
Multi-Objective Congestion Control
Yiqing Ma1, Han Tian1, Xudong Liao1, Junxue Zhang1, Weiyan Wang1, Kai Chen1, Xin Jin2

1iSING Lab, Hong Kong University of Science and Technology, 2Peking University

Abstract
Decades of research on Internet congestion control (CC) have
produced a plethora of algorithms that optimize for dierent
performance objectives. Applications face the challenge of
choosing the most suitable algorithm based on their needs,
and it takes tremendous eorts and expertise to customize
CC algorithms when new demands emerge. In this paper, we
explore a basic question: can we design a single CC algorithm
to satisfy dierent objectives?
We propose MOCC, the rst multi-objective congestion

control algorithm that attempts to address this question.
The core of MOCC is a novel multi-objective reinforcement
learning framework for CC to automatically learn the corre-
lations between dierent application requirements and the
corresponding optimal control policies. Under this frame-
work, MOCC further applies transfer learning to transfer the
knowledge from past experience to new applications, quickly
adapting itself to a new objective even if it is unforeseen. We
provide both user-space and kernel-space implementation
of MOCC. Real-world Internet experiments and extensive
simulations show that MOCC supports well multi-objective,
competing or outperforming the best existing CC algorithms
on each individual objectives, and quickly adapting to new
application objectives in 288 seconds (14.2× faster than prior
work) without compromising old ones.

CCSConcepts •Networks→Networkprotocols;Trans-
port protocols; Network protocol design.

Keywords congestion control, reinforcement learning,multi-
objective

ACM Reference Format:
Yiqing Ma1, Han Tian1, Xudong Liao1, Junxue Zhang1, Weiyan
Wang1, Kai Chen1, Xin Jin2. 2022. Multi-Objective Congestion Con-
trol. In Seventeenth European Conference on Computer Systems (Eu-
roSys ’22), April 5–8, 2022, RENNES, France. ACM, New York, NY,
USA, 18 pages. hps://doi.org/10.1145/3492321.3519593

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for prot or commercial advantage and that copies bear
this notice and the full citation on the rst page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specic permission and/or a fee. Request
permissions from permissions@acm.org.
EuroSys ’22, April 5–8, 2022, RENNES, France
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9162-7/22/04. . . $15.00
hps://doi.org/10.1145/3492321.3519593

1 Introduction
Congestion control (CC) is a fundamental, enduring topic
in networking research. Decades of study on this topic have
produced a plethora of CC algorithms [1, 4, 5, 7, 12, 13, 15,
21, 26, 27, 49, 53, 61, 62]. These algorithms are motivated
by new applications that impose dierent demands on net-
work performance, as well as new technologies that change
the underlying Internet infrastructure. The conuence of
these two factors requires a CC algorithm to be deliberately
designed to optimize for a particular performance objective.

Consequently, applications face the challenge of choosing
the most suitable CC algorithm based on their needs. This
choice is denitely not easy given the wide range of options,
and the subtle dierences between them that oftentimes re-
quire deep understanding of TCP minutiae. At the same time,
whenever new applications with dierent demands emerge,
it takes tremendous eorts and expertise to customize CC
algorithms for their new requirements.
In this paper, we explore a basic question: can we design

a single CC algorithm to satisfy dierent objectives? Tradi-
tional CC algorithms [4, 5, 7, 15, 21, 27, 53] are hand-crafted.
They rely on certain assumptions about the network, and
hardwire packet-level events to pre-dened control rules
based on human experience. Recent learning-based CC al-
gorithms [1, 26] relieve the burden by applying deep rein-
forcement learning to automatically learn an optimal control
policy for a given objective. Yet, satisfying dierent objec-
tives requires us to maintain one copy for each algorithm
(either traditional or learning-based), and pay excessive time
to design or train an algorithm each time when a new appli-
cation with a dierent objective arrives (§2).

We propose MOCC, the rst multi-objective CC algorithm
that attempts to address this question (§3). The core ofMOCC
is a novel multi-objective reinforcement learning framework
for CC to automatically learn the correlations between dif-
ferent application requirements and their corresponding
optimal control policies. MOCC explicitly incorporates the
performance objective into both the state input and the dy-
namic reward function, and leverages a new policy neural
network with a preference sub-network to correlate dierent
objectives with optimal control policies (§4.1). This allows
MOCC to eectively establish a single correlation model to
support dierent performance objectives. Under this frame-
work, MOCC further applies transfer learning to quickly
transfer the knowledge learned from past experience to new
applications, and optimizes the CC algorithm for a given
objective, even if it is unforeseen.

1

https://doi.org/10.1145/3492321.3519593
https://doi.org/10.1145/3492321.3519593

EuroSys ’22, April 5–8, 2022, RENNES, France Y. Ma et al.

MOCC achieves its goal by a combination of oine train-
ing (§4.2) and online adaptation (§4.3). In oine training,
MOCC is trained over a set of well-distributed landmark
objectives to learn the base correlations between application
requirements and optimal policies. Then, whenever a new
application arrives, MOCC can immediately provide a moder-
ate policy using the oine trained model by correlating the
application’s objective with the landmark objectives, even if
it is unforeseen. Meanwhile, MOCC activates online adap-
tation to transfer the knowledge from the base correlation
model to the new application. With transfer learning, MOCC
can quickly converge to the optimal policy within just a few
training iterations, orders of magnitude faster than training
from scratch. In addition, to avoid forgetting the learned
policies, we customize the loss function of MOCC online
adaptation for both new arrival and old (sampled) applica-
tions. This enables MOCC to learn and apply optimal policies
for new applications without compromising old ones.

We fully implement MOCC (§5) with a user-space imple-
mentation based on UDT [20] and a kernel-space implemen-
tation based on CCP [41]. We leverage OpenAI Gym [6] and
Aurora [26] to implement the training and adaptation com-
ponents, and use parallel training to reduce training time.
For better portability, we encapsulate all MOCC’s functions
into one library that is plug-and-play and readily deployable
with any networking data paths that include, but not limited
to, our user-space and kernel-space implementations.
We evaluate MOCC with extensive simulations and real-

world Internet experiments (§6). We show that MOCC well
supports multiple objectives, competing or outperforming
the best existing CC algorithms (including both traditional
ones and recent learning-based ones) on individual objectives
(§6.1), and can quickly adapt to new application objectives
in 288 seconds, 14.2× faster than prior solution (§6.2). We
further demonstrate the benets of MOCC with three real
Internet applications in §6.3, and inspect the fairness and
friendliness of MOCC in §6.4. Finally, we deep-dive into
various design choices of MOCC and its overhead in §6.5.

2 Background and Motivation
2.1 Diverse Application Requirements
Internet applications have diverse performance requirements
for the network, typically characterized by metrics such as
throughput, latency, jitter, and packet loss rate [10, 14, 18, 28,
29, 43, 48, 52]. Throughput is the main metric for many appli-
cations, in which minimum bandwidth is required to provide
good user experience, e.g., HDTV requires (>34Mbps) to
play high-denition video without rebuering [10]. On the
other hand, real-time interactive applications usually require
low latency, e.g., autonomous driving requires low latency
(<15ms) to react to immediate environment signals [11]. For
some real-time applications, temporal packet loss is also
important, e.g., online video/audio conferencing can only

Algorithm Objective

PCC Allegro [12] 𝑇 − 𝛿𝑅𝑇𝑇

PCC Vivace [13] 𝑇 𝑡 − 𝑏 × 𝑑 (𝑅𝑇𝑇)
𝑑𝑡
− 𝑐 × 𝐿

Aurora [26] 𝛼𝑇 − 𝛽𝑅𝑇𝑇 − 𝛾𝐿

Orca [1] 𝑇−𝜀𝐿
𝑅𝑇𝑇
/(𝑇𝑚𝑎𝑥

𝑅𝑇𝑇𝑚𝑖𝑛
)

Table 1. Performance objectives in learning-based CC. 𝑇 is
throughput, 𝑅𝑇𝑇 is latency, and 𝐿 is loss rate.

tolerate (<0.1%/1%) packet loss rate [16]. Emerging Inter-
net applications such as augmented/virtual reality may have
tight requirements on several metrics simultaneously [37].
To summarize, these application demands pose dierent

requirements on Internet CC algorithms. Ideally, the CC
algorithm should be multi-objective to support diverse ap-
plication requirements simultaneously. However, as we will
show subsequently (§2.2), none of existing CC solutions can
do this.
2.2 In Pursuit of Multi-Objective CC
We broadly classify existing Internet CC algorithms into
two main categories: hand-crafted [4, 5, 7, 15, 21, 27, 53, 61]
and learning-based [1, 12, 13, 26]. Traditional CC algorithms
hardwire packet-level events to pre-dened control rules
based on human experience. The performance objective is
implicitly encoded in the mapping, and in many cases, it is
hard to infer what is exactly being optimized.

Existing learning-based CC can optimize for a given
objective. Recent learning-based CC algorithms can address
the above problem of hand-crafted heuristics by explicitly
encoding the performance objectives in the reward/utility
function and maximizing it through machine learning from
network environments. Table 1 lists several reward/utility
functions used by state-of-the-art learning-based CC algo-
rithms.The reward function is typically expressed as a com-
bination of metrics such as throughput, latency and loss rate.
The coecient parameters (𝛼, 𝛽,𝛾, 𝛿, 𝜀, 𝑏, 𝑐) can express the
relative importance of these metrics based on application
requirements explicitly. Thus, learning-based CC is able to
perform well for a particular objective.
We use a simple simulation to showcase this. The setup

follows that in Orca [1]. Specically, we simulate a network
in which the one-way delay is 20 ms, the bottleneck link
bandwidth varies between 20–30Mbps, and the loss ratio
is 0.02%. We compare two traditional CC algorithms (TCP
CUBIC and Vegas) and two learning-based CC algorithms
(Aurora and Orca). As shown in Figure 1(a), CUBIC and Vegas
under-utilize the bandwidth and do not perform well when
the link bandwidth changes. In contrast, Aurora and Orca are
trained by assigning high weight to throughput in the reward
function. As a result, they achieve higher throughput than

2

Multi-Objective Congestion Control EuroSys ’22, April 5–8, 2022, RENNES, France

TCP CUBIC
Aurora

TCP Vegas
Link bandwidth

Orca

Th
ro

ug
hp

ut
 (M

bp
s)

0

10

20

30

Time (s)
0 10 20 30 40 50

(a) Support for throughput-intensive application

Aurora-throughput
Aurora-latency
BBR

PCC Vivace
PCC Allegro
TCP Cubic

TCP Vegas
Copa
Orca

PCC Vivace
PCC Allegro

Aurora-thr.

Aurora-lat.

BBR

Better

Vegas

Cubic

Copa

Orca

Prefer latency

MOCC RangePrefer throughput

Th
ro

ug
hp

ut
(M

bp
s)

10

20

Latency(ms) 2030405060

(b) Support for dierent objectives

Aurora

Takes 1.2 hours to converge

Tr
ai

ni
ng

 R
ew

ar
d

0

200

400

600

800

Time (s)
0 2000 4000

(c) Time cost for re-training a new objective

Figure 1. (a) Learning-based CC algorithms can explicitly optimize for a particular objective, and perform better than traditional
CC algorithms. (b) Existing learning-based CC cannot support multiple objectives. (c) Existing learning-based CC such as
Aurora takes a long time to re-train the model when the objective changes.

CUBIC and Vegas, and the throughput benets are consistent
under changing network conditions.

But, these learning-based CC cannot support multi-
ple objectives. As listed in Table 1, the current learning-
based algorithms set relative importance of throughput, la-
tency and loss rate to realize dierent performance objec-
tives. These coecient parameters are xed during train-
ing. Thus the trained agent can only optimize for a partic-
ular objective at a time. To show this, we reuse the above
simulated network setting to evaluate dierent CC algo-
rithms (Aurora, PCC-Allegro, PCC-Vivace, BBR, Cubic, Ve-
gas, Copa). For Aurora, we apply two models, one trained
for throughput (Aurora-throughput) and the other trained
for latency (Aurora-latency). We present throughput-delay
plot for each CC in Figure 1(b). We take each individual
60-second run as one point, and then compute the 1 − 𝜎

elliptic contour of the maximum-likelihood 2D Gaussian
distribution that explains the points (refer to Remy [57]).
Thus Figure 1(b) shows the throughput-delay performance
range for each CC schemes. As shown in the gure, from
right to left and bottom to top, these algorithms trace out
a path from most latency-optimized to most throughput-
optimized. Aurora-throughput provides higher throughput,
while Aurora-latency provides lower latency. But each of
them can only optimize for one particular objective. In com-
parison, we propose MOCC, a multi-objective CC that can
support dierent application requirements. The expected
ideal performance of MOCC is shown in the blue line. By
dynamically adjusting the relative importance of its reward
function, MOCC is expected to accommodate dierent ob-
jectives.
For learning-based approaches, hypothetically, one can

train a custom model for each performance objective. How-
ever, this is undesirable: given the diverse application re-
quirements and with new applications emerging every year,
it is hard to cover all performance objectives. And even if
possible, one may need to install a copy of algorithm in each

device and train the algorithm in real time when the perfor-
mance objective changes. However, existing learning-based
CC algorithms are not quick-adaptive. As an example, Fig-
ure 1(c) shows that re-training the model of Aurora [26] for a
new objective takes more than one hour to converge. Besides
these drawbacks, from a scientic point of view, we would
like to explore whether it is possible to design a single CC
algorithm to satisfy multiple objectives.

QUIC: QUIC [31] is a user-space transport protocol on top
of UDP to improve the transport performance of Internet
applications and to enable application-specic customiza-
tions. QUIC itself, however, is not tied to a particular CC
algorithm. It only provides the mechanism to implement
application-specic CC algorithms, and an application still
needs to specify which CC it uses, which can be either a
traditional or learning-based algorithm, to achieve its perfor-
mance objective. As such, our work is orthogonal to QUIC,
and more importantly, we show that we only need a single
CC to satisfy dierent objectives.

2.3 Design Goals
We seek one single CC algorithm satisfying all the following
three goals simultaneously.
• Multi-objective: The algorithm can support dierent
applications with dierent performance objectives, and
provide optimal control policies for individual applica-
tions.
• Quick-adaptive:The algorithm can quickly adapt to new
applications with unforeseen requirements, without com-
promising performance of old applications.
• Consistent high-performance: The algorithm should
achieve high-performance in various network conditions
without any pre-assumption.
We are inspired by recent trend (notably, Aurora [26] and

Orca [1]) to adopt RL for CC, which can readily achieve
consistent high-performance. However, the challenge is how

3

EuroSys ’22, April 5–8, 2022, RENNES, France Y. Ma et al.

Action

Single-objective RL Agent

Policy Neural Network

Update parameter

State

Fixed Reward

Sender-side Update Observation of network state

Throughput Delay Loss

Throughput
Ratio

Latency
Gradient

Latency Ratio

Environment
Variance

Mean

σ

µ

(a) Single-objective CC (Aurora [26])

Action

Multi-objective RL Agent
Policy Neural Network

Update parameter

Update Observation of network state &

Application
Requirement

State

Throughput
Ratio

Latency Ratio

Latency
Gradient

Throughput Delay Loss

W1 W2 W3
Environment

Application Requirement
Preference Sub-network

Mean
µ

σ
Variance

Network
Condition

Dynamic Reward
 W1 Obj_thr
+ W2 Obj_lat
+ W3 Obj_loss

(b) Multi-objective CC (MOCC)

Figure 2. From single-objective CC to multi-objective CC: Incorporating preference sub-network into MOCC with application
requirements explicitly used in both state input and dynamic reward function enables MOCC to learn (and memorize) the
correlations between application requirements and the corresponding optimal rate control policies, thus realizing multi-
objective, i.e., one single MOCC model can support multiple applications.
to simultaneously support multiple application objectives
and quickly accommodate new ones.

3 Multi-Objective Learning for CC
We formulate CC as a sequential decision-making problem
under the RL framework. Consider a general RL setting
where an agent interacts with an environment. At each time
step 𝑡 , the agent observes some state 𝑠𝑡 , and chooses an action
𝑎𝑡 . After applying the action, the state of the environment
transits from 𝑠𝑡 to 𝑠𝑡+1 and the agent receives a reward 𝑟𝑡 .
The state transitions and rewards are stochastic and Markov-
ian [56]. The goal of RL learning is to maximize the expected
cumulative discounted reward 𝐸 [Σ∞𝑡=0𝛾𝑡𝑟𝑡], where 𝛾 ∈ (0, 1]
is a factor discounting future rewards.

Figure 2(a) describes the standard way how to apply RL for
CC, which reects the state-of-the-art work Aurora/Orca [1,
26]. Basically, in each time interval, the agent (i.e., sender)
observes a set of network metrics such as throughput, la-
tency, and packet-level events, etc., and feeds these values
into the neural network, which outputs the action, i.e., the
sending rate for the next interval. In the meanwhile, the re-
sulting network performance (e.g., throughput and latency)
is measured and passed back to the agent as a reward, which
will be used to train and improve the neural network model.

While the above standard RL shows promise, it has a key
shortcoming: the algorithm can only optimize for a single ob-
jective at a time. The crux is that the model (Figure 2a) has no
way to recognize and dierentiate among multiple dierent
applications. As a result, supporting multiple applications
requires multiple dierent models, and furthermore, adapt-
ing to a new application entails retraining the model from
scratch which takes time, making it neither multi-objective
nor quick-adaptive.

We seek one algorithm to simultaneously support multiple
application objectives while quickly adapting to new arrival
ones. To this end, we extend the existing single-objective RL
approach and establish a multi-objective RL framework for
CC (MOCC) that meets all our design goals stated in §2.3.

As a fast-growing research area, MORL(multi-objective re-
inforcement learning) is a generalized RL framework used for
solving multi-objective Markov decision process (MOMDP).
MOMDP extends Markov decision process (MDP) by incor-
porating multiple optimization objectives. A MOMDP can
be formalized by the tuple 〈𝑆,𝐴, 𝑃, ®𝑟,Ω, 𝑓Ω〉. 𝑆 and 𝐴 are the
state space and action space. 𝑃 (𝑠 ′ ∈ 𝑆 |𝑠 ∈ 𝑆, 𝑎 ∈ 𝐴) denes
the state transition probability. ®𝑟 (𝑠, 𝑎) consists a vector of
reward functions w.r.t. each objective respectively. Ω denes
the preference space and 𝑓Ω (®𝑟) is the preference function
producing the integrated reward value with given preference
and collected objective-specic rewards. With Ω xed to a
single preference, a MOMDP degrades to a standard MDP
and can be solved with single-objective RL algorithm. Un-
der the linear preference function 𝑓Ω (®𝑟) = ®𝑤𝑇 ®𝑟 in MOCC,
the optimal policy set for our MOMDP is called a convex
coverage set (CCS), which contains all optimal polices for
any given preference ®𝑤 . The learning goal is to recover the
entire CCS, the optimal policy set for all possible application
requirements, and apply corresponding one for any given
application requirement𝑤 .
By contrasting Figure 2(a), our MOCC framework in Fig-

ure 2(b) illustrates how it works. From model structure per-
spective, we make two important changes: (1) we expand
the policy neural network by incorporating a preference sub-
network that explicitly takes application requirements, each
denoted by a weight vector of performance metrics, as state
input, making our model aware of dierent objectives in
addition to network conditions1; and (2) we dynamically pa-
rameterize the reward function with the weight vector of
the application currently under training, which enables our
model to learn the optimal policy for the corresponding objec-
tive. As a result, MOCC automatically learns the correlations
between application requirements and the corresponding

1Researchers have adopted feature vectors to represent multi-user require-
ments in Video Streaming Dash Approach and achieved signicantly better
personalized QoE [19, 24].

4

Multi-Objective Congestion Control EuroSys ’22, April 5–8, 2022, RENNES, France

optimal rate control policies, thus achieving multi-objective
(more details in §4.1).

We train our MOCC model through oine pre-training
(§4.2) and online adaptation (§4.3). In particular, we lever-
age transfer learning techniques [3, 9, 32, 45, 54] to speedup
oine pre-training as well as adapting to new applications
in an online manner. In the oine phase, we pre-train our
model with a well-distributed set of landmark weight vectors
to learn the correlations between application requirements
and optimal policies. This brings two important benets to
the online phase. First, for a new application, MOCC can
immediately provide a reasonable policy even it is unfore-
seen, maintaining performance during the transition. Second,
transferring from such base correlation model, MOCC is able
to quickly converge to the optimal policy for the new applica-
tion with just a few RL iterations, much faster than learning
from scratch (e.g., 14.2× in our evaluation §6). Furthermore,
to avoid forgetting the already learned policies for old appli-
cations, we modify the loss function of the online learning by
optimizing for both the new arrival and sampled history ap-
plications, so that our MOCC can recall the learned policies
for previous applications.
To summarize, by deliberately architecting and training

the model as above, our MOCC framework is able to learn,
remember, and apply optimal rate control policies for multi-
ple applications simultaneously while adapting to new ones
on-the-y. In §4 below, we will go deeper into design details.

4 Design
We start by introducing the model architecture that enables
MOCC to achieve the multi-objective property (§4.1). Then,
we describe our oine training (§4.2) and online adaptation
(§4.3) that can quickly adapt MOCC to new applications.

4.1 Model Architecture
To enable multi-objective, MOCC makes two main changes
upon the standard RL-based CC: 1) incorporating a prefer-
ence sub-network into the policy network, and 2) including
application requirements in both state input and dynamic
reward function. In this way, MOCC can establish the cor-
relations between various application requirements and the
corresponding optimal rate control policies.

States: State inputs to MOCC include both application re-
quirements and network conditions. To express application
requirements, we use weight vector ®𝑤 =<𝑤𝑡ℎ𝑟 ,𝑤𝑙𝑎𝑡 ,𝑤𝑙𝑜𝑠𝑠>

which contains the relative weights of three main perfor-
mance metrics2 in CC algorithm: throughput, latency, and
packet loss rate. The range of each weight 𝑤𝑖 ∈ (0, 1) and
Σ𝑖𝑤𝑖 = 1. For example, <0.8, 0.1, 0.1> means that the appli-
cation desires high throughput, and <0.4, 0.5, 0.1> indicates

2Note that our MOCC framework can generalize to any other objectives.

the application is latency-sensitive but still needs certain
throughput.

For network conditions, similar to prior work [13, 26, 49],
we use statistics vector ®𝑔𝑡 =<𝑙𝑡 , 𝑝𝑡 , 𝑞𝑡> to express the net-
work status at time interval 𝑡 . Specically, 𝑙𝑡 is sending ratio,
dened as packets sent by sender over packets acknowledged
by receiver; 𝑝𝑡 is latency ratio, the ratio of mean latency of
the current time interval 𝑡 to the minimum observed mean
latency in the history; and 𝑞𝑡 is latency gradient, the deriva-
tive of latency with respect to time. Furthermore, to capture
the trends and changes of network dynamics, we use a xed-
length history of network statistics instead of the most recent
one (i.e., ®𝑔(𝑡,𝜂) =<®𝑔𝑡−𝜂, ®𝑔𝑡−𝜂+1, ..., ®𝑔𝑡> with length 𝜂 > 0) as
network state input. This improves MOCC by reacting to
network dynamics more appropriately [26].

Actions: Upon observing state 𝑠𝑡=(®𝑤, ®𝑔(𝑡,𝜂)), the RL agent
chooses an action 𝑎𝑡 . Then the MOCC sender takes the out-
put 𝑎𝑡 to change its sending rate from 𝑥𝑡 to 𝑥𝑡+1 for the next
time interval 𝑡 + 1 as follows:

𝑥𝑡 =

{
𝑥𝑡−1 ∗ (1 + 𝛼𝑎𝑡) 𝑎𝑡 > 0
𝑥𝑡−1/(1 − 𝛼𝑎𝑡) 𝑎𝑡 < 0 (1)

Here 𝛼 is a scaling factor used to dampen oscillations. Instead
of discrete sending rate adjustment, we choose a continuous
sending rate adjustment to improve model robustness and
achieve faster convergence.

Rewards: The MOCC reward function 𝑟𝑡 is dynamically
parameterized with the weight vector ®𝑤 of application under
training, so that the RL agent can capture the requirement
of the application. Specically,

𝑅𝑒𝑤𝑎𝑟𝑑 : 𝑟𝑡 = 𝑤𝑡ℎ𝑟 ∗𝑂𝑡ℎ𝑟 +𝑤𝑙𝑎𝑡 ∗𝑂𝑙𝑎𝑡 +𝑤𝑙𝑜𝑠𝑠 ∗𝑂𝑙𝑜𝑠𝑠 (2)

in which 𝑂𝑡ℎ𝑟=Measured Throughput
Link Capacity , 𝑂𝑙𝑎𝑡=Base Link Latency

Measured Latency , and
𝑂𝑙𝑜𝑠𝑠=1 − Lost Packets

Total Packets are three performance measures on
throughput, latency and packet loss rate. They are cong-
ured to positively relate to the nal reward, and normalized
to [0, 1] to ensure fairness among each other. We use mea-
sured maximum throughput and minimum delay to estimate
the Link Capacity and Base Link Latency in the online phase.
We note that the estimated normalized statistics are not re-
quired during the inference.

Model structure:MOCCadopts the actor-criticmethod [50],
a basic approach to train policy network in RL. The actor-
critic method uses two neural networks: the actor network
and the critic network (Figure 3). The actor network is used
to represent the policy 𝜋𝜃 that maps application require-
ments and network conditions to action distribution 𝜋𝜃 :
𝜋𝜃 (®𝑔(𝑡,𝜂) , ®𝑤, 𝑎𝑡)→[0, 1], where 𝜃 represents the adjustable
model parameters. The critic network is to evaluate the re-
sults of actor network during training by the output value
𝑉 𝜋𝜃 (®𝑔(𝑡,𝜂) , ®𝑤). After training, the actor network is used as
the policy network of MOCC.

5

EuroSys ’22, April 5–8, 2022, RENNES, France Y. Ma et al.

πθ (
!g(t ,η) ,

!w,at)

νπθ (!g(t ,η) ,
!w)

Network Condition gt

Time interval send ratio

lt lt-1 lt-η+1……

Time interval latency ratio

pt pt-1 pt-η+1……

Time interval latency ̗

qt qt-1 qt-η+1……

Requirement

Wthr

Wlat

Wloss

 Throughput weight

Latency weight

Loss weight

Preference sub-network

ŏ
ŏ

Actor network

Critic network

mean

std

Policy distribution

Value

!w

State Input

Figure 3. The Actor-Critic model that MOCC uses to gener-
ate CC rate control policies.

To support multiple objectives, MOCC extends both the
actor network and critic network with a preference sub-
network (PN). PN takes the application weight vector ®𝑤 as
input, and performs feature transformation to concatenate
with the network state ®𝑔𝑡,𝜂 to feed both networks. Then, the
actor network outputs a distribution of the action space for
choosing the proper action.

By incorporating the PN, both the decisions made by the
actor network and the evaluation given by the critic net-
work are not only based on the network conditions, but
also taking the application requirements into consideration.
In other words, our MOCC model adopts neural network
structure that can recognize dierent application require-
ments/preferences, and correlate them with the correspond-
ing optimal policies. As a result, MOCC can learn and apply
optimal rate control polices for multiple applications simul-
taneously, enabling multi-objective.

4.2 Oline Training
Our goal of oine pre-training is to learn the correlations
between application requirements and optimal rate control
polices, in order to make MOCC quickly adapt to new ap-
plications with high accuracy during deployment. In this
section, we introduce our two-phase training strategy as
well as the policy optimization algorithm.

Two-phase training: To train a multi-objective RL, one
straightforward way is to decompose it into multiple single-
objective RLs [35]. If we can enumerate all possible objectives
and train each of them iteratively, the multi-objective RL can
achieve the optimal Convex Converge Set. However, in our
case of MOCC, there are innite possible objectives, i.e., any
weight vector that satises𝑤𝑡ℎ𝑟 +𝑤𝑙𝑎𝑡 +𝑤𝑙𝑜𝑠𝑠=1,𝑤𝑖 ∈ (0, 1).
The problem becomes intractable.

To eciently train MOCC, instead of exploring the whole
objective space, we train on a subset of landmark objectives,

unexplored

Figure 4. The objective training trajectory for fast travers-
ing, generated by neighbourhood-based objective sorting
algorithm (details in §4.2).

say 𝜔 , that can produce a satisfying model3 However, even a
moderate 𝜔 with tens of objectives will take several days to
train. To speedup, we introduce a two-phase training: boot-
strapping and fast traversing. In bootstrapping phase, we
build a base model by selecting just a small number of objec-
tives to train. In our implementation, we chose 3 to bootstrap
with, and our base model can take hours to converge.

Then, in the fast traversing phase, building on the base
model, we accelerate the training of the remaining 𝜔-3 ob-
jectives by adopting a neighborhood-based transfer learning
strategy [32]. This method is based on the observation that
when two RLs have close objectives (i.e., similar weight vec-
tors), their optimal solutions are close. Thus, when training a
RL, we can speedup by leveraging the solutions of its neigh-
boring RLs.
To do this, we purposely arrange the 𝜔 objectives in a

neighborhood-based way as shown in Figure 4. We train
from one objective to its neighbor iteratively and traverse
all the objectives in a cyclic way. Note that each time we
do not train an objective until convergence but only for a
few steps in order to achieve balanced improvement on all
objectives. The whole training completes when the model
converges on all objectives. We explain why such two-phase
training achieves near-optimal solution in Appendix B. The
deep dive discussion in §6.5 shows it eectively speedups
the training by 18×.

Neighborhood-based algorithm To speedup the train-
ing speed, we design a neighborhood-based algorithm to
leverage the solutions of its neighboring RLs. Our algo-
rithm is based on Dijkstra’s shortest path algorithm. By
constructing an undirected graph 𝐺 from candidate objec-
tives, we reorder objectives according to their distances
from the bootstrapped ones. We construct 𝐺 with vertices
representing candidate weight vectors (all weight vectors

3In §6.5, we do a deep-dive discussion of 𝜔 and nd that 𝜔 = 36 achieves a
good performance.

6

Multi-Objective Congestion Control EuroSys ’22, April 5–8, 2022, RENNES, France

satisfying 𝑤𝑡ℎ𝑟 + 𝑤𝑙𝑎𝑡 + 𝑤𝑙𝑜𝑠𝑠=1, 𝑤𝑖 ∈ (0, 1), at a given
step size), and edges representing the neighborhood rela-
tionships. We dene two weight vectors to be neighbors
if they dier in at most two dimensions and each dimen-
sion diers by less than the step size. For example, at the
step size of 0.1, <0.2, 0.4, 0.4> and <0.2, 0.5, 0.3> are neigh-
bors, <0.2, 0.4, 0.4> and <0.1, 0.5, 0.4> are neighbors, but
<0.2, 0.4, 0.4> and <0.1, 0.3, 0.6> are not neighbors. We add
edges between neighbors and set all edge weights to be 1.

Algorithm 1 presents the pseudocode for our neighborhood-
based algorithm on𝐺 . We iterate on each bootstrapped objec-
tive/vertices and apply Dijkstra’s algorithm: For the current
bootstrapped vertex 𝑜 , the algorithm extracts the nearest
unvisited vertices, puts them into the list 𝐿, and updates its
unvisited neighbors’ distances from 𝑜 . Finally, 𝐿 contains a
sorted list of objectives that can be used as the training order
for our MOCC model.

To accelerate the fast traversing phase, we chose the boot-
strapped objectives<0.6, 0.3, 0.1>,<0.1, 0.6, 0.3>,<0.3, 0.1, 0.6>
to cover dierent application requirements as much as pos-
sible. Figure 4 illustrates the traversing path.
We do not use weight vectors that have 0 in any met-

rics/dimensions, whose training models, as we have eval-
uated, are overaggressive on specic metrics and make no
sense for any application.

Policy optimization algorithm: Among a variety of dier-
ent algorithms for training RL [22, 38, 47], we adopt Proximal
Policy Optimization (PPO) [47] as the policy optimization
algorithm to train MOCC. It is a policy gradient method
updating the model with estimated gradient to maximize the
expected total reward. We chose PPO because: 1) it is the
state-of-the-art approach and easy to tune; and 2) it performs
particularly well on continuous control problem [47], which
makes it suitable for deciding the sending rates.
Instead of directly optimizing the expected total reward,

PPO optimizes on its lower bound, a surrogate objective
function (The lower bound proof is given in [47] and [46]):

𝐿𝐶𝐿𝐼𝑃 (𝜃, ®𝑤)𝑡 = Ê𝑡
[
min (𝑟𝑡 (𝜃), clip (𝑟𝑡 (𝜃), 1 − 𝜖, 1 + 𝜖))𝐴𝑡

]
(3)

where 𝑟𝑡 (𝜃) =
𝜋𝜃 (𝑎𝑡 | ®𝑣(𝑡,𝜂) , ®𝑤)

𝜋𝜃𝑜𝑙𝑑 (𝑎𝑡 | ®𝑣(𝑡,𝜂) , ®𝑤)
denotes the probability ra-

tio of action 𝑎𝑡 compared to the current policy. The term
𝑐𝑙𝑖𝑝 (𝑟𝑡 (𝜃), 1−𝜖, 1+𝜖) clips the probability ratio to the range
[1−𝜖, 1+𝜖].𝐴𝑡 represents the advantage of a specic action
over the current policy. The epsilon is a hyperparameter
used to decide the clipping. This parameter prevents very
large updates.
𝜋𝜃 (.|𝑔,𝑤)is in fact the policy probability distribution, as

the entropy function is directly applied on probability distri-
butions.
Advantage function is dened as the dierence between

empirical total reward applying the action 𝑎𝑡 and expected

Algorithm 1: Neighborhood-based Objective Sort-
ing Algorithm
input :The undirected objective graph 𝐺 = (𝑉 , 𝐸),

the bootstrapped vertices 𝑂
output :The sorted objective list 𝐿

1 𝐿 ← [];
2 foreach 𝑣 ∈ 𝑉 do
3 𝑣 .𝑣𝑖𝑠𝑖𝑡𝑒𝑑 ← 𝐹𝑎𝑙𝑠𝑒;
4 for 𝑖 ← 1 to |𝑂 | do
5 if 𝑣 has edge with bootstrapped vertices 𝑂 then
6 𝑣 .𝑑 [𝑖] ← 1;
7 else
8 𝑣 .𝑑 [𝑖] ← ∞;
9 for 𝑖 ← 1 to |𝑂 | do

10 𝑣𝑖𝑠𝑖𝑡𝑠 ← d |𝑉 ||𝑂 | e;
11 if 𝑂 [𝑖] .𝑣𝑖𝑠𝑖𝑡𝑒𝑑 = 𝐹𝑎𝑙𝑠𝑒 then
12 Append 𝑂 [𝑖] to L;
13 𝑂 [𝑖] .𝑣𝑖𝑠𝑖𝑡𝑒𝑑 ← 𝑇𝑟𝑢𝑒;
14 𝑣𝑖𝑠𝑖𝑡𝑠 ← 𝑣𝑖𝑠𝑖𝑡𝑠 − 1;
15 while 𝑣𝑖𝑠𝑖𝑡𝑠 > 0 and 𝐿 is not full do
16 Find 𝑢 ∈ 𝑉 with minimum 𝑢.𝑑 [𝑖] and

𝑢.𝑣𝑖𝑠𝑖𝑡𝑒𝑑 = 𝐹𝑎𝑙𝑠𝑒;
17 Append 𝑢 to 𝐿;
18 𝑢.𝑣𝑖𝑠𝑖𝑡𝑒𝑑 = 𝑇𝑟𝑢𝑒;
19 𝑣𝑖𝑠𝑖𝑡𝑠 ← 𝑣𝑖𝑠𝑖𝑡𝑠 − 1;
20 foreach w ∈ neighbors of u do
21 if 𝑤.𝑣𝑖𝑠𝑖𝑡𝑒𝑑 = 𝐹𝑎𝑙𝑠𝑒 and 𝑢.𝑑 [𝑖] + 1 < 𝑤.𝑑 [𝑖]

then
22 𝑤.𝑑 [𝑖] ← 𝑢.𝑑 [𝑖] + 1;

total reward applying policy 𝜋𝜃 :

𝐴(®𝑔(𝑡,𝜂) , ®𝑤, 𝑎𝑡) =
∑︁
𝑡

𝛾𝑡𝑟𝑡 −𝑉 𝜋𝜃 (®𝑔(𝑡,𝜂) , ®𝑤) (4)

where 𝑉 𝜋𝜃 (®𝑔(𝑡,𝜂) , ®𝑤) is estimated by the critic network.
To encourage exploration of policy network, as suggested

in past works [38], we add an entropy regularization term
to the objective function 𝐿𝐶𝐿𝐼𝑃 :

𝐿𝐶𝐿𝐼𝑃+𝐸𝑡 (𝜃, ®𝑤) = 𝐿𝐶𝐿𝐼𝑃 (𝜃, ®𝑤) + 𝛽𝐻 (𝜋𝜃 (·| ®𝑔(𝑡,𝜂) , ®𝑤)), (5)
where𝐻 (·) is the entropy function of the probability distribu-
tion over actions at each time step. Thus action distribution
with higher entropy is preferred, exploring a more diverse
set of possible actions.
During oine training, for each step, MOCC’s RL agent

performs the policy of actor network to generate a network
trace for a short period of time. With the trace and collected
empirical rewards, we update the critic network following
the standard Temporal Dierence method [51]. Then, the
critic network provides 𝑉 𝜋𝜃 (®𝑔(𝑡,𝜂) , ®𝑤) for computing the ad-
vantage function according to Equation 4. Finally, the actor
network is updated with gradients computed to maximize

7

EuroSys ’22, April 5–8, 2022, RENNES, France Y. Ma et al.

Equation 5. Because the surrogate objective is the lower
bound of the expected total reward, optimization on it guar-
antees the improvement of the policy network on gained
reward. As a result, model parameters are updated such that
the new policy assigns higher probability to state-action pairs
resulting in positive reward advantages, moving towards the
optimal policy.

4.3 Online Adaptation
Our oine pre-trained model from §4.2 eectively correlates
the application requirements with the optimal policies. This
brings two key benets to MOCC’s online adaptation. First,
for a new application, MOCC can generate a moderate policy
of rate control even the requirement is unforeseen, provid-
ing reasonable performance for the new application at the
beginning. Second, starting from such moderate model, with
transfer learning, MOCC is able to quickly converge to the
optimal model for the new application with just a few RL
iterations, which is much faster than learning from scratch
(e.g., we see over 10 times faster in §6.2). These two benets
enable MOCC to adapt to any new applications on-the-y.
However, there is one issue: we do not want to compro-

mise the performance of old applications while adapting to
new ones. Unlike oine training where all objectives are ar-
ticially generated and uniformly distributed, the objective
distribution in real environment may have bias: some appli-
cations are very frequent, some are rare. Under such a bias,
the traditional RL algorithm will overt to those new fre-
quent applications but gradually forget those old rare ones,
which is undesirable.

To avoid this problem, MOCC uses a requirement replay
learning algorithm [3]. During the online learning, MOCC
stores encountered applications (weight vectors) for a long
period of time. For each online training step, the model is
trained on both the current objective and an old objective
drawn uniformly at random from the pool of the stored
applications. We dene the online learning objective to be:

𝐿𝑜𝑛𝑙𝑖𝑛𝑒 (𝜃) =
1
2 ∗ [𝐿

𝐶𝐿𝐼𝑃+𝐸 (𝜃, ®𝑤𝑖) + 𝐿𝐶𝐿𝐼𝑃+𝐸 (𝜃, ®𝑤 𝑗)] (6)

where ®𝑤𝑖 refers to the current application requirement, ®𝑤 𝑗

refers to a sampled old application requirement, and 𝐿𝐶𝐿𝐼𝑃+𝐸
is the PPO surrogate objective function dened in Equation
5. In this way, MOCC not only learns new applications, but
also recalls old applications and reinforces previously learned
policies. Thus, MOCC can preserve the learned policies of
old applications while adapting to new applications. Our
evaluation in §6.2 conrms this property.

5 Implementation
Our implementation of MOCC mainly consists of two com-
ponents: 1) oine training, and 2) online deployment.

Parameter Value
Discount factor (𝛾) 0.99
Learning rate (𝜖) 0.001

Action scale factor (𝛼) 0.025
History length (𝜂) 10

Landmark objectives # (𝜔) 36
Table 2. Parameter settings

Oline training: Directly training MOCC in real environ-
ment is slow considering the actual time cost in real control
loops of CC with complex network dynamics [8, 26, 44]. To
enable ecient training, we train MOCC in a networking
simulator that faithfully mimics Internet links with various
characteristics. Our simulator is based on OpenAI Gym [6]
and Aurora [26], and further incorporates new design ele-
ments in §4.1–§4.2 that are essential to MOCC, such as the
encapsulation of application requirements as state input and
dynamic reward functions.
The MOCC policy network uses a fully-connected MLP

(Multi-layer perceptron) with two hidden layers of 64 and 32
units, respectively, and tanh activation function to output
the mean and standard deviations of the Gaussian distri-
bution of action. The critic network uses the same neural
network structure to estimate the scalar value function. We
control the entropy factor 𝛽 to decay from 1 to 0.1 over 1000
iterations, and set clipping threshold 𝜖 = 0.2. For the learn-
ing rate, we adopt Adam [30], a famous adaptive learning
rate optimization algorithm, which consistently outperforms
standard SGDmethod. Important training parameter settings
are listed in Table 2. We implement our model architecture
with TensorFlow 1.14.0. For PPO implementation, we use
an open-source implementation of several reinforcement
learning baselines4.
To further accelerate MOCC’s exploration towards op-

timal solutions for massive objectives, in addition to the
two-phase training introduced in §4.2, we also adopt parallel
training. We implemented this architecture using Ray [39]
and RLlib [33] to build the multiple parallel environments.
For compatibility, we leverage Ray API to declare the neural
network during both training and testing.

Online Deployment: After the MOCC model was oine
trained in the simulator, it needs to be online deployed with
the real Internet applications. For better portability, we en-
capsulate all MOCC’s functions into one library. Our library
provides three main functions:
• Register(𝑤). Before using MOCC, we should register
with it by providing the requirement/preference (weight
vector𝑤) of the application.
• ReportStatus(𝑠𝑡). At each time interval, we should re-
port the latest networking status (𝑠𝑡) to MOCC.

4https://github.com/hill-a/stable-baselines
8

Multi-Objective Congestion Control EuroSys ’22, April 5–8, 2022, RENNES, France

• GetSendingRate(). When sending packets, we use this
function to obtain the sending rate calculated by MOCC.

With clean encapsulation, MOCC becomes an easy-to-use
module and can be deployed with any networking datapaths.

In our implementation, we integrateMOCCwith UDT [20]
and CCP [41] to build user-space MOCC and kernel-space
MOCC. UDT is a reliable UDP based application level data
transport protocol for distributed data intensive applications
over wide area high-speed networks. It is a very widely used
user-space implementation [1, 12, 13, 26, 59]. The shim-helper
in UDT interacts with MOCC library to obtain the sending
rate.
CCP is a more general solution and enables congestion

control outside datapath such as Linux kernel networking
stack. CCP can feed the network states from the kernel into
MOCC and enforces the derived control action. We use CCP
to deploy the trained MOCC model in Linux kernel 4.15.0-74-
generic and thus MOCC can support more general-purpose
applications. In §6.3, we use MOCC to support 3 real Inter-
net applications: video streaming, real-time communications
and bulk data transfer, and we will introduce more imple-
mentation details there. Furthermore, we note that MOCC
with CCP achieves much lower CPU overhead than that with
UDT (§6.5).5

6 Evaluation
We evaluate MOCC with extensive simulations as well as
real Internet experiments. Our key results are as follows:

• Multi-objective (§6.1): Compared with a series of heuris-
tic/learning CC algorithms, MOCC demonstrates its multi-
objective performance by competing or outperforming
the best existing schemes in supporting 2 common ob-
jectives: high throughput and low latency applications
(Figure 5), as well as a generalized 100-objective setting
(Figure 6).
• Quick-adaptation (§6.2): Compared with the state-of-
the-art RL CC algorithm Aurora [26], MOCC can adapt to
a new application in 4.8 minutes, 14.2× faster than Aurora
(Figure 7a). Furthermore, MOCC does not compromise
old applications while adapting to the new one, whereas
Aurora does, signicantly (Figure 7b).
• Real Internet applications (§6.3): Among all the al-
gorithms compared, MOCC is the only one that can si-
multaneously provide high bitrate/throughput for video
streaming (Figure 8) and bulk data transfer (Figure 10),
while delivering the lowest inter-packet latency for real-
time communications (Figure 9).

5Currently MOCC leverages CCP to control kernel TCP ows via trans-
ferring states and control actions between kernel and user-space. Fully
implementing MOCC in kernel requires addressing the problem of oat
computing, which is left as future work.

Bandwidth Latency Queue size Loss rate
Training 1-5 Mbps 10-50ms 0-3000 pkts 0-3%
Testing 10-50 Mbps 10-200ms 500-5000 pkts 0-10%

Table 3. Training/testing parameters

• Fairness and Friendliness (§6.4):MOCC with the same
weight achieves fair share (Figure 11, 12), and MOCC vari-
ants with dierent weights grab dierent bandwidth ac-
cording to𝑤𝑒𝑖𝑔ℎ𝑡𝑡ℎ𝑟 (Figure 13). MOCC is friendly among
its own variants (Figure 14) and achieves comparable TCP-
friendliness as other CC schemes (Figure 15).

• Deep-dive (§6.5) into MOCC from dierent aspects such
as hyperparameter setting (Figure 16), CPU overhead (Fig-
ure 17), training speedup (Figure 20) and learning algo-
rithm selection (Figure 19) has validated its design e-
ciency.

Settings: Following §5, we use CCP to deploy our MOCC in
both real Internet and Pantheon [59] emulated environment.
We train MOCC with varied bandwidth, latency, queue size
and loss rate to cover a wide range of network conditions
following the settings of prior works [26, 59]. The key pa-
rameters used in both training and evaluation are shown
in Table 3. In particular, when evaluating MOCC, we use a
much wider parameter range beyond training to show the
robustness of MOCC.

Schemes compared: We compare MOCC with various CC
algorithms, including both handcrafted and learning-based:

1. Aurora [26]: RL based CC algorithm, single-objective
RL, Aurora-throughput and Aurora-latency basically
use two separate models.

2. Orca [1]: RL based CC algorithm, single-objective RL
combined with the classic CC (CUBIC) to achieve low
overhead and high performance.

3. PCC Allegro [12]: learning-based, performs micro ex-
periments to continuously explore and learn the target
sending rate.

4. PCCVivace [13]: learning-based, extends uponAllegro
to achieve better performance.

5. BBR [7]: model-based heuristic, builds an explicit model
based on available bandwidth and RTT, and uses the
model to control congestion window.

6. Copa [4], delay-based heuristic, computes the target
sending rate by estimating minimum delay.

7. TCP CUBIC [21], loss-based heuristic, when packets
are dropped, CUBIC modulates its congestion window
based on a CUBIC function.

8. TCP Vegas [5], delay-based heuristic, uses RTT as
congestion signal and controls congestion window
to maintain desired RTT.

9

EuroSys ’22, April 5–8, 2022, RENNES, France Y. Ma et al.

MOCC

TCP CUBIC

TCP Vegas

BBR

Copa

PCC Allegro

PCC Vivace

Aurora-throughput

Aurora-latency

Orca

Li
nk

 u
til

iz
at

io
n

0
0.2
0.4
0.6
0.8
1.0

Bandwidth (Mbps)
10 20 30 40 50

(a) Varying bandwidth.

Li
nk

 u
til

iz
at

io
n

0.2

0.4

0.6

0.8

1.0

One-way latency (ms)
10 40 70 100 130 160 200

(b) Varying latency.

Li
nk

 u
til

iz
at

io
n

0
0.2
0.4
0.6
0.8
1.0

Random loss rate (%)
0 1 2 3 4 5 6 7 8 9 10

(c) Varying random loss.

Li
nk

 u
til

iz
at

io
n

0.2

0.4

0.6

0.8

1.0

Buffer size (Packets)
500 1500 2500 3500 5000

(d) Varying buer size.

La
te

nc
y

ra
tio

1.0

1.1

1.2

1.3

1.4

Bandwidth (Mbps)
10 20 30 40 50

(e) Varying bandwidth.

La
te

nc
y

ra
tio

1.0

1.5

2.0

2.5

One-way latency (ms)
10 40 70 100 130 160 200

(f) Varying latency.

La
te

nc
y

ra
tio

1.0

1.1

1.2

1.3

Random loss rate (%)
0 1 2 3 4 5 6 7 8 9 10

(g) Varying random loss.

La
te

nc
y

ra
tio

1.0
1.5
2.0
2.5
3.0
3.5

Buffer size (Packets)
500 1500 2500 3500 5000

(h) Varying buer size.

Figure 5. The multi-objective performance of MOCC in terms of throughput (a-d) and latency (e-h), under various network
conditions. Note that the network conditions under evaluation are far beyond the environment where MOCC was trained,
demonstrating both its high performance and robustness when adopted in practice.

6.1 Multi-objective Performance
To evaluate MOCC’s multi-objective performance in sup-
porting dierent application requirements, we compare it
against the above CC algorithms across dierent network
conditions.

2-objective: We rst consider a simple case with two com-
mon objectives: high throughput and low latency. Even so,
as high throughput and low latency typically conict with
each other, it is not easy to achieve both at the same time
in prior solutions (§2.2). However, we show MOCC can
achieve both objectives simultaneously, with weight vectors
®𝑤1 =<0.8, 0.1, 0.1> and ®𝑤2 =<0.1, 0.8, 0.1> respectively6.
The detailed results are shown in Figure 5: (a) to (d) show

the bottleneck link utilization with varied bandwidth, one-
way RTT, loss rate and buer size when the application
prefers high throughput; (e) to (h) show the latency ratio [58]
when the application demands low latency. We have tested
MOCC across a wide range of network conditions and ap-
plications in Figure 5 to show its’ good generalization. In
general, MOCC can compete or outperform the best existing
CC algorithms and show consistent high performance.
First, for hand-crafted CC schemes, MOCC can at least

rival them in one objective and outperform them in the
other, or even both. For example, MOCC achieves compara-
ble throughput as BBR, while delivering up to 18.8% (1.12 to
1.38 in Figure 5(e)) lower latency. Furthermore, MOCC out-
performs CUBIC in both throughput (at least 1.5× from 0.95
to 0.62 in Figure 5(b)) and latency (15% lower from 1.13 to 1.33
in Figure 5(e)). The reason is that handcrafted CC algorithms

6Note that we only used these two particular weight vectors as example,
and any vectors with similar weight settings would work.

generally adopt hardwired policies based on pre-assumptions
of network conditions and human experiences, thus hard
to achieve optimal application-specic performance. In con-
trast, RL-based MOCC explicitly considers network condi-
tions in state input and has been trained across a wide range
of network conditions. Thus it will swiftly respond to the
network and show optimal performance.

Second, we nd that learning-based CC algorithms (non-
RL), such as PCC Vivace and PCC Allegro, which essentially
use online greedy optimization methods, could lead to rel-
atively good performance. Since they avoid the problem of
false pre-assumptions and hardwired mapping, they have
high exibility and robustness. Therefore, they could adapt
to various network conditions. However, they are easy to
trap in local optimum. MOCC uses RL to avoid this problem,
and thus outperforms them with up to 1.43× better through-
put (0.83 to 0.58 in Figure 5(c)) and 63.2% latency reduction
(1.20 to 3.27 in Figure 5(h)) respectively.

Third, we nd that RL-based Aurora/Orca show one-sided
good performance (e.g., Aurora-throughput shows high through-
put along with high latency) from Figure 5(a)5(b). The reason
is that they use single-objective RL, which can only optimize
for a xed objective built through empirical reference, thus
leading to degraded performance. Compared to RL-based
Aurora/Orca, MOCC exceeds Aurora-throughput in terms of
throughput (1.09× from 0.89 to 0.81 in Figure 5(a)) while out-
performing Aurora-latency in terms of latency (7.5% lower
from 1.23 to 1.33 in Figure 5(f)). Default Orca [1] shows sim-
ilar trend except in the random loss case, due partially to
the eect of CUBIC (its heuristic part). These results are ex-
pected because single-objective RL cannot simultaneously
optimize for both throughput and latency. On the contrary,

10

Multi-Objective Congestion Control EuroSys ’22, April 5–8, 2022, RENNES, France

MOCC
Enhanced Aurora
TCP CUBIC
TCP Vegas
BBR
Copa
PCC Allegro
PCC Vivace
Aurora

BetterC
D

F

0

0.5

1.0

Reward0.4 0.5 0.6 0.7 0.8 0.9 1.0

Figure 6. Quantitative CDF of
Multi-Objective rewards for all CC
algorithms compared.

MOCC
Aurora

14.2X faster in convergence

R
ew

ar
d

400

600

800

1000

Iteration0 200 400 600

(a) Quickly adapt to new application

Performance maintained

MOCC new app
MOCC old app
Aurora new app
Aurora old app

Performance compromised

R
ew

ar
d

200

400

600

800

1000

Iteration0 200 400 600

(b) Not compromising old applications

Figure 7. The quick-adaptive property of MOCC. Note that we set the maximum
iteration step to be 1000, so the maximum reward gain is 1000 on y-axis.

MOCC uses multi-objective RL to simultaneously support
both objectives with one model.
The readers may wonder: can we pre-train a few vari-

ants of Aurora/Orca (with dierent weights) to achieve multi-
objective?

Multi-Objective: To answer the above question, we con-
sider amore generalized, uniformly-distributed 100-objective
setting hypothetically. To make our results visually clear, we
unify the performance metrics using reward calculated by
Equation 2. In this experiment, MOCC only used oine
trained model without online adaptation although which
we believe is even better. We enhanced Aurora with 10 pre-
trainedmodels that best suit these 100 objectives (Orca shares
similar property in terms of single-objective RL).
We run MOCC, enhanced-Aurora, and other CC algo-

rithms under 10 dierent network conditions with 100 objec-
tives, resulting in 1000 dierent scenarios. Figure 6 presents
CDFs of rewards of these 1000 cases for all the algorithms
compared. It is evident that MOCC outperforms all other CC
schemes (including enhanced-Aurora) in satisfying various
objectives across dierent network conditions. We nd that
enhanced-Aurora with 10 pre-trained models is secondary to
MOCC, but vanilla Aurora with single model cannot perform
well. The handcrafted heuristics, as expected, cannot well
meet the multi-objective requirements because they are de-
signed with no explicit application requirements in mind and
their control policies are hardwired with pre-assumptions.

6.2 Quick Adaptation
To show how quickly MOCC adapts to new applications, we
compare it against Aurora. We dene the convergence point
as 99% of the maximum reward gain.
Figure 7(a) plots the trend of both algorithms in adapt-

ing to new applications. The x-axis denotes the number of
iterations and y-axis the gained reward. First, we observe
that MOCC achieves 1.8× higher initial performance for a
new application over Aurora. This suggests that by learning
correlations between application requirements and optimal
policies, MOCC can provide moderately good polices for
applications with unseen requirements. Meanwhile, with

transfer learning, such base correlation knowledge brings a
14.2× faster convergence speed (639 down to 45 iterations).
This result conrms that MOCC can quickly adapt to new
applications that have never been trained before, whereas
the single-objective Aurora, without the correlation knowl-
edge, re-trains the model from scratch which takes long time.
After the adaptation, MOCC will respond to the learned ap-
plication quickly with learned policy when it runs again,
without further adaptation thereafter.

Figure 7(b) checks whether MOCCwill degrade the perfor-
mance of old applications while adapting to new ones. To do
so, we snapshot the models of MOCC and Aurora every 8 iter-
ations, and apply them to the old application to compute the
rewards. The curves are illustrative. We observe that MOCC
well preserves the performance of the old application with
reward loss <5%. This is because MOCC has the correlation
model and applies the requirement replay algorithm (§4.3) to
recall the old application during online training. In contrast,
Aurora, as a single-objective CC model, gradually forget the
old application and degrades the performance greatly (916.1
to 156.1) while serving the new application.

6.3 Real Internet Applications
We now showcase the performance of MOCC with 3 real
Internet applications: video streaming, real-time communica-
tions (RTC), and bulk data transfer. For video streaming, we
deploy the video server in AWS Tokyo and fetch the video
chunks by our local browser using residential network at
HKUST. For the RTC, we deploy the real-time video sender
on our residential network and deploy the receiver on our
collaborators’ network (about 15 hops), ensuring that the
video transmits along the real internet. For bulk data transfer,
we perform it in the datacenter environment with 1 Gbps in-
terconnects. These applications have dierent requirements,
and we use a single MOCC model to support all of them.
We use CCP to deploy our MOCC on Linux kernel 4.15.0-
74-generic. We compare it with TCP CUBIC, Vegas and BBR
which are built-in algorithms in Linux Kernel and widely
used in Internet.

11

EuroSys ’22, April 5–8, 2022, RENNES, France Y. Ma et al.

MOCC TCP CUBIC BBR TCP Vegas

Th
r.

(M
bp

s)

2
4
6
8

Time (s)
0 20 40 60 80 100

MOCC TCP CUBIC BBR TCP Vegas

Quality Category

C
ou

nt
.

0

5

10

15

0 1 2 3 4 5 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

Figure 8. Video streaming

MOCC
TCP CUBIC

BBR
TCP Vegas

In
te

r-p
ac

ke
t D

el
ay

 (m
s)

0

10

20

30

Time (s)0 10 20 30 40 50

Figure 9. Real time communications

8.97
8.83

9.56

8.99

MOCC
TCP CUBIC

BBR
TCP Vegas

Fl
ow

 C
om

pl
et

io
n

Ti
m

e
(s

)

8.5

9.0

9.5

10.0

10.5

Category of CC

Figure 10. Bulk data transfer

Video streaming: In this experiment, we deployed a video
streaming server and use ABR algorithm provided by Pen-
sieve [44]. The best practice of MOCC is to choose the most
suitable preference weight vector given by the application
itself. we applied ®𝑤 =<0.8, 0.1, 0.1> for MOCC because video
streaming applications need high throughput and are not
sensitive to latency due to the playback buer. We used our
browser on client to play the video from the server via both
WiFi and wired networks.

The experimental results are shown in Figure 8.We can see
that MOCC continuously outperforms other CC algorithms
in terms of throughput Figure 8 (top). Specically, the aver-
age throughput of MOCC is 91.3% (4.4 to 2.3 Mbps) higher
than Vegas, 33.3% (4.4 to 3.3 Mbps) higher than CUBIC, 29.4%
(4.4 to 3.4 Mbps) higher than BBR. Figure 8 (bottom) shows
the number of chunks with dierent quality levels (higher is
better, level 5 is the best) obtained during video streaming.
The level of chunk obtained is decided by MPC algorithm
and a better networking condition leads to a higher level
of chunks. In our experiment, MOCC can obtain the largest
number of level 5 chunks compared to others (14 in MOCC
vs 9 in BBR, 2 in CUBIC, and 0 in Vegas). The result fur-
ther shows that MOCC can satisfy the requirement of video
streaming application, outperforming the other algorithms.

Real-time communications (RTC): We deployed Sal-
sify (the latest real-time WebRTC) [17] for RTC applica-
tion. We modied Salsify to work with TCP. We applied
®𝑤 =<0.4, 0.5, 0.1> for MOCC because besides throughput,
RTC applications also care about latency to avoid lags. We
used our browser on client side to set up a conference call
with the Salsify server via both WiFi and wired networks.

Figure 9 shows the average inter-packet delay. We observe
that MOCC achieves the lowest inter-packet delay and is
21.1% (3.0 to 3.8 ms) better than BBR, 63.1% (3.0 to 7.9 ms)
than CUBIC and 26.8% (3.0 to 4.1 ms) than Vegas. The result
suggests MOCC can deliver the best performance to RTC
applications by keeping low inter-packet delay.

Bulk data transfer: For bulk data transfer, we connected a
server and a client by a switch and sent large le via Python.
As the le transfer is throughput-hungry, we greedily applied

®𝑤 =<1, 0, 0> for MOCC. We transfer a 100MB le for 50
times. We also add a random loss rate of 0.5% to the links to
emulate background trac interference.
Figure 10 shows the results. Compared to others, MOCC

achieves the lowest average le transfer completion time and
is 1.56% (8.83 to 8.97 ms) lower than CUBIC, 1.78% (8.83 to
8.99 ms) lower than BBR and 7.63% (8.83 to 9.56 ms) than Ve-
gas. Besides, MOCC maintains the most stable performance,
and the standard deviation of these 50 measurements is 0.096,
while BBR is 0.154, CUBIC 0.123 and Vegas 0.421, respec-
tively. This result shows that MOCC can provide consistent
high bandwidth to throughput-intensive applications.
6.4 Fairness and Friendliness
To evaluate the fairness and friendliness of MOCC, we com-
pare MOCC with other CC schemes using Pantheon [59].
Fairness considers the scenarios where all ows use the same
CC scheme, and friendliness considers those with dierent
CC schemes (including MOCC with dierent weights).

Fairness: We use a canonical setting for evaluating fairness:
several ows use the same CC scheme to share a bottleneck
link in a dumbbell topology. The link is congured with
12Mbps bandwidth, 20ms RTT and 1 × BDP buer, and three
ows initiates sequentially with a 100s interval. Figure 11
shows the throughput of dierent ows for each scheme. As
expected, MOCC (with the same weight) allocates bandwidth
fairly between competing ows. Furthermore, it also achieves
fast convergence, because it adjusts the sending rate with a
multiplicative factor as dened in Equation 1.

We also use the Jain’s fairness index [25] to quantitatively
compare the fairness of dierent schemes for the same setup.
A close-to-1 value indicates better fairness. We compute the
Jain’s fairness index for each second for each scheme, and
we also include three variants of MOCC congured with
dierent weights. Figure 12 shows the CDF curve. From the
gure, we conrm that: 1) MOCC achieves better fairness
compared to other CC schemes in general, and 2) its fairness
is irrespective of its weight conguration.

Friendliness: Then we consider MOCC’s fairness in compe-
tition with existing algorithms. We rst evaluate the friend-
liness of MOCC with dierent weights. The setup has two

12

Multi-Objective Congestion Control EuroSys ’22, April 5–8, 2022, RENNES, France

MOCC

Th
r.(

M
bp

s)

0

3

6

9

12

Time (s)
0 100 200 300

Orca

Th
r.(

M
bp

s)

0

3

6

9

12

Time (s)
0 100 200 300

Vivace

Th
r.(

M
bp

s)

0

3

6

9

12

Time (s)
0 100 200 300

Aurora

Th
r.(

M
bp

s)

0

3

6

9

12

Time (s)
0 100 200 300

TCP Cubic

Th
r.(

M
bp

s)

0

3

6

9

12

Time (s)
0 100 200 300

TCP Vegas
Th

r.(
M

bp
s)

0

3

6

9

12

Time (s)
0 100 200 300

BBR

Th
r.(

M
bp

s)

0

3

6

9

12

Time (s)
0 100 200 300

Copa

Th
r.(

M
bp

s)

0

3

6

9

12

Time (s)
0 100 200 300

Figure 11. Throughput dynamics of dierent ows competing one link for various
CC

TCP Cubic
Vivace
MOCC-Thoughput

TCP Vegas
Copa
MOCC-Latency

BBR
Aurora
MOCC-Balance

C
D

F

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Jain Fairness Index
0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Figure 12. CDF of Jain Fairness Index
under dynamics of ows.

MOCC-Thoughput
MOCC-Balance

(a)

Th
r.

(M
bp

s)

0

10

20

Time(s)0 10 20 30

MOCC-Throughput
MOCC-Latency

(b)

Th
r.(
M
bp
s)

0

10

20

Time(s)
0 10 20 30

MOCC-Latency
MOCC-Balance

(c)

Th
r.

(M
bp

s)

0

10

20

Time(s)
0 10 20 30

TCP CUBIC
TCP Vegas

(d)

Th
r.

(M
bp

s)

0

10

20

Time(s)
0 10 20 30

Figure 13. Throughput of MOCC ows
with dierent weights

More Friendly

More Aggressive

w1:<0.8,0.1,0.1>
w4:<0.2,0.4,0.4>

w2:<0.6,0.3,0.1>
w5:<0.1,0.8,0.1>

w3:<0.5,0.3,0.2>
w6:<0.1,0.1,0.8>

Th
ro

ug
hp

ut
 R

at
io

0.4
0.5
0.6

0.8
1.0
1.2
1.5

2.0

RTT (ms)10 20 30 40 50 60 70 80

Figure 14. Friendliness ratio of MOCC
under dierent weights

TCP CUBIC
Vivace
MOCC-Thoughput

TCP Vegas
Copa
MOCC-Latency

BBR
Aurora
MOCC-Balance

Fr
ie

nd
lin

es
s

R
at

io

0.1
0.2
0.3
0.5
1.0
1.5
2.5
5.0

RTT(ms)
20 40 60 80 100 120

Figure 15. Friendliness ratio of schemes
across dierent RTTs

ows sharing a bottleneck link of 20Mbps bandwidth, 20ms
RTT and 1×BDP buer. We use three MOCC variants, which
areMOCC-Throughput,MOCC-Balance, andMOCC-Latency.
Figure 13(a)(b)(c) show pairwise competitions of the three
variants. These MOCC variants are technically dierent CC
schemes, and a variant with a larger 𝑤𝑒𝑖𝑔ℎ𝑡𝑡ℎ𝑟 would be
more aggressive to get more bandwidth. For comparison,
Figure 13(d) shows the result for a TCP Cubic ow vs. a TCP
Vegas ow.

MOCC is friendly in the sense that no MOCC ow will
grab all bandwidth when multiple MOCC ows with dier-
ent weights co-exist. This is because all MOCC ows share
one objective framework, which is guaranteed to converge to
a stable rate conguration [23]. We performed another sim-
ulation to further demonstrate this point with more MOCC
variants in Figure 14. We x the bandwidth to 20Mbps and
change the RTT from 10ms–90ms. The results show that the
throughput ratio varies between 0.43–2.04, which conrms
the friendliness of MOCC under dierent weights.

Finally, we evaluate the friendliness of MOCC with other
TCP schemes. We use a common setup that has two ows
competing one link. Following the convention of friendliness
evaluation in prior work [1, 13], we x TCP Cubic as the
target CC scheme of one ow, and vary the CC scheme of the
other ow to compare between them.We use the friendliness
ratio as themetric, which is dened by 𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑦−𝑟𝑎𝑡𝑒−𝑜 𝑓 −𝐶𝐶−𝑠𝑐ℎ𝑒𝑚𝑒

𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑦−𝑟𝑎𝑡𝑒−𝑜 𝑓 −𝐶𝑢𝑏𝑖𝑐−𝑓 𝑙𝑜𝑤 .
Figure 15 reports the friendliness ratios of dierent schemes.
The results indicate that MOCC-Throughput is more ag-
gressive in obtaining bandwidth, and MOCC-Balance and

MOCC-Latency are more friendly to TCP Cubic. In general,
MOCC is comparable to other CC schemes in friendliness.

6.5 MOCC Deep Dive
Finally, we deep-dive into MOCC from some other aspects,
including hyperparameter setting, CPU overhead, and train-
ing speedup.

Hyperparameter setting: We explore several key hyperpa-
rameters that may aect the eectiveness of MOCC, i.e., the
learning-related parameters in Table 2. For history length (𝜂)
and discount factor (𝛾), we performed an exhaustive search
and obtain similar results with [26]. For learning rate 𝜖 , we
followed the default value suggested in stable-baseline’s
PPO [47], and we also tried several dierent values and found
that 𝜖 = 0.001 indeed leads to fast convergence. For the re-
maining, we discuss the number of pre-grained objective
weight vectors (𝜔) that is unique to MOCC.

The parameter 𝜔 causes the tradeo between the quality
of base model and the time cost of training. A larger𝜔 brings
better model quality but also increases the training time. To
understand the tradeo, we pre-train MOCC with dierent
𝜔 to study its performance as well as training time. Figure 16
(top) shows the CDF of rewards of MOCC with dierent
number of pre-trained objectives. In general, we can see
that the model quality improves as 𝜔 increases7, all the way
until 𝜔 = 36. We nd that 𝜔 = 36 has comparable quality
as 𝜔 = 171, both are within 0.82 to 0.96, outperforming
𝜔 = 3, 6, 12 by 3×, 1.5×, 1.2× on average. Meanwhile, the

7We vary the step size of the objective weight vectors in terms of 1/4, 1/5,
1/6, 1/10, 1/20 leading to 𝜔 = 3, 6, 12, 36, 171.

13

EuroSys ’22, April 5–8, 2022, RENNES, France Y. Ma et al.

ω=3
ω=6
ω=10
ω=36
ω=171

C
D
F

0

0.5

1.0

Reward0.2 0.4 0.6 0.8 1.0

Figure 16. Hyperparameter
setting (𝜔)

Cubic Orca Vegas BBR MOCC
Kernel

VivaceAuroraMOCC
UDT

Cubic
Orca
Vegas
BBR

MOCC-Kernel
Vivace
Aurora
MOCC-UDT

Av
g

C
PU

 U
til

iz
at

io
n

0

20

40

60

80

Figure 17. CPU Overhead
of dierent CC schemes

training time of 𝜔 = 36 is 5.2 hours, much shorter than
𝜔 = 171 (28.2 hours) and reasonably longer time than 𝜔 = 6
(2.6 hours). As a result, in this paper we set 𝜔 = 36.

Overhead: We evaluate the overhead of MOCC by send-
ing trac on a 40Mbps link with 20ms RTT and 1 × BDP
buer. We use taskset to allocate processes to one CPU and
report CPU utilization by htop. We exclude the rst and the
last few seconds for fair comparison. Results in Figure 17
show that User-space MOCC has high overhead similar to
Aurora, because MOCC agent repeats model inference in
each time interval similar to Aurora. Kernel-space MOCC
achieves much lower overhead as Orca [1], because with
CCP, the algorithm logic is isolated from the data-path. This
decoupling provides CC feedback less frequently and signif-
icantly reduces the CPU utilization. Nevertheless, how to
reduce the computation overhead of RL-based CC algorithms
is still a challenge and may require a renement of the model
architecture and learning process, which we leave for the
future work.

Learning algorithm selection and Training speedup
are left in Appendix C for space limitation.

7 Discussion & Future Directions

Expressing application requirements: In MOCC, an ap-
plication expresses its requirement as a weight vector over
several network-level metrics (e.g.,throughput, latency and
packet loss rate), and MOCC trains a model to optimize for
the vector. The reason we choose throughput, latency and
loss as the three objectives is that they are themost important
and common metrics in congestion control. Yet, applications
care about application-level objectives, which may not be
directly mapped to a weight vector of network-level metrics.
It’s practical for one application to set its own objective for
some specic requirements (e.g. friendliness, jitter) and build
their own Multi-objective Congestion Control system. They
need to retrain the whole model under the new object setting.
In that way, the model architecture and training scheme in
MOCC still work for building and training procedure.
Meanwhile, at a high level, the objective weights should

be set based on the application-level objectives, e.g., real-
time applications should give a higher weight to latency,
and bandwidth-intensive applications should give a higher

weight to throughput. But how to optimally set the weights
to best express an application’s requirement still requires
human expertise and domain knowledge. We envision a
learning-based approach, which learns the mapping from an
application-level objective to a weight vector, can be applied
to automate this process and reduce human eorts.

Model sharing and Federated learning: For an unseen ap-
plication, MOCC leverages transfer learning to quickly adapt
its model to the new application. Another device may have
already run this application and trained a model to optimize
the performance. If dierent devices can share their mod-
els, it would further reduce the adaptation time for MOCC.
However, sharing models may raise privacy concerns as a
trained model may unexpectedly leak a user’s trac pat-
tern and network condition, which could be further used
to reveal the user’s other sensitive information. This setup
is similar to federated learning where a model is trained
across multiple decentralized devices. ExtendingMOCCwith
privacy-preserving federated learning is an interesting fu-
ture direction.

Towards a general multi-objective framework for net-
working: While we focus on congestion control in this
paper, we believe the framework behind MOCC is more
generic and can be applied to a wide range of networking
problems [8, 34, 44, 55]. This framework is particularly rele-
vant given the recent proposals that leverage reinforcement
learning to solve networking problems and demonstrate su-
perior performance over traditional heuristics. For example,
it can be applied to NeuroCuts [34] to learn to build packet
classication trees with multiple objectives on classication
time and memory footprint, and be applied to Pensieve [44]
to learn adaptive bitrate algorithms with dierent Quality of
Experience (QoE) metrics.

8 Conclusion
This paper established a multi-objective congestion control
(MOCC) framework that enables one single CC algorithm
to eectively support multiple application requirements. To
enable multi-objective, MOCC constructs its policy network
with a preference sub-network that correlates application
requirements with optimal rate control policies. Further-
more, it exploits transfer learning to adapt MOCC to any
new applications quickly in an online manner. Extensive
simulations and real Internet experiments have shown that
MOCC achieves all its design goals.

Acknowledgment
This work is supported in part by the Hong Kong RGC TRS
T41-603/20-R, GRF-16215119, GRF-16213621, and the Na-
tional Natural Science Foundation of China (NSFC) under
Grant 62172008. We thank our shepherd Mihai Budiu and
the anonymous reviewers for their constructive feedback
and suggestions. Kai Chen is the corresponding author.

14

Multi-Objective Congestion Control EuroSys ’22, April 5–8, 2022, RENNES, France

References
[1] Soheil Abbasloo, Chen-Yu Yen, and H Jonathan Chao. 2020. Classic

meets modern: a pragmatic learning-based congestion control for the
internet. In Proceedings of the Annual conference of the ACM Special
Interest Group on Data Communication on the applications, technologies,
architectures, and protocols for computer communication. 632–647.

[2] Axel Abels, Diederik Roijers, Tom Lenaerts, Ann Nowé, and Denis
Steckelmacher. 2019. Dynamic Weights in Multi-Objective Deep Rein-
forcement Learning. In International Conference on Machine Learning.
11–20.

[3] Axel Abels, Diederik M Roijers, Tom Lenaerts, Ann Nowé, and De-
nis Steckelmacher. 2018. Dynamic Weights in Multi-Objective Deep
Reinforcement Learning. arXiv preprint arXiv:1809.07803 (2018).

[4] Venkat Arun and Hari Balakrishnan. 2018. Copa: Practical delay-based
congestion control for the internet. In 15th {USENIX} Symposium on
Networked Systems Design and Implementation ({NSDI} 18). 329–342.

[5] Lawrence S Brakmo, SeanWO’Malley, and Larry L Peterson. 1994. TCP
Vegas: New techniques for congestion detection and avoidance. Number 4.
ACM.

[6] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider,
John Schulman, Jie Tang, and Wojciech Zaremba. 2016. OpenAI gym.
arXiv preprint arXiv:1606.01540 (2016).

[7] Neal Cardwell, Yuchung Cheng, C Stephen Gunn, Soheil Hassas
Yeganeh, and Van Jacobson. 2016. BBR: Congestion-based conges-
tion control. Queue 14, 5 (2016), 20–53.

[8] Li Chen, Justinas Lingys, Kai Chen, and Feng Liu. 2018. Auto: Scaling
deep reinforcement learning for datacenter-scale automatic trac
optimization. In Proceedings of the 2018 Conference of the ACM Special
Interest Group on Data Communication. 191–205.

[9] Xi Chen, Ali Ghadirzadeh, Mårten Björkman, and Patric Jensfelt. 2018.
Meta-Learning for Multi-objective Reinforcement Learning. arXiv
preprint arXiv:1811.03376 (2018).

[10] Yan Chen, Toni Farley, and Nong Ye. 2004. QoS requirements of
network applications on the Internet. Information Knowledge Systems
Management 4, 1 (2004), 55–76.

[11] Ron Davies. 2016. 5G Network Technology: Putting Europe at the Leading
Edge. EPRS, European Parliamentary Research Service, Members’
Research Service.

[12] Mo Dong, Qingxi Li, Doron Zarchy, P Brighten Godfrey, and Michael
Schapira. 2015. {PCC}: Re-architecting Congestion Control for Con-
sistent High Performance. In 12th {USENIX} Symposium on Networked
Systems Design and Implementation ({NSDI} 15). 395–408.

[13] Mo Dong, Tong Meng, Doron Zarchy, Engin Arslan, Yossi Gilad,
Brighten Godfrey, and Michael Schapira. 2018. {PCC} Vivace: Online-
Learning Congestion Control. In 15th {USENIX} Symposium on Net-
worked Systems Design and Implementation ({NSDI} 18). 343–356.

[14] James Durward, Jonathan Levine, Michael Nemeth, Jerry Prettegiani,
and Ian T Tweedie. 1997. Virtual reality network with selective distri-
bution and updating of data to reduce bandwidth requirements. US
Patent 5,659,691.

[15] Sally Floyd, Tom Henderson, Andrei Gurtov, et al. 1999. The NewReno
modication to TCP’s fast recovery algorithm. (1999).

[16] François Fluckiger. 1995. Understanding networked multimedia: appli-
cations and technology. Prentice Hall International (UK) Ltd.

[17] Sadjad Fouladi, John Emmons, Emre Orbay, Catherine Wu, Riad S
Wahby, and Keith Winstein. 2018. Salsify: low-latency network video
through tighter integration between a video codec and a transport
protocol. In 15th {USENIX} Symposium on Networked Systems Design
and Implementation ({NSDI} 18). 267–282.

[18] Borko Furht. 2011. Handbook of augmented reality. Springer Science
& Business Media.

[19] Yun Gao, Xin Wei, and Liang Zhou. 2020. Personalized QoE improve-
ment for networking video service. IEEE Journal on Selected Areas in
Communications 38, 10 (2020), 2311–2323.

[20] Yunhong Gu and Robert L Grossman. 2007. UDT: UDP-based data
transfer for high-speed wide area networks. Computer Networks 51, 7
(2007), 1777–1799.

[21] Sangtae Ha, Injong Rhee, and Lisong Xu. 2008. CUBIC: a new TCP-
friendly high-speed TCP variant. ACM SIGOPS operating systems
review 5 (2008), 64–74.

[22] MatthewHausknecht and Peter Stone. 2015. Deep recurrent q-learning
for partially observable mdps. In 2015 AAAI Fall Symposium Series.

[23] Elad Hazan. 2019. Introduction to online convex optimization. arXiv
preprint arXiv:1909.05207 (2019).

[24] Liangyu Huo, Zulin Wang, Mai Xu, Yong Li, Zhiguo Ding, and Hao
Wang. 2019. A Meta-Learning Framework for Learning Multi-User
Preferences in QoE Optimization of DASH. IEEE Transactions on
Circuits and Systems for Video Technology 30, 9 (2019), 3210–3225.

[25] Raj Jain, Arjan Durresi, and Gojko Babic. 1999. Throughput fairness
index: An explanation. In ATM Forum contribution, Vol. 99.

[26] Nathan Jay, Noga Rotman, Brighten Godfrey, Michael Schapira, and
Aviv Tamar. 2019. A Deep Reinforcement Learning Perspective on
Internet Congestion Control. In International Conference on Machine
Learning ICML. 3050–3059.

[27] Cheng Jin, David X Wei, and Steven H Low. 2004. FAST TCP: motiva-
tion, architecture, algorithms, performance. In IEEE INFOCOM 2004,
Vol. 4. IEEE, 2490–2501.

[28] Gunnar Karlsson. 1996. Quality requirements for multimedia network
services. In Proceedings of Radiovetenskap ach kommunikation. 96–100.

[29] Nicholas D Kenyon and C Nightingale. 1992. Audiovisual telecommu-
nications. Chapman & Hall, Ltd.

[30] Diederik P Kingma and Jimmy Ba. 2014. Adam: Amethod for stochastic
optimization. arXiv preprint arXiv:1412.6980 (2014).

[31] AdamLangley, Alistair Riddoch, AlyssaWilk, Antonio Vicente, Charles
Krasic, Dan Zhang, Fan Yang, Fedor Kouranov, Ian Swett, Janardhan
Iyengar, Je Bailey, Jeremy Dorfman, Jim Roskind, Joanna Kulik, Patrik
Westin, Raman Tenneti, Robbie Shade, Ryan Hamilton, Victor Vasiliev,
Wan-Teh Chang, and Zhongyi Shi. 2017. The QUIC Transport Protocol:
Design and Internet-Scale Deployment. In ACM SIGCOMM.

[32] Kaiwen Li, Tao Zhang, and RuiWang. 2019. Deep Reinforcement Learn-
ing for Multi-objective Optimization. arXiv preprint arXiv:1906.02386
(2019).

[33] Eric Liang, Richard Liaw, Robert Nishihara, Philipp Moritz, Roy Fox,
Joseph Gonzalez, Ken Goldberg, and Ion Stoica. 2017. Ray rllib: A
composable and scalable reinforcement learning library. arXiv preprint
arXiv:1712.09381 (2017).

[34] Eric Liang, Hang Zhu, Xin Jin, and Ion Stoica. 2019. Neural packet
classication. In Proceedings of the ACM Special Interest Group on Data
Communication. 256–269.

[35] Chunming Liu, Xin Xu, and Dewen Hu. 2014. Multiobjective rein-
forcement learning: A comprehensive overview. IEEE Transactions on
Systems, Man, and Cybernetics: Systems 45, 3 (2014), 385–398.

[36] Chunming Liu, Xin Xu, and Dewen Hu. 2014. Multiobjective rein-
forcement learning: A comprehensive overview. IEEE Transactions on
Systems, Man, and Cybernetics: Systems 45, 3 (2014), 385–398.

[37] Simone Mangiante, Guenter Klas, Amit Navon, Zhuang GuanHua, Ju
Ran, and Marco Dias Silva. 2017. Vr is on the edge: How to deliver 360
videos in mobile networks. In Proceedings of the Workshop on Virtual
Reality and Augmented Reality Network. 30–35.

[38] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex
Graves, Timothy Lillicrap, Tim Harley, David Silver, and Koray
Kavukcuoglu. 2016. Asynchronous methods for deep reinforcement
learning. In International conference on machine learning. 1928–1937.

[39] Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov,
Richard Liaw, Eric Liang, Melih Elibol, Zongheng Yang, William Paul,
Michael I Jordan, et al. 2018. Ray: A distributed framework for emerg-
ing {AI} applications. In 13th {USENIX} Symposium on Operating
Systems Design and Implementation ({OSDI} 18). 561–577.

15

EuroSys ’22, April 5–8, 2022, RENNES, France Y. Ma et al.

[40] Hossam Mossalam, Yannis M Assael, Diederik M Roijers, and Shimon
Whiteson. 2016. Multi-objective deep reinforcement learning. arXiv
preprint arXiv:1610.02707 (2016).

[41] Akshay Narayan, Frank Cangialosi, Deepti Raghavan, Prateesh Goyal,
Srinivas Narayana, Radhika Mittal, Mohammad Alizadeh, and Hari
Balakrishnan. 2018. Restructuring endpoint congestion control. In
Proceedings of the 2018 Conference of the ACM Special Interest Group
on Data Communication. ACM, 30–43.

[42] Sriraam Natarajan and Prasad Tadepalli. 2005. Dynamic preferences
in multi-criteria reinforcement learning. In Proceedings of the 22nd
international conference on Machine learning. 601–608.

[43] J-P Nussbaumer, Baiju V. Patel, Frank Schaa, and James P. G. Sterbenz.
1995. Networking requirements for interactive video on demand. IEEE
Journal on Selected Areas in Communications 13, 5 (1995), 779–787.

[44] S Tejaswi Peesapati, Victoria Schwanda, Johnathon Schultz, Matt Lep-
age, So-yae Jeong, and Dan Cosley. 2010. Pensieve: supporting every-
day reminiscence. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems. ACM, 2027–2036.

[45] Tom Schaul, Daniel Horgan, Karol Gregor, and David Silver. 2015.
Universal value function approximators. In International conference on
machine learning. 1312–1320.

[46] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and
Philipp Moritz. 2015. Trust region policy optimization. In International
conference on machine learning. 1889–1897.

[47] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and
Oleg Klimov. 2017. Proximal policy optimization algorithms. arXiv
preprint arXiv:1707.06347 (2017).

[48] Regina Melo Silveira, Cíntia Borges Margi, LG Gonzalez, E Favero,
OD Vilcachagua, Graça Bressan, and Wilson Vicente Ruggiero. 1999.
A Multimedia on Demand System for Distance Education. In In-
ternational Conference on Technology and Distance Education, Fort
Lauderdale-Florida.

[49] Anirudh Sivaraman, Keith Winstein, Pratiksha Thaker, and Hari Bal-
akrishnan. 2014. An experimental study of the learnability of conges-
tion control. In ACM SIGCOMM Computer Communication Review.

[50] Richard S Sutton, Andrew G Barto, et al. 1998. Introduction to rein-
forcement learning. Vol. 135. MIT press Cambridge.

[51] Richard S Sutton, Andrew G Barto, et al. 1998. Introduction to rein-
forcement learning. Vol. 2. MIT press Cambridge.

[52] Bohdan O Szuprowicz. 1995. Multimedia networking. McGraw-Hill,
Inc.

[53] Kun Tan, Jingmin Song, Qian Zhang, and Murari Sridharan. 2006. A
compound TCP approach for high-speed and long distance networks.
In Proceedings IEEE INFOCOM 2006. 25TH IEEE International Conference
on Computer Communications. IEEE, 1–12.

[54] Matthew E Taylor and Peter Stone. 2009. Transfer learning for rein-
forcement learning domains: A survey. Journal of Machine Learning
Research 10, Jul (2009), 1633–1685.

[55] Mowei Wang, Yong Cui, Shihan Xiao, Xin Wang, Dan Yang, Kai Chen,
and Jun Zhu. 2018. Neural network meets DCN: Trac-driven topol-
ogy adaptation with deep learning. Proceedings of the ACM on Mea-
surement and Analysis of Computing Systems 2, 2 (2018), 1–25.

[56] CC White. 2001. Markov decision processes. Springer.
[57] Keith Winstein and Hari Balakrishnan. 2013. Tcp ex machina:

Computer-generated congestion control. ACM SIGCOMM Computer
Communication Review 43, 4 (2013), 123–134.

[58] Keith Winstein, Anirudh Sivaraman, and Hari Balakrishnan. 2013. Sto-
chastic forecasts achieve high throughput and low delay over cellular
networks. In Presented as part of the 10th {USENIX} Symposium on
Networked Systems Design and Implementation ({NSDI} 13). 459–471.

[59] Francis Y Yan, Jestin Ma, Greg D Hill, Deepti Raghavan, Riad S Wahby,
Philip Levis, and Keith Winstein. 2018. Pantheon: the training ground
for Internet congestion-control research. In 2018 {USENIX} Annual
Technical Conference ({USENIX}{ATC} 18).

[60] Runzhe Yang, Xingyuan Sun, and Karthik Narasimhan. 2019. A Gen-
eralized Algorithm for Multi-Objective Reinforcement Learning and
Policy Adaptation. In Advances in Neural Information Processing Sys-
tems. 14610–14621.

[61] Gaoxiong Zeng, Wei Bai, Ge Chen, Kai Chen, Dongsu Han, Yibo Zhu,
and Lei Cui. 2019. Congestion control for cross-datacenter networks.
In 2019 IEEE 27th International Conference on Network Protocols (ICNP).
IEEE, 1–12.

[62] Gaoxiong Zeng, Jianxin Qiu, Yifei Yuan, Hongqiang Liu, and Kai Chen.
2021. FlashPass: Proactive Congestion Control for Shallow-buered
WAN. In 2021 IEEE 29th International Conference on Network Protocols
(ICNP). IEEE, 1–12.

Appendix
A Background on Multi-Objective RL
We briey review multi-objective reinforcement learning
(MORL) techniques [2, 36, 40, 45, 60] we used in this paper.
In particular, we introduce two design choices and two
enhancements in order to adopt MORL for the problem
of MOCC. To the best of our knowledge, MOCC is the rst
work to solve the multi-objective CC problem by adopting
the MORL framework. We make the following two design
choices.

We use multiple-policy approach to optimize for each
application preference rather than average preference
of all applications. Existing MORL algorithms can be di-
vided into two groups: single-policy approaches andmultiple-
policy approaches [36]. While single-policy approaches learn
a single policy to optimize the average performance among
dierent objectives, multiple-policy approaches learn and
maintain a set of optimal policies. A general method adopted
by multiple-policy approaches is to collect policies by run-
ning standard RL algorithm over dierent preferences [42].
To simultaneously support multiple existing applications
and quickly adapt to new arrival applications while not com-
promise the performance of old applications, MOCC adopts
multiple-policy approach to learn and maintain multiple
policies for every application requirement.

Weuse policy-based rather than value-based algorithms
to optimize for CC where the decision space is contin-
uous instead of discrete. The training approach for RL
can be divided into two groups: value-based approaches and
policy-based approaches. Value-based approaches estimate
the value of each state, and take action with highest value
estimation. Policy-based approaches directly learn the opti-
mal policy for the task. Generally, policy-based algorithms
outperform value-based ones for continuous control prob-
lems because policy models can directly output continuous
action [47]. Recent MORL algorithms are all value-based
approaches [2, 45, 60]. However, to better t the continuous
property of the sending rate in CC, MOCC adopts policy-
based algorithm PPO and transfers MORL structures from
value-based to policy-based.

16

Multi-Objective Congestion Control EuroSys ’22, April 5–8, 2022, RENNES, France

Convex Coverage Set
Model Performance

1

1

1

2

2

2

2

wthr

wlat
Figure 18. The illustration of how MOCC’s performance
is improved during the two-phase oine training on the
preference space. For the rst bootstrapping phase, MOCC
learns the optimal policies on a few pivot points. Transferred
from these learned policies, we iterate on other objectives
in a neighborhood-based way (§4.2) to improve the overall
performance in the fast traversal phase.

Besides, based on the above design choices, we also make
following two enhancements towards MORL:

Enhance PPO with requirement replay learning algo-
rithm in order not to compromise performance of old
applications. DQN-based Conditional Network (CN) pro-
posed in [2] adopts new training policy to adapt to new policy
as well as maintain previously learned policies. Based on it,
we design the requirement replay learning mechanism for
PPO during online learning (§4.3) to recall old applications.

Enhance MORL training with transfer learning to ac-
celerate training speed. Furthermore, with the prospect
shown in [45] of using transfer learning to solve new ob-
jective faster from similar learned objectives, we design the
two-phase oine training scheme with the neighbourhood-
based algorithm (§4.2) to unleash the full power of transfer
learning and signicantly speedup our training (§6.5).

B Two-phase oline training illustration
We use Figure 18 to illustrate why the two-phase training
can eectively accelerate the training. Here we only consider
the two-dimensional preference space with two performance
metrics, throughput and latency, for visual simplicity. Each
point in this gure shows a certain objective (a combination
of throughput and latency requirements) and the distance to
the origin point shows the eectiveness (i.e., how optimally
the model can act) of the model.
The dashed curve is convex converge set (CCS), which

represents the optimal solution of the task. The solid curve
represents the eectiveness of our model. The goal of train-
ing is to make the eectiveness (solid line) of our model to
approach the optimality (dash line).

After the bootstrapping phase, we have a set of solutions
for certain set of objectives, shown as pivot points in the
gure. These points are: 1) uniformly distributed, and 2) very
close to optimality. The training is also fast because the set is
small. Then, in the fast traversing phase, we will determine
the rest of the points. Because we already have those pivot
points, we can have a very good starting point during train-
ing and the eectiveness will not be far away from optimality.
Meanwhile, the training can be eectively accelerated by
using the information provided by pivot points.

C Deep Dive: Additional Results

MOCC-PPO
MOCC-DQN

C
D
F

0

0.5

1.0

Reward0.2 0.4 0.6 0.8 1.0

Figure 19. Comparison between learning algorithms

Learning algorithm selection: In this paper, we chose
the PPO algorithm as our RL algorithm. An alternative ap-
proach is Q-learning [51]. In this experiment, we compare
both algorithms to revisit the design decision of using PPO.
For this purpose, we implemented a Q-learning version of
MOCC, MOCC-DQN. Figure 19 compares MOCC-PPO with
MOCC-DQN. We observe that MOCC-PPO signicantly out-
performs MOCC-DQN by achieving 3× more rewards on
average. The reason is that for CC problems, the sending
rate is a continuous value. However, Q-learning scales poorly
with the continuous action space, causing sub-optimal per-
formance. On the contrary, PPO is able to output continuous
action values. So we select PPO to enable a more ne-grained
rate control policy.

Training speedup: We evaluate the eectiveness of our
training speedup techniques, including both neighborhood-
based transfer learning strategy and parallel training. We
trainMOCC in threeways. First, we treat each single-objective
as a standard RL subproblem and train them separately. Sec-
ond, we use two-phase trainingwith neighbourhood-transfer
method (§4.2), without parallel training. Third, based on the
second one, we add parallel training. The results are shown
in Figure 20. We observe that through transferring across
neighbor objectives, we reduce the training time by 18× (6
days 7.2 hours to 8.4 hours), which validates that transfer
learning can signicantly accelerate the training. In addition,

17

EuroSys ’22, April 5–8, 2022, RENNES, France Y. Ma et al.

Individual Training
Transfer Learning
Transfer & Parallel Training

9072

504 126

18 × 72 ×

Tr
ai

ni
ng

 T
im

e
(m

in
)

0

2×103

4×103

6×103

8×103

104

Different Training Methods

Figure 20. Training speedup techniques

we nd parallel training can further speedup the training by
4× (8.4 to 2.1 hours).

18

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Diverse Application Requirements
	2.2 In Pursuit of Multi-Objective CC
	2.3 Design Goals

	3 Multi-Objective Learning for CC
	4 Design
	4.1 Model Architecture
	4.2 Offline Training
	4.3 Online Adaptation

	5 Implementation
	6 Evaluation
	6.1 Multi-objective Performance
	6.2 Quick Adaptation
	6.3 Real Internet Applications
	6.4 Fairness and Friendliness
	6.5 MOCC Deep Dive

	7 Discussion & Future Directions
	8 Conclusion
	References
	A Background on Multi-Objective RL
	B Two-phase offline training illustration
	C Deep Dive: Additional Results

