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Abstract

Existing wired optical interconnects face a challenge of
supporting wide-spread communications in production
clusters. Initial proposals are constrained, as they only
support connections among a small number of racks
(e.g., 2 or 4) at a time, with switching time of millisec-
onds. Recent efforts on reducing optical circuit reconfig-
uration time to microseconds partially mitigate this prob-
lem by rapidly time-sharing optical circuits across more
nodes, but are still limited by the total number of parallel
circuits available simultaneously.

In this paper, we seek an optical interconnect that can
enable unconstrained communications within a comput-
ing cluster of thousands of servers. We present Mega-
Switch, a multi-fiber ring optical fabric that exploits
space division multiplexing across multiple fibers to
deliver rearrangeably non-blocking communications to
30+ racks and 6000+ servers. We have implemented
a 5-rack 40-server MegaSwitch prototype with commer-
cial optical devices, and used testbed experiments as well
as large-scale simulations to explore MegaSwitch’s ar-
chitectural benefits and tradeoffs.

1 Introduction
Due to its advantages over traditional electrical networks
at high link speeds, optical circuit switching technol-
ogy has been widely investigated for datacenter networks
(DCN) to reduce cost, power consumption, and wiring
complexity [38]. Many of the initial optical DCN pro-
posals build on the assumption of substantial traffic “con-
centration”. Using optical circuit switches that only sup-
port one-to-one connections between ports, they service
highly concentrated traffic among a small number of
racks at a time (e.g., 2 or 4 [6, 50]). However, evolv-
ing traffic characteristics in production DCNs pose new
challenges:

• Wide-spread communications: Recent analysis of
Facebook cluster traffic reveals that servers can con-
currently communicate with hundreds of hosts, with
the majority of traffic to tens of racks [42]; and traces
from Google [46] and Microsoft [15, 17] also ex-
hibit such high fan-in/out wide-spread communica-
tions. The driving forces behind such wide-spread pat-
terns are multifold, such as data shuffling, load balanc-
ing, data spreading for fault-tolerance, etc. [42, 46].

Figure 1: High-level view of a 4-node MegaSwitch.
• High bandwidth demands: Due to the ever-larger

parallel data processing, remote storage access, web
services, etc., traffic in Google’s DCN has increased
by 50x in the last 6 years, doubling every year [46].

Under such conditions, early optical DCN solutions
fall short due to their constrained communication sup-
port [6, 7, 12, 50]. Recent efforts [24, 38] have proposed
a temporal approach—by reducing the circuit switching
time from milliseconds to microseconds, they are able to
rapidly time-share optical circuits across more nodes in
a shorter time. While such temporal approach mitigates
the problem, it is still insufficient for the wide-spread
communications, as it is limited by the total number of
parallel circuits available at the same time [38].1

We take a spatial approach to address the challenge.
To support the wide-spread communications, we seek
a solution that can directly deliver parallel circuits to
many nodes simultaneously. In this paper, we present
an optical DCN interconnect for thousands of servers,
called MegaSwitch, that enables unconstrained commu-
nications among all the servers.

At a high-level (Figure 1), MegaSwitch is a circuit-
switched backplane physically composed of multiple op-
tical wavelength switches (OWS, a switch we imple-
mented §4) connected in a multi-fiber ring. Each OWS
is attached to an electrical packet switch (EPS), forming
a MegaSwitch node. OWS acts as an access point for
EPS to the ring. Each sender uses a dedicated fiber to

1Another temporal approach [15] employs wireless free space op-
tics (FSO) technology, However, FSO is not yet production-ready for
DCNs, because dust and vibration that are common in DCNs can im-
pair FSO link stability [15].



send traffic to any other nodes; on this multi-fiber ring,
each receiver can receive traffic from all the senders (one
per fiber) simultaneously. Essentially, MegaSwitch es-
tablishes a one-hop circuit between any pair of EPSes,
forming a rearrangeably non-blocking circuit mesh over
the physical multi-fiber ring.

Specifically, MegaSwitch achieves unconstrained con-
nections by re-purposing wavelength selective switch
(WSS, a key component of OWS) as a receiving w×1
multiplexer to enable non-blocking space division mul-
tiplexing among w fibers (§3.1). Prior work [6, 11, 38]
used WSS as 1×w demultiplexer that takes 1 input fiber
with k wavelengths, and outputs any subset of the k
wavelengths to w output fibers. In contrast, MegaSwitch
reverses the use of WSS. Each node uses k wavelengths2

on a fiber for sending; for receiving, each node lever-
ages WSS to intercept all k×w wavelengths from w
other senders (one per fiber) via its w input ports. Then,
with a wavelength assignment algorithm (§3.2), the WSS
can always select, out of the k×w wavelengths, a non-
interfering set to satisfy any communication demands
among nodes.

As a result, MegaSwitch delivers rearrangeably non-
blocking communications to n×k ports, where n=w+1
is the number of nodes/racks on the ring, and k is the
number of ports per node. With current technology, w
can be up to 32 and k up to 192, thus MegaSwitch can
support up to 33 racks and 6336 hosts. In the future,
MegaSwitch can scale beyond 105 ports with AWGR
(array waveguide grating router) technology and multi-
dimensional expansion (§3.1).

On top of its unconstrained connections, MegaSwitch
further has built-in fault-tolerance to handle various fail-
ures such as OWS, cable, and link failures. We develop
necessary redundancy and mechanisms, so that Mega-
Switch can provide reliable services (§3.3).

We have implemented a small-scale MegaSwitch pro-
totype (§4) with 5 nodes, and each node has 8 opti-
cal ports transmitting on 8 unique wavelengths within
190.5THz to 193.5THz at 200GHz channel spacing.
This prototype enables arbitrary communications among
5 racks and 40 hosts. Furthermore, our OWSes are de-
signed and implemented with all commercially available
optical devices, and the EPSes we used are Broadcom
Pronto-3922 10G commodity switches.

MegaSwitch’s reconfiguration delay hinges on WSS,
and 11.5µs WSS switching time has been reported using
digital light processing (DLP) technology [38]. How-
ever, our implementation experience reveals that, as
WSS port count increases (for wide-spread communi-
cations), such low latency can no longer be maintained.
This is mainly because the port count of WSS with DLP

2Each unique wavelength corresponds to an optical port on OWS,
as well as an optical transceiver on EPS.

used in [38] is not scalable. In our prototype, the WSS re-
configuration is ∼3ms. We believe this is a hard limita-
tion we have to confront in order to scale. To accommo-
date unstable traffic and latency-critical applications, we
develop “basemesh” on MegaSwitch to ensure any two
nodes are always connected via certain wavelengths dur-
ing reconfigurations (§3.2.2). Especially, we construct
the basemesh with the well-known Symphony [29] topol-
ogy in distributed hash table (DHT) literature to provide
low average latency with adjustable capacity.

Over the prototype testbed, we conducted basic mea-
surements of throughput and latency, and deployed real
applications, e.g., Spark [54] and Redis [43], to evalu-
ate the performance of MegaSwitch (§5.1). Our experi-
ments show that the latency-sensitive Redis experiences
uniformly low latency for cross-rack queries due to the
basemesh, and the performance of Spark applications is
similar to that of an optimal scenario where all servers
are connected to one single switch.

To complement testbed experiments, we performed
large-scale simulations to study the impact of traffic
stability on MegaSwitch (§5.2). For synthetic traces,
MegaSwitch provides near full bisection bandwidth for
stable traffic of all patterns, but does not sustain high
throughput for concentrated, unstable traffic with stabil-
ity period less than reconfiguration delay. However, it
can improve throughput for unstable wide-spread traffic
through the basemesh. For real production traces, Mega-
Switch achieves 93.21% throughput of an ideal non-
blocking fabric. We also find that our basemesh effec-
tively handles highly unstable wide-spread traffic, and
contributes up to 56.14% throughput improvement.

2 Background and Motivation
In this section, we first highlight the trend of high-
demand wide-spread traffic in DCNs. Then we discuss
why prior solutions are insufficient to support this trend.

2.1 The Trend of DCN Traffic
We use two case studies to show the traffic trend.
• User-facing web applications: In response to user re-

quests, web servers push/pull contents to/from cache
servers (e.g. Redis [43]). Web servers and cache
servers are usually deployed in different racks, leading
to intensive inter-rack traffic [42]. Cache objects are
replicated in different clusters for fault-tolerance and
load balancing, and web servers access these objects
randomly, creating a wide-spread communication pat-
tern overall.

• Data-parallel processing: Traffic of MapReduce-
type applications [3, 21, 42] is shown to be heavily
cluster-local (e.g. [42] reported 13.3% of the traffic is
rack-local, but 80.9% cluster-local). Data is spread to
many racks due to rack awareness [19], which requires



copies of data to be stored in different racks in case of
rack failures, as well as cluster-level balancing [45]. In
shuffle and output phases of MapReduce jobs, wide-
spread many-to-many traffic emerges among all par-
ticipating servers/racks within the cluster.
Bandwidth demand is also surging as the data stored

and processed in DCNs continue to grow, due to the ex-
plosion of user-generated contents such as photo/video,
updates, and sensor measurements [46]. The implica-
tion is twofold: 1) Data processing applications require
larger bandwidth for data exchange both within a appli-
cation (e.g., in a multi-stage machine learning, workers
exchange data between stages) and between applications
(e.g., related applications like web search and ad recom-
mendation share data); 2) Front-end servers need more
bandwidth to fetch the ever-larger contents from cache
servers to generate webpages [5]. In conclusion, opti-
cal DCN interconnects must support wide-spread, high-
bandwidth demands among many racks.

2.2 Prior Proposals Are Insufficient
Prior proposals fall short in supporting the above trend
of high-bandwidth, wide-spread communications among
many nodes simultaneously:
• c-Through [50] and Helios [12] are seminal works that

introduce wavelength division multiplexing (WDM)
and optical circuit switch (OCS) into DCNs. However,
they suffer from constrained rack-to-rack connectiv-
ity. At any time, high capacity optical circuits are lim-
ited to a couple of racks (e.g., 2 [50]). Reconfiguring
circuits to serve communications among more racks
can incur ∼10 ms circuit visit delay [12, 50].

• OSA [6] and WaveCube [7] enable arbitrary rack-to-
rack connectivity via multi-hop routing over multiple
circuits and EPSes. While solving the connectivity is-
sue, they introduce severe bandwidth constraints be-
tween racks, because traffic needs to traverse multiple
EPSes to destination, introducing traffic overhead and
routing complexity at each transit EPS.

• Quartz [26] is an optical fiber ring that is designed as
an design element to provide low latency in portions
of traditional DCNs. It avoids the circuit switching de-
lay by using fixed wavelengths, and its bisection band-
width are also limited.

• Mordia [38] and REACToR [24] improve optical cir-
cuit switching in the temporal direction, by reducing
circuit switching time from milliseconds to microsec-
onds. This approach is effective in quickly time-
sharing circuits across more nodes, but still insuffi-
cient to support wide-spread communications due to
the parallel circuits available simultaneously. Further-
more, Mordia is by default a single fiber ring struc-
ture with small port density (limited by # of unique
wavelengths supported on a fiber). Naı̈vely stacking

Figure 2: Example of a 3-node MegaSwitch.
multiple fibers via ring-selection circuits as suggested
by [38] is blocking among hosts on different fibers,
leading to very degraded bisection bandwidth (§5.2);
whereas time-sharing multiple fibers via EPS as sug-
gested by [11] requires complex EPS functions un-
available in existing commodity EPSes and introduces
additional optical design complexities, making it hard
to implement in practice (more details in §3.1).

• Free-space optics proposals [15, 18] eliminate wiring.
Firefly [18] leverages free-space optics to build a
wireless DCN fabric with improved cost-performance
tradeoff. With low switching time and high scalabil-
ity, ProjecToR [15] connects an entire DCN of tens
of thousands of machines. However, they face prac-
tical challenges of real DCN environments (e.g., dust
and vibration). In contrast, we implement a wired op-
tical interconnect for thousands of machines, which
is common in DCNs, and deploy real applications on
it. We note that the mechanisms we developed for
MegaSwitch can be employed in ProjecToR, notably
the basemesh for low latency applications.

3 MegaSwitch Design
In this section, we describe the design of MegaSwitch’s
data and control planes, as well as its fault-tolerance.

3.1 Data Plane
As in Figure 2, MegaSwitch connects multiple OWSes
in a multi-fiber ring. Each fiber has only one sender. The
sender broadcasts traffic on this fiber, which reaches all
other nodes in one hop. Each receiver can receive traffic
from all the senders simultaneously. The key of Mega-
Switch is that it exploits WSS to enable non-blocking
space division multiplexing among these parallel fibers.

Sending component: In OWS, for transmission, we use
an optical multiplexer (MUX) to join the signals from
EPS onto a fiber, and then use an optical amplifier (OA)
to boost the power. Multiple wavelengths from EPS up-
link ports (each with an optical transceiver at a unique
wavelength) are multiplexed onto a single fiber. The mul-
tiplexed signals then travel to all the other nodes via this
fiber. The OA is added before the path to compensate



the optical insertion loss caused by broadcasting, which
ensures the signal strength is within the receiver sensitiv-
ity range (Detailed Power budgeting design is in §4.1).
As shown in Figure 2, any signal is amplified once at
its sender, and there is no additional amplification stages
in the intermediate or receiver nodes. The signal from
sender also does not loop back, and terminates at the last
receiver on the ring (e.g., signals from OWS1 terminates
in OWS3, so that no physical loop is formed.).

Receiving component: We use a WSS and an optical
demultiplexer (DEMUX) at the receiving end. The de-
sign highlight is using WSS as a w×1 wavelength multi-
plexer to intercept all the wavelengths from all the other
nodes on the ring. In prior work [6, 11, 38], WSS was
used as a 1×w demultiplexer that takes 1 input fiber of
k wavelengths, and outputs any subset of these k wave-
lengths to any of w output fibers. In MegaSwitch, WSS
is repurposed as a w×1 multiplexer, which takes w in-
put fibers with k wavelengths each, and outputs a non-
interfering subset of the k×w wavelengths to an out-
put fiber. With this unconventional use of WSS, Mega-
Switch ensures that any node can simultaneously choose
any wavelengths from any other nodes, enabling un-
constrained connections. Then, based on the demands
among nodes, the WSS selects the right wavelengths and
multiplexes them on the fiber to the DEMUX. In §3.2, we
introduce algorithms to handle wavelength assignments.
The multiplexed signals are then de-multiplexed by DE-
MUX to the uplink ports on EPS.

Supporting ∗-cast [51]: Unicast and multicast can be
set up with a single wavelength on MegaSwitch, because
any wavelength from a source can be intercepted by ev-
ery node on the ring. To set up a unicast, MegaSwitch
assigns a wavelength on the fiber from the source to des-
tination, and configures the WSS at the destination to se-
lect this wavelength. Consider a unicast from H1 to H6

in Figure 2. We first assign wavelength λ1 from node 1
to 2 for this connection, and configure the WSS in node 2
to select λ1 from node 1. Then, with the routing in both
EPSes configured, the unicast circuit from H1 to H6 is es-
tablished. Further, to setup a multicast from H1 to H6 and
H9, based on the unicast above, we just need to addition-
ally configure the WSS in node 3 to also select λ1 from
node 1. In addition, many-to-one (incast) or many-to-
many (allcast) communications are composites of many
unicasts and/or multicasts, and they are supported using
multiple wavelengths.

Scalability: MegaSwitch’s port count is n×k.
• For n, with existing technology, it is possible to

achieve 32×1 WSS (thus n=w+1=33). Furthermore,
alternative optical components, such as AWGR and
filter arrays can be used to achieve the same function-
ality as WSS+DEMUX for MegaSwitch [56]. Since

48×48 or 64×64 AWGR is available, we expect to see
a 1.5× or 2× increase with 49 or 65 nodes on a ring,
while additional splitting loss can be compensated.

• For k, C-band Dense-WDM (DWDM) link can sup-
port k=96 wavelengths at 50Ghz channel spacing, and
k=192 wavelengths at 25Ghz [35]. Recent progress in
optical comb source [30, 53] assures the relative wave-
length accuracy among DWDM signals and is promis-
ing to enable a low power consumption DWDM trans-
ceiver array at 25Ghz channel spacing.

As a result, with existing technology, MegaSwitch sup-
ports up to n×k=33×192=6336 ports on a single ring.

MegaSwitch can also be expanded multidimension-
ally. In our OWS implementation (§4), two inter-OWS
ports are used in the ring, and we reserve another two for
future extension of MegaSwitch in another dimension.
When extended bi-dimensionally (into a torus) [55],
MegaSwitch scales as n2×k, supporting over 811K ports
(n=65, k=192), which should accommodate modern
DCNs [42, 46]. However, such large scale comes with
inherent routing, management, and reliability challenges,
and we leave it as future work.

MegaSwitch vs Mordia: Mordia [38] is perhaps the
closest related work to MegaSwitch in terms of topol-
ogy: both are constructed as a ring, and both adopt WSS.
However, the key difference is: Mordia chains multiple
WSSes on one fiber, each WSS acts as a wavelength de-
multiplexer to set up circuits between ports on the same
fiber; whereas MegaSwitch reverses WSS as a wave-
length multiplexer across multiple fibers to enable non-
blocking connections between ports on different fibers.

We note that Farrington et al. [11] further discussed
scaling Mordia with multiple fibers non-blocking-ly (re-
ferred to as Mordia-PTL below). Unlike MegaSwitch’s
WSS-based multi-fiber ring, they proposed to connect
each EPS to multiple fiber rings in parallel, and rely on
the EPS to schedule circuits for servers to support TDM
across fibers. This falls beyond the capability of existing
commodity switches [24]. Further, on each fiber, they al-
low every node to add signals to the fiber and require an
optical amplifier in each node to boost the signals and
compensate losses (e.g., bandpass add/drop filter loss,
variable optical attenuator loss, 10/90 splitter loss, etc.),
thus they need multiple amplifiers per fiber. This de-
grades optical signal to noise ratio (OSNR) and makes
transmission error-prone. In Figure 3, we compare
OSNR between MegaSwitch and Mordia. We assume
7dBm per-channel launch power, 16dB pre-amplification
gain in MegaSwitch, and 23dB boosting gain per-node in
Mordia. The results show that, for MegaSwitch, OSNR
maintains at ∼36dB and remains constant for all nodes;
for Mordia, OSNR quickly degrades to 30dB after 7
hops. For validation, we have also measured the aver-



MegaSwitch

Mordia (Multi-hop ring)

5-node MegaSwitch

Prototype (Measured)

Acceptable SNR (32dB)20dB

30dB

40dB

# nodes on ring
0 5 10 15

Figure 3: OSNR comparison
age OSNR on our MegaSwitch prototype (§4), which is
38.12dB after 5 hops (plotted in the figure for reference).

Furthermore, there exists a physical loop in each fiber
of their design where optical signals can circle back to
its origin, causing interferences if not handled properly.
MegaSwitch, by design, avoids most of these problems:
1) one each fiber has only one sender and thus one stage
of amplification (Power budgeting is explained in §4.1);
2) each fiber is terminated in the last node in the ring,
thus there is no physical optical loop or recirculated sig-
nals (Figure 9). Therefore, MegaSwitch maintains good
OSNR when scaled to more nodes. More importantly,
besides above, they do not consider fault-tolerance and
actual implementation in their paper [11]. In this work,
we have built, with significant efforts, a functional Mega-
Switch prototype with commodity off-the-shelf EPSes
and our home-built OWSes.

3.2 Control Plane
As prior work [6, 12, 38, 50], MegaSwitch takes a cen-
tralized approach to configure routings in EPSes and
wavelength assignments in OWSes. The MegaSwitch
controller converts traffic bandwidth demands into wave-
length assignments and pushes them into the OWSes.
The demands can be obtained by existing traffic estima-
tion schemes [2, 12, 50]. In what follows, we first in-
troduce the wavelength assignment algorithms, and then
design basemesh to handle unstable traffic and latency
sensitive flows during reconfigurations.

3.2.1 Wavelength Assignment
In MegaSwitch, each node uses the same k wavelengths
to communicate with other nodes. The control plane as-
signs the wavelengths to satisfy communication demands
among nodes. In a feasible assignment, wavelengths
from different senders must not interfere with each other
at the receiver, since all the selected wavelengths to a par-
ticular receiver share the same output fiber through w×1
WSS (see Figure 2). We illustrate an assignment exam-
ple in Figure 4, which has 3 nodes and each has 4 wave-
lengths. The demand is in (a): each entry is the number
of required wavelengths of a sender-receiver pair. If the
wavelengths are assigned as in (b), then two conflicts oc-
cur. A non-interfering assignment is shown in (c), where
no two same wavelengths go to the same receiver.

Given the constraint, we reduce the wavelength as-
signment problem in MegaSwitch to an edge coloring

Figure 4: Wavelength assignments (n=3, k=4).
problem on a bipartite multigraph. We express band-
width demand matrix on a bipartite multigraph as Fig-
ure 4. Multiple edges between two nodes correspond
to multiple wavelengths needed by them. Assume each
wavelength has a unique color, then a feasible wave-
length assignment is equivalent to an assignment of col-
ors to the edges so that no two adjacent edges share the
same color—exactly the edge coloring problem [9].

Edge coloring problem is NP-complete on general
graphs [6, 9], but has efficient optimal solutions on bi-
partite multigraphs [7, 44]. By adopting the algorithm
in [7], we prove the following theorem3 (see Appendix),
which establishes the rearrangeably non-blocking prop-
erty of MegaSwitch.
Theorem 1. Any feasible bandwidth demand can be sat-
isfied by MegaSwitch with at most k unique wavelengths.
3.2.2 Basemesh
As WSS port count increases, MegaSwitch reconfigures
at milliseconds (§4.2). To accommodate unstable traffic
and latency-sensitive applications, a typical solution is to
maintain a parallel electrical packet-switched fabric, as
suggested by prior hybrid network proposals [12, 24, 50].

MegaSwitch emulates such hybrid network with stable
circuits, providing constant connectivity among nodes
and eliminating the need for an additional electrical fab-
ric. We denote this set of wavelengths as basemesh,
which should achieve two goals: 1) the number of wave-
lengths dedicated to basemesh, b, should be adjustable4;
2) With given b, guarantee low average latency for all
pairs of nodes.

Essentially, basemesh is an overlay network on Mega-
Switch’s physical multi-fiber ring, and building such a
network with the above design goals has been studied
in overlay networking and distributed hash table (DHT)
literature [29, 48]. Forwarding a packet on basemesh is
similar to performing a look-up on a DHT network. Also,
the routing table size (number of known peer addresses)
of each node in DHT is analogous to the the number of
wavelengths to other nodes, b. Meanwhile, our problem
differs from DHT: We assume the centralized controller

3We note that this problem can also be reduce to the well-known
row-column-row permutation routing problem [4, 39], and the reduc-
tion is also a proof of Theorem 1.

4The basemesh alone can be considered as a b:k (k is the number
of wavelengths per fiber) over-subscribed parallel electrical switching
network similar to that of [12, 24, 50].
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Figure 5: Average latency on basemesh.
calculates routing tables for EPSes, and the routing ta-
bles are updated for adjustments of b and peer churn (in-
frequent, only happens in failures §3.3).

We find the Symphony [29] topology fits our goals.
For b wavelengths in the basemesh, each node first uses
one wavelength to connect to the next node, forming a
directed ring; then each node chooses shortcuts to b−1
other nodes on the ring. We adopt the randomized algo-
rithm of Symphony [29] to choose shortcuts (drawn from
a family of harmonic probability distributions, pn(x)=

1
xlnn . If a pair is selected, the corresponding entry in de-
mand matrix increment by 1.). The routing table on the
EPS of each node is configured with greedy routing that
attempts to minimize the absolute distance to destination
at each hop [29].

It is shown that the expected number of hops for this
topology is O( log

2(n)
k ) for each packet. With n=33, we

plot the expected path length in Figure 5 to compare
it with Chord [48] (Finger table size is 4, average path
length is O(log(n))), and also plot the expected latency
assuming 20µs per-hop latency. Notably, if b≥n−1,
basemesh is fully connected with 1 hop between every
pair; adding more wavelength cannot reduce the average
hop count, but serve to reduce congestion.

As we will show in §5.2, while basemesh reduces the
worst-case bisection bandwidth, the average bisection
bandwidth is unaffected, and it brings two benefits:
• It increases throughput for rapid-changing, unpre-

dictable traffic when the traffic stability period is less
than the control plane delay, as shown in §5.2.

• It mitigates the impact of inaccurate demand esti-
mation by providing consistent connection. Without
basemesh, when the demand between two nodes is
mistakenly estimated as 0, they are effectively cut-
off, which is costly to recover (flows need to wait for
wavelength setup).
Thanks to the flexibility of MegaSwitch, b is ad-

justable to accommodate varying traffic instability
(§5.2), or be partially/fully disabled for higher traffic im-
balance if applications desire more bandwidth in part of
network [42]. In this paper, we present b as a knob for
DCN operators, and intend to explore the problem of op-
timal configuration of b as future work.

Basemesh vs Dedicated Topology in ProjecToR [15]:
Basemesh is similar to the dedicated topology in Pro-
jecToR, which is a set of static connections for low la-
tency traffic. However, its construction is based on the

Figure 6: PRF module layout.
optimization of weighted path length using traffic distri-
bution from past measurements, which cannot provide
average latency guarantee for an arbitrary pair of racks.
In comparison, basemesh can provide consistent connec-
tions between all pairs with proven average latency. It
is possible to configure basemsesh in ProjecToR as its
dedicated topology, which better handles unpredictable,
latency-critical traffic.

3.3 Fault-tolerance
We consider the following failures in MegaSwitch.

OWS failure: We implement the OWS box so that the
node failure will not affect the operation of other nodes
on the ring. As shown in Figure 6, the integrated pas-
sive component (Passive Routing Fabric, PRF) handles
the signal propagation across adjacent nodes, while the
passive splitters copy the traffic to local active switching
modules (i.e., WSS and DEMUX). When one OWS loses
its function (e.g., power loss) in its active part, the traf-
fic traveling across the failure node from/to other nodes is
not affected, because the PRF operates passively and still
forwards the signals. Thus the failure is isolated within
the local node. We design the PRF as a modular block
that can be attached and detached from active switching
modules easily. So one can recover the failed OWS with-
out the service interruption of the rest network by simply
swapping its active switching module.

Port failure: When the transceiver fails in a node, it
causes the loss of capacity only at the local node. We
have implemented built-in power detectors in OWS to
notify the controller of such events.

Controller failure: In control plane, two or more in-
stances of the controller are running simultaneously, with
one leader. The fail-over mechanism follows VRRP [20].

Cable failure: Cable cut is the most difficult failure,
and we design5 redundancy and recovery mechanisms to
handle one cable cut. The procedure is analogous to ring
protection in SONET [49] by 2 sets of fibers. We propose
directional redundancy in MegaSwitch, as shown in Fig-
ure 7, the fiber can carry the traffic from/to both east (pri-
mary) and west (secondary) sides of the OWS by select-

5This design has not been implemented in the current prototype,
thus the power budgeting on the prototype (§4.1) does not account for
the fault-tolerance components on the ring. The components for this
design are all commercially available, and can be readily incorporated
into future iterations of MegaSwitch.



Figure 7: MegaSwitch fault-tolerance.
ing a direction at the sending 1×2 optical tunable split-
ter6, and receiving 2×1 optical switches. The splitters
and switches are in the PRF module. When there is no
cable failure, sending and receiving switches both select
the primary direction, thus preventing optical looping. If
one cable cut is detected by the power detectors, the con-
troller is notified, and it instructs the OWSes on the ring
to do the following: 1) The sending tunable splitter in
every OWS transmits on its fiber on both directions7, so
that the signal can reach all the OWSes; 2) The receiv-
ing switch for each fiber at the input of WSS selects the
direction where there is still incoming signal. Then the
connectivity can be restored. A passive 4-port fix split-
ter is added before the receiving switch as a part of the
ring, and it guides the signal from primary and backup
directions to different input ports of the 2×1 switch. For
more than one cut, the ring is severed into two or more
segments, and connectivity between segments cannot be
recovered until cable replacement.

4 Implementation
4.1 Implementation of OWS
To implement MegaSwitch and facilitate real deploy-
ment, we package all optical devices into an 1RU (Rack
Unit) switch box, OWS (Figure 2). The OWS is com-
posed of the sending components (MUX+OA) and the
receiving components (WSS+DEMUX), as described in
§3. We use a pair of array waveguide grating (AWG) as
MUX and DEMUX for DWDM signals.

To simplify the wiring, we compact all the 1×2 drop-
continue splitters into PRF module, as shown in Figure 6.
This module can be easily attached to or detached from
active switching components in the OWS. To compen-
sate component losses along the ring, we use a single
stage 12dB OA to boost the DWDM signal before trans-
mitting the signals, and the splitters in PRF have different
splitting ratios. Using the same numbering in Figure 6,
the splitting ratio of i-th splitter is 1:(i−1) for i>1. As
an example, the power splitting on one fiber from node
1 is shown in Figure 9. At each receiving transceiver,

6It is implementable with a common Mach-Zehnder interferometer.
7Power splitting ratio must also be re-configured to keep the signal

within receiver sensitivity range for all receiving OWSes

Figure 8: The OWS box we implemented.

Figure 9: Power budget on a fiber
the signal strength is ∼−9dBm per channel. The PRF
configuration is therefore determined by w (WSS radix).

OWS receives DWDM signals from all other nodes on
the ring via its WSS. We adopt 8×1 WSS from CoAdna
Photonics in the prototype, which is able to select wave-
length signals from at most 8 nodes. Currently we use 4
out of 8 WSS ports for a 5-node ring.

Our OWS box provides 16 optical ports, and 8 are
used in the MegaSwitch prototype. Each port maps to
a particular wavelength from 190.5THz to 193.5THz
at 200GHz channel spacing. InnoLight 10GBASE-ER
DWDM SFP+ transceivers are used to connect EPSes
to optical ports on OWSes. With the total broadcasting
loss at 10.5dB for OWS, 4dB for WSS, 2.5dB for DE-
MUX, and 1dB for cable connectors, the receiving power
is −9dBm ∼−12dBm, well within the sensitivity range
of our transceivers. The OWS box we implemented (Fig-
ure 8) has 4 inter-OWS ports, 16 optical ports, and 1 Eth-
ernet port for control. For the 4 inter-OWS ports, two
are used to connect other OWSes to construct the Mega-
Switch ring, and the other two are reserved for redun-
dancy and further scaling (§3.1).

Each OWS is controlled by a Raspberry Pi [37] with
700MHz ARM CPU and 256MB memory. OWS re-
ceives the wavelength assignments (in UDP packets) via
its Ethernet management interface connected to a sep-
arate, electrical control plane network, and configures
WSS via GPIO pins.

4.2 MegaSwitch Prototype
We constructed a 5-node MegaSwitch with 5 OWS
boxes, as is shown in Figure 10. The OWSes are simply
connected to each other through their inter-OWS ports
using ring cables containing multiple fibers. The two
EPSes we used are Broadcom Pronto-3922 with 48×10
Gbps Ethernet (GbE) ports. For one EPS, we fit 24 ports
with 3 sets of transceivers of 8 unique wavelengths to
connect to 3 OWSes, and the rest 24 ports are connected
to the servers. For the other, we only use 32 ports with
16 ports to OWSes and 16 to servers. We fill the capacity
with 40×10GbE interfaces on 20 Dell PowerEdge R320
servers (Debian 7.0 with Kernel 3.18.19), each with a
Broadcom NetXtreme II 10GbE network interface card.

The control plane network connected by a Broadcom
Pronto-3295 Ethernet switch. The Ethernet management



Figure 10: The MegaSwitch prototype implemented with 5 OWSes.

ports of EPS and OWS are connected to this switch. The
MegaSwitch controller is hosted in a server also con-
nected to the control plane switch. The EPSes work in
Open vSwitch [36] mode, and are managed by Ryu con-
troller [34] hosted in the same server as the MegaSwitch
controller. To emulate 5 OWS-EPS nodes, we divided
the 40 server-facing EPS ports into 5 VLANs, virtually
representing 5 racks. The OWS-facing ports are given
static IP addresses, and we install Openflow [31] rules
in the EPS switches to route packets between VLANs in
Layer 3. In the experiments, we refer to an OWS and a
set of 8 server ports in the same VLAN as a node.

Reconfiguration speed: MegaSwitch’s reconfiguration
hinges on WSS, and the WSS switching speed is suppos-
edly microseconds with technology in [38]. However, in
our implementation, we find that as WSS port count in-
creases (required to support more wide-spread communi-
cation), e.g., w=8 in our case, we can no longer maintain
11.5µs switching seen by [38]. This is mainly because
the port count of WSS made with digital light process-
ing (DLP) technology used in [38] is currently not scal-
able due to large insertion loss. As a result, we choose
the WSS implemented by an alternative Liquid Crystal
(LC) technology, and the observed WSS switching time
is ∼3ms. We acknowledge that this is a hard limitation
we need to confront in order to scale. We identify that
there exist several ways to reduce this time [14, 23].

We note that, with current speed on our prototype,
MegaSwitch is still possible to satisfy the need of some
production DCNs, as a recent study [42] of DCN traffic
in Facebook suggests, with effective load balancing, traf-
fic demands are stable over sub-second intervals. On the
other hand, even if µs switching is achieved in later ver-
sions of MegaSwitch, it is still insufficient for high-speed
DCNs (40/100G or beyond). Following §3.2.2, in our
prototype, we address this problem by activating base-
mesh, which mimics hybrid network without resorting to
an additional electrical network.

5 Evaluation
We evaluate MegaSwitch with testbed experiments (with
synthetic patterns(§5.1.1)) and real applications(§5.1.2)),
as well as large-scale simulations (with synthetic patterns
and productions traces(§5.2)). Our main goals are to: 1)
measure the basic metrics on MegaSwitch’s data plane

and control plane; 2) understand the performance of real
applications on MegaSwitch; 3) study the impact of con-
trol plane latency and traffic stability on throughput, and
4) assess the effectiveness of basemesh.

Summary of results is as follows:
• MegaSwitch supports wide-spread communications

with full bisection bandwidth among all ports when
wavelength are configured. MegaSwitch sees ∼20ms
reconfiguration delay with ∼3ms for WSS switching.

• We deploy real applications, Spark and Redis, on the
prototype. We show that MegaSwitch performs sim-
ilarly to the optimal scenario (all servers under a sin-
gle EPS) for data-intensive applications on Spark, and
maintains uniform latency for cross-rack queries for
Redis due to the basemesh.

• Under synthetic traces, MegaSwitch provides near full
bisection bandwidth for stable traffic (stability pe-
riod ≥100ms) of all patterns, but cannot achieve high
throughput for concentrated, unstable traffic with sta-
bility period less than reconfiguration delay. However,
increasing the basemesh capacity effectively improves
throughput for highly unstable wide-spread traffic.

• With realistic production traces, MegaSwitch achieves
>90% throughput of an ideal non-blocking fabric, de-
spite its 20ms total wavelength reconfiguration delay.

5.1 Testbed Experiments
5.1.1 Basic Measurements

Bisection bandwidth: We measure the bisection
throughput of MegaSwitch and its degradation during
wavelength switching. We use the 40×10GbE interfaces
on the prototype to form dynamic all-to-all communica-
tion patterns (each interface is referred as a host). Since
traffic from real applications may be CPU or disk I/O
bound, to stress the network, we run the following syn-
thetic traffic used in Helios [12]:
• Node-level Stride (NStride): Numbering the nodes

(EPS) from 0 to n−1. For the i-th node, its j-th host
initiates a TCP flow to the j-th host in the (i+l mod
n)-th node, where l rotates from 1 to n every t seconds
(t is the traffic stability period). This pattern tests the
response to abrupt demand changes between nodes, as
the traffic from one node completely shifts to another
node in a new period.
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Figure 11: Experiment: Node-level stride
• Host-level Stride (HStride): Numbering the hosts

from 0 to n×k−1, the i-th host sends a TCP flow to
the (i+k+l mod (n×k))-th host, where l rotates from
1 to dk/2e every t seconds. This pattern showcases
the gradual demand shift between nodes.

• Random: A random perfect matching between all the
hosts is generated every period. Every host sends to
its matched host for t seconds. The pattern showcases
the wide-spread communication, as every node com-
municates with many nodes in each period.

For this experiment, the basemesh is disabled. We set
traffic stability t=10s, and the wavelength assignments
are calculated and delivered to the OWS when demand
between 2 nodes changes. We study the impact of stabil-
ity t later in §5.2.

As shown in Figure 11 (a), MegaSwitch maintains full
bandwidth of 40×10Gbps when traffic is stable. During
reconfigurations, we see the corresponding throughput
drops: NStride drops to 0 since all the traffic shifts to a
new node; HStride’s performance is similar to Figure 11
(a), but drops by only 50Gbps because one wavelength is
reconfigured per rack. The throughput resumes quickly
after reconfigurations.

We further observe a ∼20ms gap caused by the wave-
length reconfiguration at 10s and 20s in the magnified (b)
and (c) of Figure 11. Transceiver initialization delay con-
tributes ∼10ms8, and the remaining can be broken down
to EPS configuration (∼5ms), WSS switching (∼3ms),
and control plane delays (∼4ms). (Please refer to Ap-
pendix for detailed measurement methods and results.)

5.1.2 Real Applications on MegaSwitch
We now evaluate the performance of real applications on
MegaSwitch. We use Spark [54], a data-parallel process-
ing application, and Redis [43], a latency-sensitive in-
memory key-value store. For this experiment, we form
the basemesh with 4 wavelengths, and the others are al-
located dynamically.

Spark: We deploy Spark 1.4.1 with Oracle JDK 1.7.0 25
and run three jobs: WikipediaPageRank9, K-Means10,

8Our transceiver’s receiver Loss of Signal Deassert is -22dBm.
9A PageRank instance using a 26GB dataset [32]

10A clustering algorithm that partitions a dataset into K clusters. The
input is Wikipedia Page Traffic Statistics [47].
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Figure 14: Redis intra/cross-rack query completion
and WordCount11. We first connect all the 20 servers to
a single ToR EPS and run the applications, which estab-
lishes the optimal network scenario because all servers
are connected with full bandwidth. We record the time
series (with millisecond granularity) of bandwidth usage
of each server when it is running, and then convert it into
two series of averaged bandwidth demand matrices of
0.1s and 1s intervals respectively. Then, we connect the
servers back to MegaSwitch, and re-run the applications
using these two series as inputs to update MegaSwitch
every 0.1s and 1s intervals accordingly.

We plot the job completion times in Figure 13. With
∼20ms reconfiguration delay and 0.1s interval, the band-
width efficiency is expected to be (0.1−0.02)/0.1=80%
if every wavelength changes for each interval. However,
MegaSwitch performs almost the same as if the servers
are connected to a single EPS (on average 2.21% worse).
This is because, as we observed, the traffic demands of
these Spark jobs are stable: e.g., for K-Means, the num-
ber of wavelength reassignments is only 3 and 2 times
for the update periods of 0.1 and 1s, respectively. Most
wavelengths do not need reconfiguration, and thus pro-
vide uninterrupted bandwidth during the experiments.
The performance of both update periods is similar, but
the smaller update interval has slightly worse perfor-
mance due to one more wavelength reconfiguration. For
example, in WikiPageRank, MegaSwitch with 1s update
interval shows 4.94% less completion time than that with
0.1s. We further examine the relationship between traffic
stability and MegaSwitch’s control latencies in §5.2.

Redis: For this Redis in-memory key-value store ex-
periment, we initiate queries to a Redis server in the first
node from the servers in all 5 nodes, with a total num-
ber of 106 SET and GET requests. Key space is set to
105. Since the basemesh provides connectivity between
all the nodes, Redis is not affected by any reconfigura-

11It counts words in a 40G dataset with 7.153×109 words.



tion latency. The average query completion times from
servers in different racks are shown in Figure 14. Query
latency depends on hop count. With 4 wavelengths in
basemesh (b=4), Redis experiences uniform low laten-
cies for cross-rack queries, because they only traverse
2 EPSes (hops). For b=3, queries also traverse 2 hops,
except the ones from node 3. When b=1, basemesh is a
ring, and the worst case hop count for a query is 5. There-
fore, for latency-critical bandwidth-insensitive applica-
tions like Redis, setting b=n−1 guarantees uniform la-
tency between all nodes on MegaSwitch. In comparison,
for other related architectures, the number of EPS hops
for cross-rack queries can reach 3 (Electrical/Optical hy-
brid designs [12, 24, 50]) or 5 (Pure electrical designs
[1, 16, 25]) for cross-rack queries.
5.2 Large Scale Simulations
Existing packet-level simulators, such as ns-2, are time
consuming to run at 1000+-host scale [2], and we are
more interested in traffic throughput rather than per-
packet behavior. Therefore, we implemented a flow-level
simulator to perform simulations at larger scales. Flows
on the same wavelength share the bandwidth in a max-
min fair manner. The simulation runs in discrete time
ticks with the granularity of millisecond. We assume a
proactive controller: it is informed of the demand change
in the next traffic stability period and runs the wavelength
assignment algorithm before the change, therefore it con-
figures the wavelengths every t seconds with a total re-
configuration delay of 20ms (§5.1.1). Unless specified
otherwise, basemesh is configured with b=32.

We use synthetic patterns in §5.1.1 as well as realistic
traces from production DCNs in our simulations. For the
synthetic patterns, we simulate a 6336-port MegaSwitch
(n=33, k=192), and each pattern runs for 1000 traffic
stability periods (t). For the realistic traces, we simulate
a 3072-ports MegaSwitch (n=32, k=96) to match the
scale of the real cluster. We replay the realistic traces as
dynamic job arrivals and departures.
• Facebook: Hive/MapReduce trace is collected by

Chowdhury et al. [8] from a 3000-server, 150-rack
Facebook cluster. For each shuffle, the trace records:
start time, senders, receivers, and the received bytes.
The trace contains more than 500 shuffles (7×105

flows). Shuffle sizes vary from 1MB to 10TB, and the
number of flows per shuffle varies from 1 to 2×104.

• IDC: We collected 2-hour running trace from the
Hadoop cluster (3000-server) of a large Internet ser-
vice company. The trace records shuffle tasks (the
same information as above is collected), as well as
HDFS read tasks (sender, receiver, and size are col-
lected). We refer to them as IDC-Shuffle and IDC-
HDFS when used separately. The trace contains
more than 1000 shuffle and read tasks, respectively
(1.6×106 flows). The size of shuffle and read varies
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Figure 16: Throughput vs reconfiguration frequency
from 1MB to 1TB, and the number of flows per shuffle
is between 1 and 1.7×104.

Impact of traffic stability: We vary the traffic stabil-
ity period t from 10ms to 1s for the synthetic patterns,
and plot the average throughput with and without base-
mesh in Figure 15. We make three observations: 1) If
stability period is ≤20ms (reconfiguration delay), traf-
fic patterns that need more reconfigurations have lower
throughput, and NStride suffers the worse throughput;
2) All the three patterns see the throughput steadily in-
creasing to full bisection bandwidth with longer stability
period; 3) Although basemesh reserves wavelengths to
maintain connectivity, throughput of different patterns is
not negatively affected, except for NStride, which cannot
achieve full bisection bandwidth even for stable traffic
(t=1s), since the basemesh takes 32 wavelengths.

We then analyze the performance of different pat-
terns in detail. NStride has near zero throughput when
t=10ms and 20ms, as all the wavelengths must break
down and reconfigure for each period. Basemesh does
not help much for NStride: when the wavelengths are
not yet available, basemesh can serve only 1/192 of the
demand. HStride reaches ∼75% full bisection band-
width when the stability period is 10ms, because on av-
erage 3/4 of its demands stay the same between con-
secutive periods, and demands in the new period reuse
some of the previous wavelengths. Random pattern is
wide-spread and requires more reconfigurations in each
period than HStride. Thus it also suffers from unstable
traffic, with 18.5% full-bisection bandwidth for t=10ms
without basemesh. However, it benefits from basemesh
the most, achieving 34.1% full-bisection bandwidth for
t=10ms, because the flows between two nodes need not
to wait for reconfigurations.
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Figure 17: Handling unstable traffic with basemesh
In summary, MegaSwitch provides near full-bisection

bandwidth for stable traffic of all patterns, but cannot
achieve high throughput for concentrated, unstable traf-
fic (NStride with stability period smaller than reconfigu-
ration delay. We note that such pattern is designed to test
the worst-case behavior of MegaSwitch, and is unlikely
to occur in production DCNs.).

Impact of reconfiguration frequency: We vary the re-
configuration frequency to study its impact on through-
put using realistic traces. In Figure 16, we collect the
throughput of the replayed traffic traces12, and then nor-
malize them to the throughput of the same traces re-
played on a non-blocking fabric with the same port
count. The normalized throughput shows how Mega-
Switch approaches non-blocking.

From the results, we find that MegaSwitch achieves
93.21% and 90.84% normalized throughput on average
with and without basemesh respectively. This indicates
that our traces collected from the production DCNs are
very stable, thus can take advantage of the high band-
width of optical circuits. This aligns well with traf-
fic statistics in another study [42], which suggests, with
good load balancing, the traffic is stable on sub-second
scale, thus is suitable for MegaSwitch. We also observe
that the traffic is wide-spread for realistic traces: for
every period, a rack in Facebook, IDC-HDFS & IDC-
Shuffle, talks with 12.1, 4.5 & 14.6 racks on average,
respectively. Limited by rack-to-rack connectivity, other
optical structures are less effective for such patterns.

Impact of adjusting basemesh capacity: For rapidly
changing traffic, MegaSwitch can improve its through-
put with more wavelengths to basemesh. In Figure 17,
we measure the throughput of synthetic patterns (stabil-
ity period is 10ms) and production traces. The produc-
tion traces feature dynamic arrival/departure of tasks.

For NStride and HStride (Figure 17 (a)), since the traf-
fic of each node is destined to one or two other nodes,
increasing basemesh does not benefit them much. In
contrast, for Random, each node sends to many nodes
(i.e., wide-spread), increasing the capacity of basemesh,
b, from 8 wavelengths to 32 wavelengths increases the
throughput by 20.6%; Further increasing b to 160 can

12The wavelength schedules are obtain in the same way as Spark
experiments in §5.1.2.
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Figure 19: Worst-case bisection throughput.
increase the throughput by 56.1%. But this trend is
not monotonic: if all the wavelengths are in basemesh
(b=192), and the demands between nodes larger than
6 wavelengths cannot be supported. This is also ob-
served for the realistic traces in Figure 17 (b): when >4
wavelengths are allocated to basemesh, the normalized
throughput decreases.

In summary, for rapidly changing traffic, basemesh is
an effective and adjustable tool for MegaSwitch to han-
dle wide-spread demand fluctuation. As a comparison,
hybrid structures [12, 24, 50] cannot dynamically adjust
the capacity of the parallel electrical fabrics.

Bisection bandwidth: To compare MegaSwitch with
other optical proposals, we calculate the average and
worst-case bisection bandwidths of MegaSwitch and re-
lated proposals in Figure 18 & 19, respectively. The
unit of y-axis is bandwidth per wavelength. We gener-
ate random permutation of port pairing for 104 times to
compute the average bisection bandwidth for each struc-
ture, and design the worst case scenario for them: for
Mordia, OSA, and Helios/c-Through, the worst-case sce-
nario is when every node talks to all other nodes13, be-
cause a node can only directly talk to a limited num-
ber of other nodes in these structures. We calculate the
total throughput of simultaneous connections between
ports. We rigorously follow respective papers to scale
port counts from 128 to 6144. For example, OSA at 1024
port uses a 16-port OCS for 16 racks each with 64 hosts;
Mordia at 6144 ports uses a 32-port OCS to connect 32
rings each with 192 hosts.

We observe: 1) MegaSwitch and Mordia-PTL can
achieve full bisection bandwidth at high port count in
both average and the worst case, while other designs,
including Mordia-Stacked-Ring, cannot. Both struc-
tures are expected to maintain full bisection bandwidth
with future scaling in optical devices with larger WSS
radix and wavelengths per-fiber; 2) Basemesh reduces
the worst-case bisection bandwidth by 16.7% for b=32,
but full bisection bandwidth is still achieved on average.

13A node refers to a ring in Mordia, a rack in OSA/Helios/c-Through



6 Cost of MegaSwitch
Complexity analysis: The absolute costs of optical pro-
posals are difficult to calculate, as it depends on multiple
factors, such as market availability, manufacturing costs,
etc. For example, our PRF module can be printed as a
planar lightwave circuit, and mass-production can push
its cost to that of common printed circuit boards [10].
Thus, instead of directly calculating the costs based on
price assumptions, we take a comparative approach and
analyze the structural complexity of MegaSwitch and
closely related proposals.

In Table 1, we compare the complexity of different op-
tical structures at the same port count (3072). For OSA,
it translates to 32 racks, 96 DWDM wavelengths, and a
128-port OCS (Optical Circuit Switch). ToR degree is set
to 4 [6]. Quartz’s port count is limited to the wavelength
per fiber (k) [26]: so a Quartz element with k=96 is es-
sentially a 96-port switch, and we scale it to 3072 ports
by composing 160 Quartz elements14 in a FatTree [1]
topology (with 32 pods and 32 cores). For Mordia, we
use its microsecond 1×4 WSS and stack 32 rings via a
32 port OCS to reach 3072 ports. Mordia-PTL [11] is
configured in the same way as Mordia, with the only dif-
ference that each EPS is directly connected to 32 rings
in parallel without using OCS. Both Mordia and Mordia-
PTL have 96/4=24 stations on each ring. MegaSwitch is
configured with 32 nodes and 96 wavelengths per node.
Finally, we list a FatTree constructed with 24-port EPS,
with totally 243/4=3456 ports and 720 EPSes. We as-
sume that, within the FatTree fabric, all the EPSes are
connected via transceivers.

From the table, we find that compared to other opti-
cal structures, MegaSwitch supports the same port count
with less optical components. Compared to all the opti-
cal solutions, FatTree uses 2× optical transceivers (non-
DWDM) at the same scale.

Transceiver sost: Our prototype uses commercial
10Gb-ER DWDM SFP+ transceivers, which are ∼10×
more expensive per bit per second than the non-DWDM
modules using PSM4. This is because ER optics is
usually used for long-range optical networks, rather
than short-range networks within a DCN. Our choice
of using ER optics is solely due to its ability to use
DWDM wavelengths, not its power output or 40KM
reach. If MegaSwitch or similar optical interconnects are
widely adopted in future DCNs, we expect that DWDM
transceivers customized for DCNs will be used instead of
current PSM4 modules. Such transceivers are being de-
veloped [22], and due to relaxed requirements of short-
range DCN, the cost is expectedly lower. Even if the
customized DWDM transceivers are still more expensive

14We assume a Quartz ring of 6 wavelength add/drop multiplex-
ers [26] in each element, thus 6×160=960 in total.

Components OSA Quartz Mordia Mordia-PTL MegaSwitch FatTree
Amplifier 0 6144 768 768 32 0

WSS 32 (1×4) 960 768 (1×4) 768 (1× 4) 32 (32×1) 0
WDM Filter 0 0 768 768 0 0

OCS 1×128-port 0 1×32-port 0 0 0
Circulator 3072 0 0 0 0 0

Transceivers 3072 3072 3072 3072 3072 6912

Table 1: Comparison of optical complexity at the
same scale (3072 ports) in optical components used.
than non-DWDM ones, since FatTree needs many more
EPSes (and thus transceivers), and the cost difference
will grow as the network scales [38].

Amplifier cost: With only one stage of amplification
on each fiber, MegaSwitch can maintain good OSNR
at large scale (Figure 3). Therefore, MegaSwitch needs
much fewer OAs (optical amplifier) at the same scale.
The tradeoff is that they must be more powerful, as the
total power to reach the same number of ports cannot be
reduced significantly. Although unit cost of a powerful
OA is higher15, we expect the total cost to be similar or
lower, as MegaSwitch requires much fewer OAs (24×
fewer than Mordia and 192× fewer than Quartz).

WSS cost: In Table 1, MegaSwitch uses 32×1 WSS,
and one may wonder its cost versus 1×4 WSS. In fact,
our design allows for low cost WSS, as transceiver link
budget design does not need to consider optical hopping,
thus the key specifications can be relaxed (e.g., band-
width, insertion loss, and polarization dependent loss re-
quirements). Liquid Crystal (LC) technology is used in
our WSS as it is easier to cost-effectively scale to more
ports. As the majority of the components in a 32×1
WSS are same as a 1×4 WSS, the per-port cost of 32×1
WSS is about 4 times lower than that of a current 1×4
WSS [6, 38]. In the future, silicon photonics (e.g., matrix
switch by ring resonators [13]) can improve the integra-
tion level [52] and further reduce the cost.

7 Conclusion
We presented MegaSwitch, an optical interconnect that
delivers rearrangeably non-blocking communication to
30+ racks and 6000+ servers. We have implemented
a working 5-rack 40-server prototype, and with exper-
iments on this prototype as well as large-scale simula-
tions, we demonstrated the potential of MegaSwitch in
supporting wide-spread, high-bandwidth demands work-
loads among many racks in production DCNs.
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Appendix

Proof for non-blocking connectivity
We first formulate the wavelength assignment problem:

Problem formulation: Denote G=(V,E) as a Mega-
Switch logical graph, where V/E are node/edge sets, and
each edge e∈E is directed (a pair of fiber channels be-
tween two nodes, one in each direction). Given all nodes
are connected via one hop, G is a complete digraph. The
bandwidth demand between nodes can be represented by
the number of wavelengths needed, and each node has
k available wavelengths. Suppose γ={ke | e∈E} is a
bandwidth demand of a communication, where ke is the
number of wavelengths (i.e., bandwidth) needed on edge
e=(u,v) from node u to v. A feasible demand and wave-
length efficiency are defined as:

Definition 2. A demand γ is feasible iff
∑
vk(u,v)≤

k, ∀u∈V and
∑
uk(u,v)≤k, ∀v∈V , i.e. each node cannot

send/receive more than k wavelengths.

Definition 3. Given a feasible bandwidth demand γ,
an assignment is wavelength efficient iff it is non-
interfering, satisfies γ, and uses at most k wavelengths.

Centralized optimal algorithm: To prove the wave-
length efficiency, we first show that non-interfering
wavelength assignment in MegaSwitch can be recast as
an edge-coloring problem on a bipartite multigraph. We
first transform G into a directed bipartite graph by de-
composing each node in G into two logical nodes si
(sources) and di (destinations). Each edge points from
a node in {si} to a node in {di}. Then, we expand G
to a multigraph G′ by duplicating each edge e between
two nodes ke times. On this multigraph, the require-
ment of non-interference is that no two adjacent edges
share same wavelength. Suppose each wavelength has
a unique color, this equivalently transforms to the edge-
coloring problem.

While the edge-coloring problem isNP-hard for gen-
eral graph [33], polynomial-time optimal solutions exist
for bipartite multigraph. Chen et al. [7] have presented
such a centralized algorithm, which we leverage to prove
our wavelength efficiency for any feasible demands.

Algorithm 1: DECOMPOSE(·) Decompose G′
r into

∆(G′
r) perfect matchings

Input: G′
r

Output: π={m1,m2,...m∆(G′
r)}

1 if ∆(G′
r)≤1 then

2 return G′
r ;

3 else
4 m← Perfect Matching(G′

r);
5 return m

⋃
Decompose(G′

r\m);

Satisfying arbitrary feasible γ with wavelength effi-
ciency: We extend G′ to a ∆(G′)-regular multigraph16,
G′r, by adding dummy edges, where ∆(G′) is the largest
vertex degree ofG′, i.e. the largest ke in γ. For a bipartite
graph G′ with maximum degree ∆(G′), at least ∆(G′)
wavelengths are needed to satisfy γ. This optimality can
be achieved by showing that we only need the smallest
value possible, ∆(G′), to satisfy γ, which also proves
wavelength efficiency since ∆(G′)≤k.

Theorem 4. A feasible demand γ only needs ∆(G′),
i.e., the minimum number of colors, for edge-coloring.
Any feasible MegaSwitch graph G′ can be satisfied with
∆(G′)≤k wavelengths using Algorithm 1.

Proof. DECOMPOSE(·) recursively finds ∆(Gr) perfect
matchings in G′r, because ”any k-regular bipartite graph
has a perfect matching” [44]. Thus, we can extract
one perfect matching from the original graph G′r, and
the residual graph becomes (∆(G′)−1)-regular; we con-
tinue to extract one by one until we have ∆(G′) perfect
matchings17. Thus, any demand described by G′ can be
satisfied with ∆(G′) wavelengths. Note that ∆(G′)≤k,
as the out-degree and in-degree of any node must be ≤k
in any feasible demand due to the physical limitation of
k ports. Therefore any feasible demand γ can be satisfied
using at most k wavelengths.

The MegaSwitch controller runs Algorithm 1 to de-
compose the demands, and assigns a wavelength to the
matching generated in each iteration.

Considerations for Basemesh Topology
As described in §3.2.2, basemesh is an overlay DHT
network on the multi-fiber ring of MegaSwitch. DHT
literature is vast, and there are many potential choices
for basemesh topology. The following are the represen-
tative ones: Chord [48], Pastry [41], Symphony [29],
Viceroy [28], and CAN [40]. Since we have compared
Chord [48] & Symphony [29] in §3.2.2, we next look at
the remaining ones.
• Pastry suffers from average path lengths when many

wavelengths are used in the basemesh. Its average
path length is log2(l·n) [41], where n is the number of
nodes on a ring, and l is the length of node ID in bits.
For MegaSwitch, both parameter is fixed (like Chord),
and we cannot reduce the path length by adding more
wavelengths to basemesh.

• Viceroy emulates the butterfly network on a DHT ring.
For MegaSwitch, its main issue is the difficulty of up-
dating the routing tables and wavelength assignments

16A graph is regular when every vertex has the same degree.
17Perfect Matching(·) on regular bipartite graph is well studied, we

leverage existing algorithms in literature [27].



when the capacity of basemesh is increased and de-
creased. For Symphony, we can just pick a new wave-
length in random, and configure accordingly without
affecting the other wavelengths. In contrast, to main-
tain butterfly topology, adjusting capacity of basemesh
using Viceroy algorithm affects all wavelength but one
in the worst case.

• CAN is a d-dimensional Cartesian coordinate system
on a d-torus, which is not suitable for MegaSwitch
ring where every node is connected directly to every
other node. However, CAN will become useful when
we expand MegaSwitch into a 2-D torus topology, and
we will explore this as future work.

Reconfiguration Latency Measurements on
MegaSwitch Prototype
In §5.1.1, we measured ∼20ms reconfiguration delay for
MegaSwitch prototype, and here we break down this de-
lay into EPS configuration delay (te), WSS switching de-
lay (to), and control plane delay (tc). The total reconfig-
uration delay for MegaSwitch is tr=max(te,to)+tc, as
EPS and WSS configurations can be done in parallel.

EPS configuration delay: To setup a route in Mega-
Switch, the source/destination EPSes must be config-
ured. We measure the EPS configuration delay as follows
(all servers and the controller are synchronized by NTP):
we first setup a wavelength between 2 nodes and leave
EPSes unconfigured. We let a host in one of the nodes
keep generating UDP packets using netcat to a host
in the other node. Then, the controller sends OpenFlow
control message to both EPSes to setup the route, and we
collect the packets at the receiver with tcpdump. Fi-
nally we can calculate the delay: the average and 99th
percentile are 5.12ms and 12.87ms, respectively.

WSS switching delay: We measure the switching speed
of the 8×1 WSS used in our testbed by switching the
optical signal from one port to another port. Figure 12
shows the power readings from the original port and from
the destination port, and the measured switching delay is
3.23ms (subject to temperature, drive voltage, etc.).

Control plane delay: With our wavelength assignment
algorithm (see Appendix) running on a server (the cen-
tralized controller) with Intel E5-1410 2.8Ghz CPU, we
measured an average computation time of 0.53ms for 40-
port (40×40 demand matrix as input), and 3.28ms for
6336-port MegaSwitch (n=33,k=192). For basemesh
routing tables, our greedy algorithm runs 0.45ms for 40
ports and 1.78ms for 6336 ports. For the OWS con-
troller processing, we measured 4.31ms from receiving
a wavelength assignment to set GPIO outputs. Round-
trip time in control plane network (using 1GbE switch)
is 0.078ms.
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