizes
the flow’s statistics, e.g., packet numbers or byte counts. For
each incoming packet, a sketch based monitor inspects the
packet header to extract the key and calculate the packet’s
value, then inserts this record to the sketch data structure.
Finally, to estimate the accumulated value of a key, the
monitor queries the sketch with the input key, which returns

an approximate value over the shared bucket arrays for all
inserted keys.

Concretely, count-min sketch (CM) [11], one of the most
popular sketch methods, maintains k banks of arrays of size m,
where k and m are chosen based on the accuracy requirement.
To insert a key-value pair to the sketch, we chooses k
uniformly-random hash functions hj , j ∈ {1, 2, · · · , k} to
map each key to a randomly chosen bucket from each bank.
To query a given key, CM uses the same set of hash functions
to select k buckets from each bank ( for the j-th bank, the
hj(key)-th bucket is selected). CM approximates the value
of a given key by the minimum of mapped buckets. Given
a vector of items denoted as X , CM [11] shows that, the
probability of the minimum of the inserted buckets is greater
than the ground-truth value by 2

m‖X‖1 is at most 1
2k

, where
‖X‖1 =

∑
j∈X |j|.

B. Related Studies

State-of-the-art sketch structures [10], [11], [12], [17]
choose the least affected bucket from multiple copies of inde-
pendent bucket arrays as the estimator. Recently, ElasticSketch
[17] keeps heavy hitters separately with a hash table, and puts
the rest of items to a count-min sketch. Thus it is less sensitive
to heavy hitters compared to prior sketch structures [10],
[11], [12]. However, as heavy hitters only represent a small
fraction of items, the count-min sketch is still sensitive to hash
collisions. SketchLearn [18] uses a multi-level array to keep
the traffic statistics of specific flow-record bits, and separates
large flows from the rest of flows like ElasticSketch [17] based
on inferred flow distributions. Different from these studies,
our work proactively applies a cluster-preserving approach to
reduce the estimation error due to hash collisions. Further,
although our work is orthogonal to these studies, the LSS
sketch structure can be combined to these frameworks to
improve the sketching efficiency.

III. RANDOM PROJECTION BASED SKETCH ANALYSIS

The sketch structure should remain fairly accurate under
a wide range of parameter configurations. Unfortunately, a
sketch is sensitive to hash collisions where multiple keys are
mapped to the same bucket.

Assume that a sketch consists of one bucket array for ease
of analysis. Solving multiple copies of bucket arrays is left
as future work, which involves complicated order statistics
over randomized data stream samples. Suppose that a sketch
structure randomly maps incoming items to a bucket array
uniformly at random. Let X : N × 1 denote the vector of
the streaming key-value sequence from the network ingestion
component. Let A : N × m denote the indicator matrix of
mapping the vector X to a bucket array a of size m× 1. Let
A(i, j) = 1 iff the i-th item Xi is mapped to the j-th bucket
Ij , and A(i, l) = 0 for l 6= j, l ∈ [1,m].

For example, we can represent the mapping matrix in Count-
min (CM) as follows: Each key is mapped to only one bucket
in a bucket array uniformly at random, which accumulates the
key’s value to the current counter. Thus the projection matrix



can be formulated as:
∑m
j=1A (i, j) = 1, where A(i, j) ∈

{0, 1} for any entry (i, j).
Theorem 1 establishes the equivalence between the sketch

with the random projection as follows:

Theorem 1. A sketch with one bucket array is equivalent to a
random projection: the insertion process corresponds to a =(
ATX

)
, while the query phase corresponds to X̂ = A ·a. The

overall sketch is represented as X̂ = AATX .

Proof. For each incoming key-value pair (κ(i), Xi), the sketch
selects only one bucket indexed by a variable j by hashing the
key κ(i) with a hash function, and appends the value scalar
Xi to this bucket by incrementing the bucket’s counter by
Xi. Equivalently, we set the i-th row vector of A, denoted as
A(i, :), to a 0-1 vector, where only the j-th entry is one, i.e.,
A(i, j) = 1, and set other entries in this row vector to zeros.
Consequently, we can equivalently transform this insertion
choice as a = a+ A(i, :)T ·Xi. The insertion process for all
key-value pairs can be represented as an algebraic equation:
a =

(
ATX

)
.

To estimate the value of a key κ(i), the sketch selects the
same bucket indexed by j by hashing κ(i) with the same hash
function as the insertion process, and then returns the bucket’s
counter a(j) as the approximated value for Xi. Similarly,
based on A’s i-th row vector A(i, :), we equivalently represent
the approximated value as X̂i = A(i, :) · a. Therefore, the
approximated values for all inserted keys can be calculated as
a decoding phase: X̂ = A · a = AATX .

From the random-projection results, the sketch is related to
the compressed sensing problem, which seeks to recover the
original signal X with a small number of linear measurements
that collectively calculate the product AATX , where A de-
notes a sparse sign matrix. The sketch’s goal is to approximate
the original input with a small error. However, the sketch faces
a more challenging context than the compressed sensing, since
the linear matrix A is not preserved in the sketch, as each item
is independently processed in the data stream. Thus we cannot
directly apply the compressed-sensing results to recover the
sketch.

We next show that we can quantify the expectation and
the variance of the estimation based on the random-projection
equivalence as follows:

Theorem 2. Suppose that X are independent and identically
distributed (iid) with expectation µ and variance σ2. The
expectation of the loss of each item j ∈ [1, N ] is (N−1)µ

m ,
and the variance is N−1

m

(
σ2 +

(
1− 1

m

)
µ2
)

Proof. The approximation loss of a sketch can be expressed
as X̂ −X = AATX −X =

(
AAT − I

)
X , where I denotes

the identity matrix.
Recall that the product AAT is an N -by-N symmetric

matrix, where the diagonal entries are all set to ones since
each item is mapped to only one bucket, and each non-diagonal

entry (i, j) is one when i and j is mapped to the same bucket,

and zero otherwise: AAT (i, j) =

{
1, A (i, :) = A (j, :)

0, else
.

Assuming that each item is mapped to a bucket uniformly
at random, each entry (i, j) of the matrix AAT has a bernoulli
distribution, so that the probability Pr

[
AAT (i, j) = 1

]
=

1/m and Pr
[
AAT (i, j) = 0

]
= 1 − 1/m holds. Thus we

write AAT as AAT ∼ Bernoulli(1/m).
Let Φ′ = AAT − I denote a normalized projection ma-

trix, whose diagonal items are all set to zeros. Each non-
diagonal entry in Φ′ is the same as that in AAT , both of
which follow the Bernoulli distribution. We can derive the
expectation E [Φ′ (i, j)] as 1

m , and the variance V ar [Φ′ (i, j)]
as 1

m ·
(
1− 1

m

)
.

First, the expectation of the approximation loss can be
written as:

E
[
X̂ (j)−X (j)

]
= E

[∑N−1
i=1 Φ′ (i, j)X (j)

]
=
∑N−1
i=1 E [Φ′ (i, j)X (j)]

=
∑N−1
i=1 E [Φ′ (i, j)]E [X (j)]

= (N−1)µ
m

The third line is due to the independence of the random-
projection matrix and items.

Second, the variance of the approximation loss
V ar

[
X̂ (j)−X (j)

]
can be derived as:

V ar
[∑N−1

i=1 Φ′ (i, j)X (j)
]

=
∑N−1
i=1 V ar [Φ′ (i, j)X (j)]

=
∑N−1
i=1

V ar [Φ′ (i, j)]V ar [X (j)] +

V ar [Φ′ (i, j)]E [X (j)]
2
+

V ar [X (j)]E [Φ′ (i, j)]
2


= (N − 1)

(
1
m

(
1− 1

m

)
σ2 + 1

m

(
1− 1

m

)
µ2 + σ2

(
1
m

)2)
= N−1

m

(
σ2 +

(
1− 1

m

)
µ2
)

The second line is due to the independence between Φ′ and
X .

We see that the approximation error of the sketch such as
count-min [11] is proportional to the sum of the variance and
the squared expectation of the network flow distribution.

A. Extensions

Further, several sketch structures such as count-sketch use
signed mapping matrices. Each key is also randomly mapped
to only one bucket, but a bucket accumulates a weighted value
of the key by +1 or −1 randomly to the current counter.
To account for the signed weights in the same framework,
we extend the projection matrix to allow for negative items∑m
j=1A (i, j) = +1, or − 1, where A(i, j) ∈ {−1, 0, 1} for

any entry (i, j). Thus, the sketch approximates the input with
AATX as before. The projection matrix AAT can be written
as:

AAT (i, j) =


1, A (i, :) = A (j, :)

−1, A (i, :) = −A (j, :)

0, else



Lemma 1. Suppose that X are iid with expectation µ and
variance σ2. The expectation of the loss of each item j ∈
[1, N ] is zero, and the variance is N−1

m ·
(
σ2 + µ2

)
.

Proof. The probability Pr
[
AAT (i, j) = 1

]
and

Pr
[
AAT (i, j) = −1

]
are the same and both amount to

= 0.5/m, and Pr
[
AAT (i, j) = 0

]
= 1 − 1/m. From the

probability distribution, we write the expectation E [Φ′ (i, j)]
as 0, and the variance V ar [Φ′ (i, j)] as 1

m .
The approximation loss of this sketch can be expressed as

X̂ −X = AATX −X =
(
AAT − I

)
X , where I denotes the

identity matrix. Let Φ′ = AAT − I denote the normalized
projection matrix by setting all diagonal items to zeros. Next,
the expectation of the approximation loss can be written as:

E
[∑N−1

i=1 Φ′ (i, j)X (j)
]

=
∑N−1
i=1 E [Φ′ (i, j)X (j)]

=
∑N−1
i=1 E [Φ′ (i, j)]E [X (j)] = 0

The third line is due to the independence of the random-
projection matrix and items.

Second, the variance can be derived as:
V ar

[∑N−1
i=1 Φ′ (i, j)X (j)

]
=
∑N−1
i=1 V ar [Φ′ (i, j)X (j)]

=
∑N−1
i=1

 V ar [Φ′ (i, j)]V ar [X (j)]

+V ar [Φ′ (i, j)]E [X (j)]
2

+V ar [X (j)]E [Φ′ (i, j)]
2


= (N − 1) ·

(
1
m · σ

2 + 1
m · µ

2
)

= N−1
m

(
σ2 + µ2

)
The second line is due to the independence between Φ′ and

X .

The proof follows from the similar procedure in Theorem
2. We see that although the expectation is reduced to zero, the
variance is even greater.

IV. K-MEANS CLUSTERING EQUIVALENCE ANALYSIS

Having quantified the accuracy and the variance of the
sketch based monitoring process, we next present a cluster-
preserving approach to improve the estimation accuracy and
measurement concentration.

A. K-means Clustering

The K-means clustering problem that seeks to partition
items to a set of groups with minimal variance has a close
connection with data approximation [22]. It minimizes the
variance of each cluster by finding a set of m points (called
centroids) C such that the potential function is minimized

F (S) =
∑
x∈S

min
c∈C
‖x− c‖2, (1)

where each centroid is equal to the average of the sum of
items assigned to this cluster. Let A ∈ {0, 1}N×m denote
the K-means clustering indicator matrix, with A(i, j) = 1 if
i is mapped to the j-th cluster, and A(i, j) = 0 otherwise.
We see that AATX’s i-th row represents the sum of items
of the cluster assigned to i. Further, ATA’s j-th diagonal
entry represents the number of items in the j-th cluster.
Thus, A

(
ATA

)−1
ATX’s i-th row represents the centroid of

i’s assigned cluster. Consequently, we can represent the loss

function of the K-means clustering with the mapping matrix
A as follows:∑

x∈S
min
c∈C
‖x− c‖2 = min

A

∥∥∥X −A(ATA)−1ATX∥∥∥2
F

(2)

Thus Eq (2) is structurally similar to a sketch that optimizes
the similar objective minA

∥∥∥X − X̂∥∥∥ =
∥∥X − (AAT )X∥∥.

Further, the product ATA in Eq (2) has a unique structure:
it is a diagonal matrix where non-diagonal entries are all
zeros since each item is mapped to only one bucket, and
each diagonal entry refers to the number of key-value pairs
mapped to this corresponding bucket. Therefore, the matrix(
ATA

)−1
can be simply calculated by the inverse of each

non-zero diagonal entry.

B. Novel Sketch

Based on these structural relationships, the K-means cluster-
ing solution leads to an important sketch design methodology:
clustering similar network flows to the same bucket helps
reduce the approximation error.

Let X̂ = A
(
ATA

)−1
ATX be a normalized sketch approx-

imation:

• Insertion phase: Keep a = ATX by accumulating the
value of each key to one of m buckets uniformly at
random, and the diagonal matrix ATA by counting the
number of unique keys mapped to each bucket with m
counters;

• Query phase: Return X̂ = A
(
ATA

)−1
a, each of which

is estimated by the division of the sum of values by the
counter number of the bucket where this item is mapped
to.

We next prove in Theorem 3 that, averaging the bucket
counter leads to an unbiased estimator, and by clustering sim-
ilar items together and mapping them to the same bucket array,
the average estimator is bounded with probability proportional
to the squared cluster’s interval M .

Theorem 3. Suppose that X are iid with expectation µ and
variance σ2. Assume that the difference

∣∣∣Xj
i − µ

∣∣∣ is bounded

by a positive constant M for any variable Xj
i .

For a bucket j, let the items mapped to this bucket be
represented as a set of independent and identically distributed
variables:

{
Xj
i

}
. Let µ denote the expectation of the variable

µ = E
[
Xj
i

]
. Let nj denote the number of items inserted to

the j-th bucket, let Yj =
∑

iX
j
i

nj
denote the average based

estimator.
Then Yj is an unbiased estimator for any variable Xj

i .
Pr (|Yj − µ| ≥ a) ≤ M2

a2nj
2 for a positive constant a. More-

over, Pr
(∣∣∣Yj −Xj

i

∣∣∣ ≥ a) ≤ M2

(a−M)2nj
2 .

Proof. The expectation of Yj is exactly the expectation of the
variables. E [Yj ] = 1

nj
E
[∑

iX
j
i

]
= 1

nj

∑
iE
[
Xj
i

]
= µ



Therefore, Yj is an unbiased estimator for
{
Xj
i

}
. Next,

we bound the deviation degree of Yj from its expectation as
follows:

V ar [Yj ] = E
[
(Yj − µ)

2
]

= E

[(
Xj

nj
− µ

)2]
=

E

[
1
nj

2

(∑
i

(
Xj
i − µ

))2]
≤ 1

nj
2E
[
M2
]

= M2

nj
2

By Chebyshev’s inequality, we bound the range of Yj as :

Pr (|Yj − µ| ≥ a) ≤ V ar [Yj ]

a2
≤ M2

a2nj2
(3)

Second, the following inequality holds:
Pr
(∣∣∣Yj −Xj

i

∣∣∣ ≥ a) = Pr
(∣∣∣Yj − µ+ µ−Xj

i

∣∣∣ ≥ a)
≤ Pr

((
|Yj − µ|+

∣∣∣Xj
i − µ

∣∣∣) ≥ a)
= Pr

(
(|Yj − µ|) ≥ a−

∣∣∣Xj
i − µ

∣∣∣)
≤ Pr (|Yj − µ| ≥ a−M)

which is less than or equal to M2

(a−M)2nj
2 by Eq (3).

The second line is due to the triangle inequality condition
(
∣∣∣Yj − µ+ µ−Xj

i

∣∣∣ ≤ |Yj − µ|+ ∣∣∣Xj
i − µ

∣∣∣).

V. SKETCH DESIGN AND IMPLEMENTATION

After presenting the cluster-preserving sketching methodol-
ogy, we next present a new class of sketch called Locality-
sensitive Sketch (LSS) that realizes the K-means clustering
based normalized sketch structure.

A. Sketch Design

An LSS contains a number k of bucket arrays and a clus-
tering model that consists of k cluster centers in a background
and periodical process with up-to-date samples. A bucket array
consists of a number of buckets, where each bucket has two
fields: (i) A ValSum field that records the sum of values; (ii) A
KeyCount filed that records the number of unique keys inserted
to this bucket. Each bucket array corresponds to a cluster of
similar items.

We map each item to the bucket array corresponding to the
index of the nearest cluster center. For each incoming key-
value item, we select the nearest cluster center with respect to
the value, choose the corresponding bucket array, and insert
the key-value item to a bucket indexed by the hash of the key.
The bucket’s ValSum counter is incremented by the incoming
value, and the KeyCount increments by one iff the key is a
new one.

Figure 1 plots an illustration of LSS data structure that
is composed of two bucket arrays, each of which contains
two buckets. Given an incoming key-value pair (f5, 60), we
compare f5’s value with two cluster centers and select the
second bucket array denoted as array-2, since f5’s value is
closer to 80. Then, we map f5 to the second bucket, and
increment the bucket from (83, 1) to (143, 2). The average of
this bucket is 143

2 = 71.5, which approximates the value of
f5 with a small relative error.

Fig. 1. Insert a key-value pair (f5, 60) to an LSS instance. We assume an
offline K-means cluster model with two cluster centers 15 and 80. One bucket
array keeps items that are nearest to 15, while the other one keeps items that
are nearest to 80.

B. Online Operations

1) Insert: LSS maps a key-value pair to the nearest cluster
center, and accumulates the value to the corresponding bucket
array. As the flow size is unknown before it completes, the
ingestion process may publish multiple records for the same
flow. Thus we have to efficiently identify the nearest cluster
center for a dynamic flow and adjust the cluster mapping for
changing flows.

We need to store the cluster index and the temporal value
of the incoming key, in order to account for monotoni-
cally increasing flow counters. Thus we combine LSS with
a membership-representation data structure, since a sketch
structure does not keep the key-value membership itself, and
querying a non-existing key is meaningless. As the Cuckoo
table is shown to be more efficient than the Bloom filter
at low false positives [19], [20], [21], we temporally keep
a Cuckoo hash table of the form (fingerprint, (cluster-index,
flow-counter)): the first field encodes the key, while the second
and the third fields record the index to the nearest cluster and
the current flow counter.

Step (i): we query the Cuckoo table with the item key to test
whether it is a new key: If the flow has not been inserted to
LSS, then we query the cluster model to find the nearest cluster
center, and put it into the bucket array corresponding to the
closest cluster center for this flow. We choose a random bucket
by hashing the key with one hash function, and accumulate the
incoming key-value pair to this bucket: (1) ValSum = ValSum
+ value; (2) KeyCount = KeyCount + 1 (if and only if key
has not been hashed into this bucket array). Further, we also
update the Cuckoo table to record the incoming item.

Step (ii): If the item key is duplicated, i.e., the network flow
has sent some packets, then we obtain the recorded cluster
index from the Cuckoo table, and select the corresponding
bucket array with the same hash function, and adjust the
mapped bucket with the item value: ValSum = ValSum + value.

Step (iii): Next, we check whether or not to move the flow
to a new cluster: If the flow record is still nearest to the current
cluster center, no movement should be made; otherwise, we
need to move the flow record to the bucket array corresponding
to the nearest cluster center: we delete the flow record from the
current bucket array based on the record kept in the Cuckoo
hash table (1) ValSum = ValSum - value, and (2) KeyCount



= KeyCount -1; then we insert this flow to the bucket array
corresponding to the nearest cluster center similar to step (i).

2) Query: To query the value of a key on the LSS, we need
to locate the bucket array. To that end, we query the Cuckoo
hash table with the input key to get the cluster index of this
key. Finally, we return the weighted value V alSum

KeyCount as the
approximated result.

Further, LSS supports diverse query tasks similar to existing
sketch structures. We list the most representative ones:

(a) Per-flow frequency and entropy query. They track the
traffic volume of each distinct flow, or count the flow bytes.
LSS directly returns the size of a given flow. To query the
size distribution of each inserted flow, we iteratively obtain
approximation results with identifiers of inserted flows, then
we build a list of approximated flow sizes as the flow size
distribution. Similarly, we derive the entropy metric as the
frequency distribution of approximated flow sizes.

(b) Heavy hitters. It finds top-K flows ingesting the most
traffic volumes. For a given heavy-hitter detection threshold,
we obtain approximated values of inserted flows from the
LSS sketch, and select those exceeding the threshold as heavy
hitters. Based on heavy hitters, we can also find flows spanning
multiple windows that fluctuate beyond a predefined threshold,
i.e., the heavy changes.

(c) Flow cardinality. LSS counts the exact number of
distinct flows, since LSS maps each flow to a unique bucket.
Therefore, we directly calculate the sum of KeyCount fields
for each non-empty buckets, and return the accumulation result
as the number of distinct flows.

C. Background Operation

Grouping flows to clusters should cope with online streams.
To group similar network flows together, we need a clustering
model. Further, we need to perform one-pass processing for
online network flows. To that end, we reuse the samples kept in
the Cuckoo hash table as the up-to-date samples, and provision
the cluster model in a background process with these samples.

The clustering problem belongs to an unsupervised learning
problem that clusters items to minimizes the intra-cluster vari-
ance. We obtain flow traces and train the K-means clustering
mode in a periodical manner. We choose the well-studied
K-means clustering method that represents clusters with a
list of cluster centers. The K-means clustering model groups
similar items together, by calculating a list of cluster centers
as clustering reference points for items. We tune the number
of clusters in order to obtain a fine-grained grouping model for
the flow size distribution, which bounds the variance within
each group in order to control the error variance of the average
estimator.

D. Parameter Heuristics

We present parameter guidelines in order to trade off the
estimation accuracy and the memory footprint.

Bucket-Array Size: We configure the size of a bucket array
i based on the combination of three factors: (i) Cluster entropy
H: For a cluster covering a short interval, a small bucket

array is enough to achieve a low estimation error. This short
cluster contains a low degree of uncertainty. The uncertainty
of the cluster entries can be quantified with the entropy,
Hi = −

∑
j∈Si

fj logfj ∈ [0, 1], where Si denotes the set of
unique items for the i-th cluster, fj denotes the frequency of
item j in this cluster. (ii) Cluster center µ: For a cluster with
a large cluster center, it is likely to be the heavy tails of the
flow’s distribution, which needs more buckets to control the
hash collisions. We quantify the cluster center with the ratio
of each cluster center against the sum of all cluster centers,
i.e., µi = µi∑

j µj
∈ [0, 1]. (iii) Cluster density d: For two

clusters with approximately the same cluster uncertainty, a
larger cluster need more buckets to reduce the estimation error.
We quantify the cluster density with the ratio of the cluster
entries to the total number of items, i.e., di = di∑

j dj
∈ [0, 1].

Let m denote the total number of buckets for LSS, Hi the
entropy of the i-th cluster, gi the i-th cluster center, and di the
percent of items for the i-th cluster, we allocate Hidiµi∑

j Hjdjµj
·m

buckets for the i-th bucket array. We derive these parameters
through the offline K-means training process.

Number of Clusters: Finding the optimal number of K-
means clusters is known to be NP-hard [23]. Thus we empir-
ically determine the number of clusters based on sensitivity
analysis that locates diminishing returns of the prediction
accuracy.

Cuckoo table: For the sketch membership requirement, we
set the number of hash functions to two and the number of
slots per bucket to four in order to fit each bucket to a cache
line (denoted as a (2,4) filter) [19]. For a f-bit digest, the upper
bound of the false positive rate of an item is approximately
4∗2
2f

. We choose a 16-bit fingerprint with a false positive rate at
0.012%, which practically provides nearly-exact query. For a
new key-value pair, we need two hash-function evaluations to
visit the (2,4)-filter, and one hash-function evaluation to access
the LSS sketch. To save the hashing complexity, we reuse the
hash function across LSS bucket arrays, thus we only need
three hash-function evaluations to insert an existing key-value
pair.

E. Network Flow Monitoring
To illustrate the feasibility of the LSS sketch, we develop

a monitoring application that implements the sketch in a
modular framework based on a publish/subscribe (Pub/Sub for
short) framework. A monitoring function atomically defines an
intermediate stage in the monitoring process. The ingestion
function colocates with the server or middlebox to aggregate
packet streams to flowlet streams [24]. The sketching function
maintains the LSS sketch based on flowlet streams. Finally, a
query function performs monitoring queries on LSS sketches.
(i) Ingestion Stage: The ingestion stage provides a device-
independent key-value intermediate presentation model for
network monitoring. It temporally aggregate packets at servers
or middleboxes at line rates to flowlets [24], publishes key-
value formatted flowlet-record messages in a batch mode to the
Pub/Sub framework, and reset the hash table to accommodate
for new entries.



(ii) Sketching Stage: The sketching component subscribes to
one or multiple topics published by the ingestion components,
then dynamically keeps an independent LSS sketch for each
sliding window. For the sequence based sliding window, each
LSS sketch keeps at most N flow records and is emitted
to the sketch topic afterwards; while for the time based
window, each LSS sketch is emitted after the interval ends.
Upon receiving a flow record from a subscribed topic, the
component selects the corresponding LSS sketch, groups this
record towards the nearest cluster center, and inserts this record
to the corresponding bucket array in the LSS sketch.

VI. EVALUATION

A. Experimental Setup

We ran experiments on a multi-tenant private cluster to
evaluate the locality-sensitive sketching and monitoring appli-
cation. We set up the experiments on ten servers in two racks
connected by a 10 Gbps switch, each server is configured
as 8-core Intel(R) Xeon(R) CPU E5-1620, 47 GB memory,
and Intel 10-Gigabit X540-AT2 network card. We choose the
Pulsar messaging system originally created at Yahoo [25] as
the Pub/Sub underlay. We set up the Apache Pulsar 2.2.0
Pub/Sub as a standalone service on a dedicated server. We
split nine servers to two groups: (i) Six servers run the
network ingestion component to produce flowlet records for
port-mirrored traffic from the top-of-the-rack switch based on
the Intel DPDK 16.04 interface, and publishes to the Pub/Sub
framework; (ii) Three servers run the sketching component to
maintain the LSS sketch for each of six ingestion servers.

Default LSS Parameters: We set the sliding window to
consist of 10,000 flows by default. We set the total number
of buckets with respect to the number of flows in a sliding
window. For a sliding window that consists of N flows, we
set the default number m of LSS buckets to 0.1×N = 1, 000.
For each LSS bucket, we set the storage size to four bytes (two
bytes for each field). We set the default number of clusters to
30. Each cluster center is represented with four bytes. Thus an
LSS with 1,000 buckets and 30 cluster centers takes 4.12KB.
The offline traces take 10,000 flow samples, each sample is
represented as four bytes, which take 40KB in total. We set
the default heavy-hitter threshold to the 90-th percentile of the
offline traces. We choose LSS’ default parameters based on
the diminishing returns via extensive sensitivity experiments
in Subsection VI-C2.

Metrics: We choose three representative monitoring tasks
to evaluate the sketch’s performance, namely the flow-size
query, the flow-entropy query, and the heavy-hitter query.
We quantify the performance of the first two tasks with the
relative error metric: defined as |xr − xe| /(xr), where xr and
xe denoted the ground-truth metric and the estimated metric,
respectively, and the last task based on the F1 score defined
as the harmonic mean of the precision and the recall values,
where the closer the F1 score towards one, the better the
heavy-hitter estimator.
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Fig. 2. Performance of representative monitoring tasks on the testbed.
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Fig. 3. 90-th percentile of flow-query relative errors on three servers running
the query component.

B. Testbed Results

(i) Flow-size query: Next, we evaluate the relative error
of estimated flow sizes. For each flow in each interval, we
compare the estimated flow size against the ground-truth flow
size. Figure 2(a) plots the CDFs of the mean relative errors.
We see that the relative errors of over 90% of all estimations
are smaller than 0.01. Since LSS accurately captures skewed
flows with clustered bucket arrays.

(ii) Flow-entropy query: We next evaluate the accuracy of
the entropy of the flow distribution for each interval. Figure
2(b) plots the CDFs of the relative errors of estimated flow
entropies. We see that over 90% of estimations are smaller
than 0.06, because of accurate estimations of flow sizes.

(iii) Heavy hitter query: Having shown that the flow
entropy is accurately estimated, we next test the accuracy of
estimated heavy hitters by calculating the F1 scores. Figure
2(c) plots the CDFs of F1 scores. We see that over 90% of
tests are greater than 0.95. As LSS captures fine-grained flow
distributions with clustered bucket arrays.

(iv) Estimation stability: We next test the estimation sta-
bility on the testbed. Figure 3 shows the 90-th percentiles of
the flow-query relative errors of three query components. We
see that most of the 90-th percentiles are zeros, while non-zero
entries are smaller than 0.01 in most cases. Thus the estimation
remains stably accurate across sliding windows.

(v) Rate: We next compare the relative performance of the
ingestion component and the sketching component. Figure 4
shows the relative rate between the packet’s arrival rate and
the ingestion rate, as well as that between the flow-record
arrival rate and LSS’ insertion rate. We see that the arrival
rate is orders of magnitude smaller than the corresponding con-
sumption rate for both ingestion component and the sketching
component. Since each component is tuned with respect to the
input’s arrival rate. We also constrain the size of the ingestion
hash table and the LSS sketch in order to avoid CPU’s L3-
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cache misses.

C. Trace-driven Simulation

Our testbed is limited by the server scale. Therefore, we
perform a real-world trace-driven experiment study with a
public network dataset collected on February 18, 2016 at the
Equinix-Chicago monitor by CAIDA [17] with 1799.7 million
packets that last for one hour. We replay network traces and
feed to the Apache Pulsar Pub/Sub software framework. We
follow the default parameters of the testbed study.

1) Comparison: (i) Vary Memory: We compare LSS with
count-min (CM) [11], count-sketch (CS) [10], and Elastic
Sketch (ES) [17] that are most related with our work. CM and
CS are commonly used to find heavy hitters and perform flow
queries [26], [15], [16]. We set the same memory footprint for
all compared sketch structures. We follow the recommended
parameter configuration for CM [11], CS [10] and ES [17].

Figure 5 plots the performance of the flow-size, flow-
entropy, and heavy-hitter query tasks, as we vary the ratio
between the number of buckets in LSS and the number of
unique flows. We see that LSS significantly outperforms other
sketch structures in all cases.

For the flow-size query tasks, LSS’ relative error is over 103

to 105 times less than those of CS, CM and ElasticSketch, as
the ratio between the number of buckets and the number of
key-value pairs decrements from 10% to 0.1%. This is because
LSS adapts to skewed flows with a cluster-preserving mapping
process.

For the flow-entropy task, LSS’ relative error is 4.3 to
13 times smaller than that of ElasticSketch, 4.8 to 14 times
smaller than that of CM, and 70 to 200 times smaller than
that of CS. ElasticSketch’s accuracy is similar to that of CM
in most cases, while CS has a much larger relative error than
other methods. We can see that the flow-entropy task is less
sensitive to flow-size errors, since the entropy depends on the
frequency of each estimated value.

For the heavy-hitter task, LSS is close to optimal compared
to the other methods, since LSS accurately estimates the
size of each flow with a K-means clustering based recovery
mechanism. ElasticSketch’s accuracy is similar to CM and CS
when the ratio m

N is not greater than 0.1, and has a better F1
score than CS and CM afterwards, since ElasticSketch needs
to keep large flows with the hash table and stores other flows
to the count-min sketch.
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Fig. 5. Accuracy of LSS and CM, CS, ES in terms of the ratios of the number
of LSS buckets to the number of flows.
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Fig. 6. Accuracy of CS, CM and LSS as we expand the fields based on the
5-tuple model.
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Fig. 7. Performance of CS, CM and LSS as we vary the fractions of inserted
flows.

(ii) Varying Flow Fields: Having shown that filtering large
flows from the sketch is less effective than a K-means cluster-
ing based recovery of the locality-sensitive bucket arrays, we
next compare CS, CM and LSS that do not filter flows with
hash tables. We compare the stability of LSS with CS and CM,
all of which do not filter heavy hitters like ElasticSketch. As
shown in Figure 6, all sketch structures marginally improve the
accuracy as we increment the key’s input from one field to all
five fields. LSS remains to be the most accurate sketch, since
LSS captures fine-grained flow distributions with data-driven
clustered buckets.

(iii) Varying Flows: Figure 7 shows that LSS remains
fairly accurate across configurations, as we progressively add
more flows in an epoch to the sketch. While CS and CM are
severely affected due to hash collisions. Since LSS clusters
similar flows to the same bucket array, and performs the error
minimization for each bucket array.

(iv) Generalization: We next test whether LSS generalizes
to different datasets. We use a network trace [27] collected on
May 20, 2019 at the transit link of WIDE to the upstream
ISP, with 14.0 million packets lasting for 899.99 seconds.
From Figure 8, we see that LSS is 225 to 93425 times better
than CM, CS, ES in the MAWI dataset. LSS consistently
outperforms other methods in a new dataset.

2) Sensitivity: Having shown that LSS remains fairly ac-
curate across different memory footprints, we next evaluate
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Fig. 9. LSS performance vs. with or without clustering.
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Fig. 10. LSS performance vs. bucket-array policies.

the sensitivity of LSS. We fix all but one parameters to the
default configuration for the Testbed evaluation, and study the
performance variation on the CAIDA dataset as we change
a specific parameter. Performance conclusions generalize to
other data sets.

(i) With Or Without Clustering: We first test the effective-
ness of the clustering process for LSS. We skip the clustering
process and map each flow record to all bucket arrays (denoted
as LSS-c). We apply the clustering process to CM and CS
(denoted as CM+c, CS+c, respectively). Figure 9 shows that
LSS outperforms LSS-c by several times, thus the clustering
is vital for LSS’ performance. The clustering is useless for
CM and CS, as both CM+c and CS+c degrades the prediction
accuracy.

(ii) Varying Bucket-array Policy: We next test the effec-
tiveness of the heuristics to configure the size of bucket arrays.
Figure 10 shows that the combination of the cluster uncertainty
(H), the cluster center (µ) and the cluster density (d) achieves
high accuracy for three query tasks. We see that the cluster
uncertainty is the most important metric, as removing the
cluster uncertainty significantly degrades prediction accuracy.

(iii) Number of Clusters: Next, we evaluate LSS’ accuracy
with respect to the number of clusters. Figure 11 plots the
variation of the estimation accuracy. We see that the estimation
accuracy improves steadily with increasing numbers of clusters
from two to ten. The diminishing returns occur when the
number of cluster reaches 30.
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Fig. 11. LSS performance as a function of the numbers of clusters.
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Fig. 13. LSS performance of different epochs by reusing the offline cluster
model of the first epoch.

(iv) Varying Thresholds: We also tested LSS’ sensitivity to
different heavy-hitter thresholds. Figure 12 shows the heavy-
hitter performance degrades gracefully as we change the
threshold percentiles from 80 to 99, since heavy hitters are
more sensitive to estimation errors as we approach to tighter
tails.

(v) Offline Cluster-model Stability: We tested LSS’ sensi-
tivity to offline clustering models by reusing the cluster centers
that are trained with respect to the first epoch. Figure 13
shows that three monitoring tasks remain fairly accurate across
epochs. Since the cluster model captures the global structure
of the flow distribution.

VII. CONCLUSION

We have proposed a new class of sketch that is resilient
to hash collisions, which groups similar items together to the
same bucket array in order to mitigate the error variance, and
optimizes the estimation based on the equivalence to the K-
means clustering problem. To illustrate the feasibility of LSS
sketch, we present a modular monitoring application that de-
composes monitoring functions to disaggregated components.
Extensive evaluation shows that LSS achieves close to a nearly
optimal space-accuracy trade-off.
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