
This paper is included in the Proceedings of the
12th USENIX Symposium on Networked Systems

Design and Implementation (NSDI ’15).
May 4–6, 2015 • Oakland, CA, USA

ISBN 978-1-931971-218

Open Access to the Proceedings of the
12th USENIX Symposium on

Networked Systems Design and
Implementation (NSDI ’15)

is sponsored by USENIX

Information-Agnostic Flow Scheduling for
Commodity Data Centers

Wei Bai, Li Chen, and Kai Chen, The Hong Kong University of Science and Technology;
Dongsu Han, Korea Advanced Institute of Science and Technology (KAIST); Chen Tian,
Nanjing University; Hao Wang, The Hong Kong University of Science and Technology

https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/bai

USENIX Association 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15) 455

Information-Agnostic Flow Scheduling for Commodity Data Centers

Wei Bai1, Li Chen1, Kai Chen1, Dongsu Han2, Chen Tian3, Hao Wang1

1SING Group @ HKUST 2KAIST 3Nanjing Univ.

Abstract
Many existing data center network (DCN) flow schedul-
ing schemes minimize flow completion times (FCT)
based on prior knowledge of flows and custom switch
functions, making them superior in performance but hard
to use in practice. By contrast, we seek to minimize FCT
with no prior knowledge and existing commodity switch
hardware.

To this end, we present PIAS1, a DCN flow schedul-
ing mechanism that aims to minimize FCT by mimick-
ing Shortest Job First (SJF) on the premise that flow
size is not known a priori. At its heart, PIAS lever-
ages multiple priority queues available in existing com-
modity switches to implement a Multiple Level Feed-
back Queue (MLFQ), in which a PIAS flow is gradual-
ly demoted from higher-priority queues to lower-priority
queues based on the number of bytes it has sent. As a
result, short flows are likely to be finished in the first few
high-priority queues and thus be prioritized over long
flows in general, which enables PIAS to emulate SJF
without knowing flow sizes beforehand.

We have implemented a PIAS prototype and eval-
uated PIAS through both testbed experiments and ns-
2 simulations. We show that PIAS is readily deploy-
able with commodity switches and backward compat-
ible with legacy TCP/IP stacks. Our evaluation re-
sults show that PIAS significantly outperforms existing
information-agnostic schemes. For example, it reduces
FCT by up to 50% and 40% over DCTCP [11] and
L2DCT [27] respectively; and it only has a 4.9% perfor-
mance gap to an ideal information-aware scheme, pFab-
ric [13], for short flows under a production DCN work-
load.

1 Introduction

There has been a virtually unanimous consensus in the
community that one of the most important goals for data
center network (DCN) transport designs is to minimize
the flow completion times (FCT) [11–13, 22, 26, 27].

1PIAS, Practical Information-Agnostic flow Scheduling, was first
introduced in an earlier workshop paper [14] which sketched a prelim-
inary design and the initial results.

This is because many of today’s cloud applications, such
as web search, social networking, and retail recommen-
dation, have very demanding latency requirements, and
even a small delay can directly affect application perfor-
mance and degrade user experience [11, 27].

To minimize FCT, most recent proposals [13, 22, 26,
34] assume prior knowledge of accurate per-flow in-
formation, e.g., flow sizes or deadlines, to achieve su-
perior performance. For example, PDQ, pFabric and
PASE [13, 22, 26] all assume flow size is known a priori,
and attempt to approximate Shortest Job First (SJF, pre-
emptive), which is the optimal scheduling discipline for
minimizing the average FCT over a single link. In this
paper, we question the validity of this assumption, and
point out that, for many applications, such information
is difficult to obtain, and may even be unavailable (§2).
Existing transport layer solutions with this assumption is
therefore very hard to implement in practice.

We take one step back and ask: without prior knowl-
edge of flow size information, what is the best scheme
that minimizes FCT with existing commodity switches?

Motivated by the above question, we list our key de-
sign goals as follows:
• Information-agnostic: Our design must not assume a

priori knowledge of flow size information being avail-
able from the applications.

• FCT minimization: The solution must be able to en-
force an optimal information-agnostic flow schedul-
ing. It should minimize average and tail FCTs for
latency-sensitive short flows, while not adversely af-
fecting the FCTs of long flows.

• Readily-deployable: The solution must work with
existing commodity switches in DCNs and be back-
ward compatible with legacy TCP/IP stacks.
When exploring possible solution spaces, we note

that some existing approaches such as DCTCP, HULL,
L2DCT, etc [11, 12, 27] reduce FCT without relying on
flow size information. They generally improve FCT by
maintaining low queue occupation through mechanisms
like adaptive congestion control, ECN, pacing, etc. How-
ever, they do not provide a full answer to our question,
because they mainly perform end-host based rate control
which is ineffective for flow scheduling [13, 26].

1

456 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15) USENIX Association

In this paper, we answer the questions with PIAS, a
practical information-agnostic flow scheduling that min-
imizes the FCT in DCNs. In contrast to previous FC-
T minimization schemes [13, 22, 26] that emulate SJF
by using prior knowledge of flow sizes, PIAS manages
to mimic SJF with no prior information. At its heart,
PIAS leverages multiple priority queues available in ex-
isting commodity switches to implement a Multiple Lev-
el Feedback Queue (MLFQ), in which a PIAS flow is
gradually demoted from higher-priority queues to lower-
priority queues based on the bytes it has sent during its
lifetime. In this way, PIAS ensures in general that short
flows are prioritized over long flows, effectively emulat-
ing SJF without knowing flow sizes beforehand.

However, we face several concrete challenges to make
PIAS truly effective. First, how to determine the de-
moted threshold for each queue of MLFQ? Second, as
flow size distribution varies across time and space, how
to keep PIAS’s performance in such a dynamic environ-
ment? Third, how to ensure PIAS’s compatibility with
legacy TCP/IP stacks in production DCNs?

For the first challenge, we address it by deriving a
set of optimal demotion thresholds for MLFQ through
solving a FCT minimization problem. We further show
that the derived threshold setting is robust to a reasonable
range of traffic distributions. This encourages us to dis-
tribute the thresholds to the end hosts for packet tagging
while only performing strict priority queueing, a built-in
function, in the PIAS switches.

For the second challenge, as one set of demotion
thresholds works the best for a certain range of traffic dis-
tributions, PIAS adjusts thresholds to keep up with traffic
dynamics. However, the key problem is that a mismatch
between thresholds and underlying traffic is inevitable.
Once that happens, short flows may be adversely affected
by large ones in a queue, impacting on their latency. In-
spired by ideas from ECN-based rate control [11], PIAS
employs ECN to mitigate our mismatch problem. Our
reasoning is that, by maintaining low queue occupation,
short flows always see small queues and thus will not be
seriously delayed even if they are mistakenly placed in a
queue with a long flow due to mismatched thresholds.

For the third challenge, we employ DCTCP-like trans-
port at the PIAS end hosts and find that PIAS interacts
favorably with DCTCP or other legacy TCP protocols
with ECN enabled. A potential problem is that many
concurrent short flows may starve a coexisting long flow,
triggering TCP timeouts and degrading application per-
formance. We measure the extent of starvation on our
testbed with a realistic workload and analyze possible so-
lutions. We ensure that all mechanisms in PIAS can be
implemented by a shim layer over NIC without touching
the TCP stack.

We have implemented a PIAS prototype (§4). On the

end host, we implement PIAS as a kernel module in Lin-
ux, which resides between the Network Interface Card
(NIC) driver and the TCP/IP stack as a shim layer. It does
not touch any TCP/IP implementation that natively sup-
ports various OS versions. In virtualized environments,
PIAS can also support virtual machines well by resid-
ing in hypervisor (or Dom 0). On the switch, PIAS only
needs to enable priority queues and ECN which are both
built-in functions readily supported by existing commod-
ity switch hardware.

We evaluate PIAS on a small-scale testbed with 16
Dell servers and a commodity Pronto-3295 Gigabit Eth-
ernet switch (Broadcom BCM#56538). In our experi-
ments, we find that PIAS reduces the average FCT for
short flows by ⇠37-47% and ⇠30-45% compared to D-
CTCP under two realistic DCN traffic patterns. It also
improves the query performance by ⇠28-30% in a Mem-
cached [7] application (§5.1). We further dig into dif-
ferent design components of PIAS such as queues, opti-
mal demotion threshold setting, ECN, and demonstrate
the effectiveness of each of their contributions to PIAS’s
performance (§5.2).

To complement our small-scale testbed experiments,
we further conduct large-scale simulations in a simulat-
ed 10/40G network using ns-2 [10]. In our simulations,
we show that PIAS outperforms all existing information-
agnostic solutions under realistic DCN workloads, re-
ducing the average FCT for short flows by up to 50%
and 40% compared to DCTCP and L2DCT respective-
ly. In addition, our results show that PIAS, as a readily-
deployable information-agonistic scheme, also delivers
a comparable performance to a clean-slate information-
aware design, pFabric [13], in certain scenarios. For ex-
ample, there is only a 4.9% gap to pFabric for short flows
in a data mining workload [21] (§5.3).

To make our work easy to reproduce, we made our im-
plementation and evaluation scripts available online at:
http://sing.cse.ust.hk/projects/PIAS.

2 Motivation

To motivate our design, we introduce a few cases in
which the accurate flow size information is hard to ob-
tain, or simply not available.

HTTP chunked transfer: Chunked transfer has been
supported since HTTP 1.1 [20], where dynamically gen-
erated content is transferred during the generation pro-
cess. This mode is widely used by datacenter applica-
tions. For example, applications can use chunked trans-
fer to dump database content into OpenStack Object S-
torage [9]. In chunked transfer, a flow generally consists
of multiple chunks, and the total flow size is not available
at the start of the transmission.

2

USENIX Association 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15) 457

Database query response: Query response in database
systems, such as Microsoft SQL Server [8], is another
example. Typically, SQL servers send partial query re-
sults as they are created, instead of buffering the result
until the end of the query execution process [8]. The
flow size again is not available at the start of a flow.

Stream processing: Stream processing systems are cur-
rently gaining popularity. In Apache Storm [2], after the
master node distributes tasks to worker nodes, workers
will analyze the tasks and pre-establish persistent con-
nections with related worker nodes. During the data pro-
cessing, data tuples completed in one node are continu-
ously delivered to the next node in the stream processing
chain. The amount of data to be processed is unknown
until the stream finishes.

Practical limitations: We note that there are certain cas-
es where the flow size information can be obtained or
inferred. For example, in Hadoop [5] the mapper will
first write the intermediate data to disk before the corre-
sponding reducer starts to fetch the data, thus the flow
size can be obtained in advance [28]. Even so, practi-
cal implementation issues are still prohibitive. First, we
need to patch all modules in every application that gen-
erate network traffic, which is a burden for applications
programmers and/or network operators. Second, current
operating systems lack appropriate interface for deliver-
ing the flow size information to the transport layer. Thus,
kernel modifications are also required.

3 The PIAS Design

3.1 Design Rationale
Compared to previous solutions [13, 22, 26] that emu-
late SJF based on prior knowledge of flow sizes, PIAS
distinguishes itself by emulating SJF with no prior in-
formation. At its core, PIAS exploits multiple priority
queues available in commodity switches and implements
a MLFQ, in which a PIAS flow is demoted from higher-
priority queues to lower-priority queues dynamically ac-
cording to its bytes sent. Through this way, PIAS enables
short flows to finish in the first few priority queues, and
thus in general prioritizes them over long flows, effec-
tively mimicking SJF without knowing the flow sizes.

We note that scheduling with no prior knowledge is
known as non-clairvoyant scheduling [25]. Least At-
tained Service (LAS) is one of the best known algo-
rithms that minimize the average FCT in this case [30].
LAS tries to approximate SJF by guessing the remain-
ing service time of a job based on the service it has
attained so far. LAS is especially effective in DC-
N environments where traffic usually exhibits long-tail
distribution—most flows are short and a small percent
are very large [11, 21].

Figure 1: PIAS overview

PIAS is partially inspired by LAS. However, we find
that directly enabling LAS on switches requires us to
compare the amount of bytes transferred for each flow,
which is not supported in existing commodity switches.
Furthermore, although DCN traffic distribution is gener-
ally long-tailed, it varies across both time and space, and
on some switch ports the distribution may temporarily
not be so. Blindly using LAS will exacerbate the prob-
lem when multiple long flows coexist on a port, as pure
LAS favors short flows but performs badly when a long
flow meets a longer flow, causing the longer one to s-
tarve.

To this end, PIAS leverages multiple priority queues
available in existing commodity switches (typically 4–8
queues per port [13]) to implement a MLFQ (see Fig-
ure 1). Packets in different queues of MLFQ are sched-
uled with strict priority, while packets in the same queue
are scheduled based on FIFO. In a flow’s lifetime, it is de-
moted dynamically from ith queue down to the (i+1)th
queue after transmitting more bytes than queue i’s demo-
tion threshold, until it enters the last queue. To further
prevent switches from maintaining the per-flow state,
PIAS distributes packet priority tagging (indicating a
flow’s sent size) to end hosts, allowing the PIAS switches
to perform strict priority queueing only, which is already
a built-in function in today’s commodity switches.

By implementing MLFQ, PIAS gains two benefits.
First, it prioritizes short flows over large ones because
short flows are more likely to finish in the first few high-
er priority queues while large flows are eventually de-
moted to lower priority queues. This effectively enables
PIAS to approximate SJF scheduling that optimizes av-
erage FCT while being readily implementable with exist-
ing switch hardware. Second, it allows large flows that
are demoted to the same low priority queues to share the
link fairly. This helps to minimize the response time of
long flows, mitigating the starvation problem.

However, there are several concrete challenges to con-
sider in order to make PIAS truly effective. First, how
to determine the demotion threshold for each queue of
MLFQ to minimize the FCT? Second, as DCN traffic
varies across both time and space, how to make PIAS
perform efficiently and stably in such a dynamic environ-

3

458 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15) USENIX Association

ment? Third, how to ensure PIAS’s compatibility with
legacy TCP/IP stacks in production DCNs? Next, we ex-
plain the details of the mechanism we design to address
all these challenges.

3.2 Detailed Mechanisms
At a high level, PIAS’s main mechanisms include dis-
tributed packet tagging, switch design, and rate control.

3.2.1 Packet Tagging at End-hosts

PIAS performs distributed packet tagging at end hosts as
shown in Figure 1. There are K priorities P

i

, 1  i  K

and (K − 1) demotion thresholds ↵

j

, 1  j  K − 1.
We assume P1 > P2... > P

K

and ↵1  ↵2...  ↵

K−1.
At the end host, when a new flow is initialized, its

packets will be tagged with the highest priority P1, giv-
ing it the highest priority in the network. As more bytes
are sent, the packets of this flow will be tagged with de-
creasing priorities P

j

(2  j  K) and enjoy decreasing
priorities in the network2. The threshold to demote pri-
ority from P

j−1 to P

j

is ↵
j−1.

One challenge is to determine the demotion threshold
for each priority to minimize the average FCT. By solv-
ing a FCT minimization problem, we derive a set of ana-
lytical solutions for optimal demotion thresholds (details
in §3.3). Note that in PIAS we calculate the threshold-
s based on traffic information from the entire DCN and
distribute the same threshold setting to all the end hosts.
Our experiments and analysis show that such threshold
setting is effective and also robust to a certain range of
traffic variations (§5). This is a key reason we can de-
couple packet tagging from switches to end hosts while
still maintaining good performance, which relieves the
PIAS switches of having to keep the per-flow state.

As traffic changes over time, PIAS need to adjust the
demotion thresholds accordingly. To keep track of traf-
fic variations, each end host can periodically report its
local traffic information to a central entity for statistics
and many existing techniques exist for this purpose [37].
However, historical traffic may not reflect the future per-
fectly. Mismatches between threshold setting and under-
lying traffic are inevitable, which can hurt latency sensi-
tive short flows. Therefore, mitigating the impact of the
mismatch is a must for PIAS to operate in the highly dy-
namic DCNs. Our solution, as shown subsequently, is to
employ ECN.

2In certain cases, applications may build persistent TCP connection-
s to keep delivering request-response short messages for a long time.
These persistent connections will eventually be assigned to the lowest
priority due to the large cumulative size of bytes sent. To address this,
we can periodically reset flow states based on more behaviors of traffic.
For example, when a flow idles or keeps a very low average throughput
for some time, we may reset the bytes sent from this flow to 0.

S1

S3

S2 R
Low
High

10MB

10MB

20KB

a.

b.

c.

setting three scenarios

Figure 2: Illustration example: (a) threshold right; (b)
threshold too small, packets of short flow get delayed by
long flow after prematurely demoted to the low priority
queue; (c) threshold too large, packets of large flow stay
too long in the high priority queue, affecting short flow.

10KB 20KB 1MB0

500

1000

1500

Threshold

FC
T

(u
s)

PIAS w/o ECN
PIAS

(a) Mean

10KB 20KB 1MB0

1000

2000

3000

Threshold

FC
T

(u
s)

(b) 99th Percentile
Figure 3: Completion time of 20KB short flows

3.2.2 Switch Design
The PIAS switches enable the following two basic mech-
anisms, which are built-in functions for existing com-
modity switches [26].
• Priority scheduling: Packets are dequeued based on

their priorities strictly when a fabric port is idle.
• ECN marking: The arriving packet is marked with

Congestion Experienced (CE) if the instant buffer oc-
cupation is larger than the marking threshold.
With priority scheduling at the switches and packet

tagging at the end hosts, PIAS performs MLFQ-based
flow scheduling on the network fabric with stateless
switches. Packets with different priority tags are clas-
sified into different priority queues. When the link is i-
dle, the head packet from the highest non-empty priority
queue is transmitted.

One may wonder why weighted fair queueing (WFQ)
is not used to avoid starvation for long-lived flows.
However, we choose priority scheduling for two rea-
sons. First, priority queueing can provide better in-
network prioritization and potentially achieve lower FCT
than WFQ. Second, WFQ may cause packet out-of-order
problem, thus degrading TCP performance.

Our intention to employ ECN is to mitigate the effec-
t of the mismatch between the demotion thresholds and
the traffic distribution. We use a simple example to illus-
trate the problem and the effectiveness of our solution.
We connect 4 servers to a Gigabit switch as in Figure 2.
One server is receiver (R) and the other three are senders
(S1, S2 and S3). In our experiment, the receiver R con-
tinuously fetches 10MB data from S1 and S2, and 20KB
data from S3. We configure the strict priority queueing

4

USENIX Association 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15) 459

with 2 queues on the switch egress port to R. Since there
are two priorities, we only have one demotion threshold
from the high priority queue to the low priority queue.
For this case, the optimal demotion threshold should be
20KB (achieving SJF in effect).

We intentionally apply three different thresholds 10K-
B, 20KB and 1MB, and measure the FCT of the 20KB
short flows. Figure 3 shows the results of PIAS and PIAS
without ECN. When the threshold is 20KB, both PIAS
and PIAS without ECN achieve an ideal FCT. Howev-
er, with a larger threshold (1MB) or a smaller thresh-
old (10KB), PIAS shows obvious advantages over PIAS
without ECN at both the average and 99th percentile.
This is because, if the threshold is too small, packets of
short flows prematurely enter the low priority queue and
experience queueing delay behind long flows (see sce-
nario (b)); if the threshold is too large, packets of long
flows over-stay in the high priority queue, also affecting
the latency of short flows (see scenario (c)).

By employing ECN, we can keep low buffer occu-
pation and minimize the impact of long flows on short
flows, which makes PIAS more robust to the mismatch
between the demotion thresholds and traffic distribution.

3.2.3 Rate Control

PIAS employs DCTCP [11] as end host transport, and
other legacy TCP protocols with ECN enabled can also
be integrated into PIAS. We require PIAS to interact s-
moothly with the legacy TCP stack. One key issue is
to handle flow starvation: when packets of a large flow
get starved in a low priority queue for long time, this
may trigger TCP timeouts and retransmissions. The fre-
quent flow starvation may disturb the transport layer and
degrade application performance. For example, a TCP
connection which is starved for long time may be termi-
nated unexpectedly.

To address the problem, we first note that PIAS can
well mitigate the starvation between long flows, because
two long flows in the same low priority queue will fairly
share the link in a FIFO manner. In this way, PIAS min-
imizes the response time of each long flow, effectively
eliminating TCP timeouts.

However, it is still possible that many concurrent short
flows will starve a long flow, triggering its TCP timeout-
s. To quantify the effect, we run the web search bench-
mark traffic [11] (Figure 5) at 0.8 load in our 1G testbed,
which has 16 servers connected to a Gigabit switch. We
set RTOmin to 10ms and allocate 8 priority queues for
PIAS. This experiment consists of 5,000 flows (around
5.7 million MTU-sized packets). We enable both ECN
and dynamic buffer management in our switch. Hence,
TCP timeouts are mainly caused by starvation rather than
packet drops. We measure the number of TCP timeout-

s to quantify the extent of the starvation. We find that
there are only 200 timeout events and 31 two consecutive
timeout events in total. No TCP connection is terminat-
ed unexpectedly. The results indicate that, even at a high
load, flow starvation is not common and will not degrade
application performance adversely. We believe one pos-
sible reason is that the per-port ECN we used (see §4.1.2)
may mitigate starvation by pushing back high priority
flows when many packets from low priority long flows
get starved. Another possible solution for handling flow
starvation is treating a long-term starved flow as a new
flow. For example, if a flow experiences two consecutive
timeouts, we set its bytes sent back to zero. This ensures
that a long flow can always make progress after timeout-
s. Note that the implementation of the above mechanism
can be integrated to our packet tagging module without
any changes to the networking stack.

Note that PIAS is free of packet reordering. This is be-
cause, during its lifetime, a PIAS flow is always demoted
from a higher priority queue to a lower priority queue. In
this way, an earlier packet is guaranteed to dequeue be-
fore a latter packet at each hop.

3.2.4 Discussion

Local decision: The key idea of PIAS is to emulate
SJF which is optimal to minimize average FCT over a
single link. However, there does not exist an optimal
scheduling policy to schedule flows over an entire DCN
with multiple links [13]. In this sense, similar to pFab-
ric [13], PIAS also makes switch local decisions. This
approach in theory may lead to some performance loss
over the fabric [26]. For example, when a flow traverses
multiple hops and gets dropped at the last hop, it causes
bandwidth to be wasted on the upstream links that could
otherwise have been used to schedule other flows. We
note that some existing solutions [22, 26] leverage arbi-
tration, where a common network entity allocates rates
to each flow based on global network visibility, to ad-
dress this problem. However, it is hard to implement
because it requires non-trivial switch changes [22] or a
complex control plane [26], which is against our design
goal. Fortunately, local-decision based solutions main-
tain very good performance for most scenarios [13] and
only experience performance loss at extremely high load-
s, e.g., over 90% [26]. However, most DCNs operate
at moderate loads, e.g., 30% [16]. Our ns-2 simulation
(§5.3) with production DCN traffic further confirms that
PIAS works well in practice.

Demotion threshold updating: By employing ECN,
PIAS can effectively handle the mismatch between the
demotion thresholds and traffic distribution (see §5.2).
This suggests that we do not need to frequently change
our demotion thresholds which may be an overhead. In

5

460 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15) USENIX Association

this paper, we simply assume the demotion thresholds
are updated periodically according to the network scale
(which decides the time for information collection and
distribution) and leave dynamic threshold updates as fu-
ture work.

3.3 Optimizing Demotion Thresholds

In this section, we describe our formulation to derive
the optimal demotion thresholds for minimizing the aver-
age FCT. We identify this problem as a Sum-of-Linear-
Ratios problem and provide a method to derive the opti-
mal thresholds analytically for any given load and flow
size distribution. We find that the demotion thresholds
depend on both load and flow size distribution. As flow
size distribution and load change across both time and
space, ideally, one should use different thresholds for d-
ifferent links at different times. However, in practice, it
is quite challenging to obtain such fine-grained link lev-
el traffic information across the entire DCN. Hence, we
use the overall flow size distribution and load measured
in the entire DCN as an estimate to derive a common set
of demotion thresholds for all end hosts. We note that
this approach may not be theoretically optimal and there
is room for improvement. However, it is more practical
and provides considerable gains, as shown in the evalua-
tion (§5).

Problem formulation: We assume there are K priori-
ty queues P

i

(1iK) where P1 has the highest priority.
We denote the threshold for demoting the priority from
j−1 to j as ↵

j−1(2jK). We define ↵

K

=1, so that
the largest flows are all in this queue, and ↵0=0. The
flows, indexed from i=1 to N , have sizes x

i

. Denote the
cumulative density function of flow size distribution as
F (x), thus F (x) is the probability that a flow size is no
larger than x. Note that we do not assume the any specif-
ic properties of F (x), and it is used for convenience for
the following derivation.

Let ✓

j

=F (↵
j

)−F (↵
j−1), the percentage of flows

with sizes in [↵
j−1,↵j

). For a flow with size in
[↵

j−1,↵j

), it experiences the delays in different priori-
ties up to the j-th priority. Denote T

j

as the average time
spent in the j-th queue. For a flow with size x, let x+

be the residual size of this flow tagged with its lowest
priority. Thus, x+=x−↵

max

(x), where ↵

max

(x) is the
largest demotion threshold less than x, and let j

max

(x)
be the index of this threshold.

So the average FCT for this flow is: T (x)=P
j

max

(x)
l=1 T

l

+ x

+

1−⇢

j

max

(x)
.

The second term is bounded by T

j

max

(x), thus an up-
per bound is therefore: T (x)

P
min(j

max

(x)+1,K)
l=1 T

l

.
We have the following optimization problem, where

we choose an optimal set of thresholds {↵
j

} to minimize

the objective: the average FCT of flows on this bottle-
neck link:

min
{↵

j

}
T =

KX

l=1

(✓
l

lX

m=1

T

m

)=

KX

l=1

(T
l

KX

m=l

✓

m

)

subject to ↵0=0,↵
K

=1

↵

j−1<↵

j

,j=1,...,K

(1)

Analysis: For convenience, we use ✓s to equivalent-
ly replace ↵s. With a traffic load of ⇢, the av-
erage time in the lth queue, T

l

, can be expressed
as: T

l

= ✓

l

⇢

1−⇢F (↵
l1)

(assuming M/M/1 queues3). S-

ince
P

l

m=1✓m=
P

K

m=l

F (↵
m

)−F (↵
m−1), we can re-

express the objective as: T =
P

K

l=1Tl

(1−F (↵
l−1)).P

K

l=1✓m=1.
Since

P
K

l=1✓m=1, we can finally transform the prob-
lem as:

max
{✓

l

}
T

00=

K−1X

l=1

✓

l

1−⇢(
P

l−1
m=1✓m)

+
1−

P
K−1
m=1✓m

1−⇢

P
K−1
m=1✓m

(2)

which is a Sum-of-Linear-Ratios (SoLR) problem [32],
a well-known class of fractional programming problem-
s. The only constraint is that ✓

l

≥0,8l. This formulation
is interesting because the upperbound of average FCT is
independent of the flow distribution F (x), and only con-
cerns the ✓s, which represent the percentages of traffic
in different queues. Thus F (x) is needed only when we
calculate the thresholds, so we can first obtain the opti-
mal set of ✓s for all links, and then derive the priority
thresholds based on F (x).

Solution method: Generally, the SoLR problem is NP-
hard [17], and the difficulty in solving this class of prob-
lems lies in the lack of useful properties to exploit. For
our problem, however, we find a set of properties that can
lead to a closed-form analytical solution to Problem 2.
We describe the derivation procedure as follows:

Consider the terms in the objective. Since the traffic
load ⇢1, we have ⇢(

P
l−1
m=1✓m)

P
l−1
m=1✓m. Also, ✓

l

+P
l−1
m=1✓m=

P
l

m=1✓m1. Thus we have:

✓

l



KX

m=l

✓

m

=1−

l−1X

m=1

✓

m

1−⇢(

l−1X

m=1

✓

m

) (3)

The property to exploit is as follows: each term in the
summation, ✓

l

/(1−⇢

P
l−1
m=1✓m), is no larger than 1, and

to maximize the summation, we should make the numer-
ator and denominator as close as possible, so that the ra-
tio is close to 1.

Consider the first two portions, ✓1 and ✓2. By making
the numerator and denominator equal, we have:

✓2=1−⇢✓1 (4)
We can obtain the expression of the third portion and

3 We use M/M/1 queues to simplify the analysis and obtain a closed-
form solution. Similar derivation can also be conducted using M/G/1
queues [13], but the solution is very complicated.

6

USENIX Association 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15) 461

all the portions after it iteratively:
✓3=1−⇢(✓2+✓1)=1−⇢(1−(1−⇢)✓1) (5)

In this way, by the formula ✓

l

=1−⇢(
P

l−1
m=1✓m), each

portion ✓

l

can be represented by an expression of ✓1 iter-
atively. In addition, by the constraint

P
K

l=1✓l=1, we can
obtain the analytical expressions of all ✓s, which repre-
sents the percentages of the traffic in different priority
queues on the link. Given traffic load ✓s and flow size
distribution F (·), we can express the thresholds in the u-
nit of bytes, and this representation is implemented at the
end host.

4 Implementation and Testbed Setup

4.1 PIAS Implementation
We have implemented a prototype of PIAS. We now de-
scribe each component of our prototype in detail.

4.1.1 Packet Tagging
The packet tagging module is responsible for maintain-
ing per-flow state and marking packets with priority at
the end hosts. We implement it as a kernel module in
Linux. The packet tagging module resides between the
TCP/IP stack and Linux TC, which consists of three com-
ponents: a NETFILTER [6] hook, a hash based flow table,
and a packet modifier.

The operations are as follows: 1) the NETFILTER hook
intercepts all outgoing packets using the LOCAL OUT
hook and directs them to the flow table. 2) Each flow
in the flow table is identified by the 5-tuple: src/dst IPs,
src/dst ports and protocol. When a packet comes in, we
identify the flow it belongs to (or create a new entry) and
increment the amount of bytes sent. 3) Based on the flow
information, the packet modifier sets the packet’s prior-
ity by modifying the DSCP field in the IP header to the
corresponding value.

Offloading techniques like large segmentation offload-
ing (LSO) may degrade the accuracy of packet tagging.
With LSO, the packet tagging module may not be able to
set the right DSCP value for each individual MTU-sized
packet within a large segment. To quantify this, we sam-
ple more than 230,000 TCP segments with payload data
in our 1G testbed and find that the average segment size
is only 7,220 Bytes. This has little impact on packet tag-
ging. We attribute this to the small window size in DCN
environment which has small bandwidth-delay product
and large number of concurrent connections. We expect
that the final implementation solution for packet tagging
should be in NIC hardware to permanently avoid this in-
terference.

To quantify system overhead introduced by the PIAS
packet tagging module, we installed it on a Dell Pow-
erEdge R320 server with an Intel 82599EB 10GbE NIC

and measured CPU usage. LSO is enabled in this ex-
periment. We started 8 TCP long flows and achieved
⇠9.4Gbps goodput. The extra CPU usage introduced by
PIAS is < 1% compared with the case where the PIAS
packet tagging module is not enabled.

4.1.2 Switch Configuration
We enforce strict priority queues at the switches and clas-
sify packets based on the DSCP field. Similar to previ-
ous work [11, 35], we use ECN marking based on the
instant queue lengths with a single marking threshold.
In addition to the switch queueing delay in the network,
sender NIC also introduces latency because it is actually
the first contention point of the fabric [13, 24]. Hard-
ware and software queues at the end hosts can introduce
large queueing delay, which might severely degrade the
application performance [23, 36]. To solve this prob-
lem, our software solution hooks into the TX datapath
at POST ROUTING and rate-limits outgoing traffic at the
line rate. Then, we perform ECN marking and priority
queueing at the end host as well as the switches.
Per-queue vs per-port ECN marking: We observe
that some of today’s commodity switching chips offer
multiple ways to configure ECN marking when config-
ured to use multiple queues per port. For example, our
Broadcom BCM#56538-based switch allows us to en-
able either per-queue ECN marking or per-port ECN
marking. In per-queue ECN marking, each queue has
its own marking threshold and performs ECN marking
independently to other queues. In per-port ECN mark-
ing, each port is assigned a single marking threshold and
marks packets when the sum of all queue sizes belonging
to the port exceeds the marking threshold.

Per-queue ECN is widely used in many DCN trans-
port protocols [11, 26, 33], however, we find it has lim-
itations when supporting multiple queues. Each queue
requires a moderate ECN marking threshold h to fully
utilize the link independently (e.g., h=20 packets for 1G
and 65 packets for 10G in DCTCP [11]). Thus, support-
ing multiple queues may require the shared memory be
at least multiple times (e.g., 8) the marking threshold,
which is not affordable for most shallow buffered com-
modity switches. For example, our Pronto-3295 switch
has 4MB (⇡2667 packets) memory shared by 384 queues
(48x 1G ports with 8 queues per port). If we set h=20
packets as suggested above, we need over 11MB memo-
ry in the worst case, otherwise when the traffic is bursty,
the shallow buffer may overflow before ECN takes effect.

Per-port ECN, to the best of our knowledge, has rarely
been exploited in recent DCN transport designs. Al-
though per-port ECN marking cannot provide ideal iso-
lation among queues as per-queue ECN marking (Fig-
ure 12) , it can provide much better burst tolerance and
support a larger number of queues in shallow buffered

7

462 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15) USENIX Association

…

ToR Switch

16 Servers

Figure 4: Testbed Topology

switches. Moreover, per-port ECN marking can poten-
tially mitigate the starvation problem. It can push back
high priority flows when many packets of low priority
flows get queued in the switch. Therefore, we use per-
port ECN marking.

4.1.3 Rate Control
We use the open source DCTCP patch [4] for Linux
2.6.38.3. We further observe an undesirable interaction
between the open-source DCTCP implementation and
our switch. The DCTCP implementation does not set the
ECN-capable (ECT) codepoint on TCP SYN packets and
retransmitted packets, following the ECN standard [31].
However, our switch drops any non-ECT packets from
ECN-enabled queues, when the instant queue length is
larger than the ECN marking threshold. This problem
severely degrades the TCP performance [35]. To address
this problem, we set ECT on every TCP packet at the
packet modifier.

4.2 Testbed Setup
We built a small testbed that consists of 16 servers con-
nected to a Pronto 3295 48-port Gigabit Ethernet switch
with 4MB shared memory, as shown in Figure 4. Our
switch supports ECN and strict priority queuing with at
most 8 class of service queues [1]. Each server is a Del-
l PowerEdge R320 with a 4-core Intel E5-1410 2.8GHz
CPU, 8G memory, a 500GB hard disk, and a Broadcom
BCM5719 NetXtreme Gigabit Ethernet NIC. Each serv-
er runs Debian 6.0-64bit with Linux 2.6.38.3 kernel. By
default, advanced NIC offload mechanisms are enabled
to reduce the CPU overhead. The base round-trip time
(RTT) of our testbed is around 100us.

In addition, we have also built a smaller 10G testbed
for measuring the end host queueing delay in the high
speed network. We connect three servers to the same
switch (Pronto 3295 has four 10GbE ports). Each server
is equipped with an Intel 82599EB 10GbE NIC.

5 Evaluation

We evaluate PIAS using a combination of testbed exper-
iments and large-scale ns-2 simulations. Our evaluation
centers around four key questions:

Web Search
Data Mining

C
um

ul
at

iv
e

Pr
ob

ab
ilit

y

0

0.5

1.0

1KB 101KB 102KB 103KB 104KB 105KB
Figure 5: Traffic distributions used for evaluation.

• How does PIAS perform in practice? Using realistic
workloads in our testbed experiments, we show that
PIAS reduces the average FCT of short flows by ⇠37-
47% with the web search workload [11] and ⇠30-
45% with the data mining workload [21] compared
to DCTCP. In an application benchmark with Mem-
cached [7], we show that PIAS achieves ⇠28-30%
lower average query completion time than DCTCP.

• How effective are individual design components of
PIAS, and how sensitive is PIAS to parameter set-
tings? We show that PIAS achieves reasonable per-
formance even with two queues. We also demonstrate
that ECN is effective in mitigating the harmful effect
of a mismatch between the demotion thresholds and
traffic, but PIAS performs the best with the optimal
threshold setting.

• Does PIAS work well even in large datacenter-
s? Using large-scale ns-2 simulations, we show that
PIAS scales to multi-hop topologies and perform-
s best among all information-agnostic schemes (D-
CTCP [11], L2DCT [27], and LAS [30]). PIAS shows
a 4.9% performance (measured in average FCT) gap
from pFabric [13], an idealized information-aware
scheme, for short flows in the data mining workload.

• How robust is the PIAS threshold setting? With
the same set of thresholds, we experiment with both
extremely-biased and realistic traffic patterns to show
the robustness of the PIAS threshold setting. We
also demonstrate the optimality region and close-to-
optimality region is large for PIAS analytically. (For
space limitations, please see the details in our techni-
cal report [15]).

5.1 Testbed Experiments

Setting: PIAS uses 8 priority queues by default and en-
able per-port ECN marking as discussed in Section 4.
We set the ECN marking threshold to be 30KB as D-
CTCP [11] recommends. Our MLFQ demotion thresh-
olds are derived as described in Section 3.

We use two realistic workloads, a web search work-
load [11] and a data mining workload [21] from produc-
tion datacenters. Their overall flow size distributions are
shown in Figure 5. We also evaluate PIAS using an ap-
plication benchmark with Memcached [7].

8

USENIX Association 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15) 463

0.5 0.6 0.7 0.80

1000

2000

3000

4000

5000

Load

FC
T

(u
s)

PIAS
DCTCP
TCP

(a) (0,100KB]: Avg

0.5 0.6 0.7 0.80

1000

2000

3000

4000

5000

Load

FC
T

(u
s)

(b) (0,100KB]: 99th Percentile

0.5 0.6 0.7 0.80

20

40

60

80

100

120

Load

FC
T

(m
s)

(c) (100KB,10MB]: Avg

0.5 0.6 0.7 0.80

200

400

600

800

Load

FC
T

(m
s)

(d) (10MB,1): Avg
Figure 6: Web search workload: FCT across different flow sizes. TCP’s performance is outside the plotted range of (b)

0.5 0.6 0.7 0.80

1000

2000

3000

Load

FC
T

(u
s)

PIAS
DCTCP
TCP

(a) (0,100KB]: Avg

0.5 0.6 0.7 0.80

1000

2000

3000

Load

FC
T

(u
s)

(b) (0,100KB]: 99th Percentile

0.5 0.6 0.7 0.80

20

40

60

80

Load

FC
T

(m
s)

(c) (100KB,10MB]: Avg

0.5 0.6 0.7 0.80

2000

4000

6000

Load

FC
T

(m
s)

(d) (10MB,1): Avg
Figure 7: Data mining workload: FCT across different flow sizes. TCP’s performance is outside the plotted range of (b)

Results with realistic workloads: For this experiment,
we developed a client/server model to generate dynamic
traffic according to realistic workloads and measure the
FCT on application layer. The client application, run-
ning on 1 machine, periodically generates requests to the
other machines to fetch data. The server applications,
running on 15 other machines, respond with requested
data. The requests are generated based on a Poisson pro-
cess. We evaluate the performance of PIAS, DCTCP and
TCP, while varying the network loads from 0.5 to 0.8.
Given the average traffic load in DCNs is moderate (for
exmaple, 30% [16]), a long-term load of over 80% is less
likely in practice.

Figure 6 and Figure 7 show the average FCT across
small (0,100KB] (a, b), medium (100KB,10MB] (c), and
large (10MB,1) (d) flows, respectively; for the web
search and data mining workloads, respectively.

We make the following three observations: First, for
both workloads, PIAS achieves the best performance in
both the average and 99th percentile FCTs of small flows.
Compared to DCTCP, PIAS reduces the average FCT of
small flows by ⇠37-47% for the web search workload
and ⇠30-45% for the data mining workload. The im-
provement of PIAS over DCTCP in the 99th percentile
FCT of short flows is even larger: ⇠40-51% for the web
search workload and ⇠33-48% for the data mining work-
load. Second, PIAS also provides the best performance
in medium flows. It achieves up to 22% lower average
FCT of medium flows than DCTCP in the web search
workload. Third, PIAS does not severely penalize the
large flows. For example, from Figure 6 (d) and Fig-
ure 7 (d), we can see that for the data mining workload
PIAS is comparable or slightly better than TCP and D-
CTCP, while for the web search workload it is worse than

DCTCP by over 10%. This is expected because PIAS
prioritizes short flows over long flows and ⇠60% of all
bytes in the web search workload are from flows smaller
than 10MB. Note that this performance gap would not
affect the overall average FCT since datacenter work-
loads are dominated by small and medium flows (e.g.,
only ⇠3% flows are larger than 10MB in the web search
workload). In fact, PIAS achieves ⇠9% and ⇠17% low-
er overall average FCT than DCTCP and TCP at 0.8 load
in the web search workload.

Results with the Memcached application: To assess
how PIAS improves the performance of latency-sensitive
applications, we build a Memcached [7] cluster with 16
machines. One machine is used as a client and the other
15 are used as servers to emulate a partition/aggregate
soft-real-time service [11, 34]. We pre-populate serv-
er instances with 4B-key, 1KB-value pairs. The clien-
t sends a GET query to all 15 servers and each server
responds with a 1KB value. A query is completed only
when the client receives all the responses from the server-
s. We measure the query completion time as the applica-
tion performance metric. Since a 1KB response can be
transmitted within one RTT, the query completion time is
mainly determined by the tail queueing delay. The base
query completion time is around 650us in our testbed.
We also generate background traffic, a mix of mice flows
and elephant flows following the distribution of the we-
b search workload [11]. We use queries per second, or
qps, to denote the application load. We vary the load of
the background traffic from 0.5 to 0.8 and compare the
performance of PIAS with that of DCTCP.

Figure 8 and Figure 9 show the results of the query
completion time at 20 and 40 qps loads respectively. S-

9

464 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15) USENIX Association

0.5 0.6 0.7 0.8500

1000

1500

2000

2500

Load

Q
ue

ry
 C

om
pl

et
io

n
Ti

m
e

(u
s)

DCTCP
PIAS

(a) Mean

0.5 0.6 0.7 0.8500

1000

1500

2000

2500

Load

Q
ue

ry
 C

om
pl

et
io

n
Ti

m
e

(u
s)

(b) 99th Percentile
Figure 8: Query completion time at 20 qps

0.5 0.6 0.7 0.8500

1000

1500

2000

2500

Load

Q
ue

ry
 C

om
pl

et
io

n
Ti

m
e

(u
s)

DCTCP
PIAS

(a) Mean

0.5 0.6 0.7 0.8500

1000

1500

2000

2500

Load

Q
ue

ry
 C

om
pl

et
io

n
Ti

m
e

(u
s)

(b) 99th Percentile
Figure 9: Query completion time at 40 qps

ince we enable both dynamic buffer management and
ECN on the switch, none of queries suffers from TCP
timeout. With the increase in background traffic load, the
average query completion time of DCTCP also increases
(1016–1189us at 40qps and 1014–1198us at 20qps). By
contrast, PIAS maintains a relatively stable performance.
At 0.8 load, PIAS can achieve ⇠28-30% lower average
query completion times than those of DCTCP. Moreover,
PIAS also reduces the 99th percentile query completion
time by ⇠20-27%. In summary, PIAS can effectively im-
prove the performance of the Memcached application by
reducing the queueing delay of short flows.

End host queueing delay: The above experiments
mainly focus on network switching nodes. PIAS extends
its switch design to the end hosts as the sender’s NIC is
actually the first contention point of the fabric [13, 24].

To quantify this, we conduct an experiment in our
10G setting with three servers (one sender and two re-
ceivers). We start several (1 to 8) long-lived TCP flows
from the sender to a receiver. Then we measure RTT
from the sender to the other receiver by sending ICMP
ping packets. Without PIAS, ping packets could ex-
perience up to 6748us queueing delay with 8 background
flows. Then we deploy a 2-queue PIAS end host schedul-
ing module (as described in §4.1.2) with a threshold of
100KB. Each ICMP packet is identified as a new flow
by PIAS. We measure the RTTs with PIAS and compare
them with the results without PIAS in Figure 10. In gen-
eral, PIAS can significantly reduce the average RTT to
⇠200us and ensure that the 99th percentile RTT is small-
er than 450us. Note that the PIAS scheduling module
does not affect network utilization and large flows still
maintain more than 9Gbps goodput during the experi-
ment. Since we enable LSO to reduce CPU overhead,

1 2 4 80

500

1000

1500

2000

2500

Number of background flows

R
ou

nd
 tr

ip
 ti

m
e

(u
s)

Without PIAS
With PIAS

(a) Mean

1 2 4 80

2000

4000

6000

R
ou

nd
 tr

ip
 ti

m
e

(u
s)

Number of background flows

(b) 99th Percentile
Figure 10: RTT with background flows

0.5 0.6 0.7 0.8750

800

850

900

950

Load

FC
T

(u
s)

Q=2 (Optimized)
Q=4 (Optimized)
Q=8 (Optimized)

(a) (0,100KB]: Avg

0.5 0.6 0.7 0.840

60

80

100

Load

FC
T

(m
s)

(b) (100KB,10MB]: Avg
Figure 11: Web search workload with different queues

it is difficult for us to achieve fine-grained transmission
control and some delay may still exist in NIC’s transmis-
sion queues. We believe there is still room to improve by
offloading the scheduling to NIC hardware [29].

5.2 PIAS Deep Dive
In this section, we conduct a series of targeted experi-
ments to answer the following three questions:
• How sensitive is PIAS to the number of queues

available? Network operators may reserve some
queues for other usage while some commodity switch-
es [3] only support 2 priority queues. We find that,
even with only 2 queues, PIAS still effectively re-
duces the FCT of short flows. However, in general,
more queues can further improve PIAS’s overall per-
formance.

• How effective is ECN in mitigating the mismatch?
ECN is integrated into PIAS to mitigate the mismatch
between the demotion thresholds and traffic distribu-
tion. In an extreme mismatch scenario, we find that
without ECN, PIAS’s performance suffers with medi-
um flows and is worse than DCTCP. However, with
ECN, PIAS effectively mitigates this problem, and is
better than, or at least comparable to DCTCP.

• What is the effect of the optimal demotion thresh-
olds? Compared to PIAS with thresholds derived
from simple heuristics, PIAS with the optimal de-
motion thresholds achieves up to ⇠10% improvement
in medium flows, which improves the overall perfor-
mance.

Impact of number of queues: In general, the more
queues we use, the better we can segregate differen-
t flows, thus improving overall performance. For this

10

USENIX Association 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15) 465

0.5 0.6 0.7 0.80

500

1000

1500

2000

2500

Load

FC
T

(u
s)

PIAS
DCTCP
PIAS w/o ECN

(a) (0,100KB]: Avg

0.5 0.6 0.7 0.80

20

40

60

80

100

120

Load

FC
T

(m
s)

(b) (100KB,10MB]: Avg
Figure 12: Web search workload with mismatch thresholds
derived from data mining workload

Q=2 Q=4400

600

800

1000

1200

FC
T

(u
s)

Optimized
Equal Split

(a) (0,100KB]: Avg

Q=2 Q=470

80

90

100

110

FC
T

(m
s)

(b) (100KB,10MB]: Avg
Figure 13: Web search workload with different thresholds

experiment, we generate traffic using the web search
workload and do the evaluation with 2, 4 and 8 priority
queues. The results are shown in Figure 11. We observe
that three schemes achieve the similar average FCT of
short flows. Even at 0.8 load, the FCT of 2 queues is
within ⇠2.5% of that of 8 queues. As expected, the aver-
age FCT of medium flows improves with the increasing
number of queues. For example, PIAS with 4 queues
and 8 queues provide similar performance, but improve
the FCT by 14.3% compared to 2 queues. The takeaway
is that PIAS can effectively reduce FCT of short flows
even with 2 queues and more queues can further improve
PIAS’s overall performance.

Effect of ECN under thresholds–traffic mismatch:
We evaluate the performance of the web search work-
load while using the optimal demotion thresholds de-
rived from the data mining workload. We compare PIAS,
PIAS without ECN, and DCTCP. Figure 12 shows the
results of the average FCT of short and medium flows.
Both PIAS and PIAS without ECN greatly outperforms
DCTCP in short flows. PIAS without ECN is even slight-
ly better than PIAS. That is because, when using per-port
ECN, packets in a high priority queue may get marked
due to buffer occupation in a low priority queue. How-
ever, PIAS without ECN shows the worst performance
in medium flows while being obviously worse than D-
CTCP. This is because, due to the mismatch between de-
moting thresholds and traffic distribution, medium flows
and large flows coexist in the lower priority queues.
Without ECN, packets from medium flows would ex-
perience queueing delay behind large flows. With EC-
N, PIAS effectively mitigates this side-effect by keeping
low buffer occupation as explained in §3.2.2.

0.4 0.5 0.6 0.7 0.8

10

15

20

Load

FC
T

(m
s)

DCTCP
L2DCT
PIAS
LAS

(a) Web search workload

0.4 0.5 0.6 0.7 0.812

13

14

15

16

Load

FC
T

(m
s)

(b) Data mining workload
Figure 14: Overall average flow completion time

Impact of demotion thresholds: To explore the effec-
tiveness of our optimal demotion threshold setting, we
compare the optimized PIAS with the PIAS using thresh-
olds derived from the equal split heuristic as [13]. More
specifically, given a flow size distribution and N queues,
we set the first threshold to the size of 100/N th per-
centile flow, the second threshold to the size of 200/N th
percentile flow, and so on. We run the web search work-
load at 0.8 load and summarize results in the Figure 13.
We test PIAS with 2 and 4 queues. We observe that
there is an obvious improvement in the average FCT of
medium flows with the optimized thresholds. Specifi-
cally, PIAS (4-queue) with the optimized thresholds can
achieve ⇠10% lower FCT for medium flows than that of
equal split, and a 9% improvement for the 2-queue PIAS.
This partially validates the effectiveness of our optimal
threshold setting. We further conduct deep analysis on
this in [15].

5.3 Large-scale NS-2 Simulations
We use ns-2 [10] simulations to answer three questions.

• How does PIAS perform compared to information-
agnostic schemes? PIAS outperforms DCTCP [11]
and L2DCT [27] in general, and significantly im-
proves their average FCTs for short flows by 50% and
40% respectively. Furthermore, PIAS is close to LAS
for short flows and greatly outperforms LAS for long
flows, reducing its average FCT by 50% in the web
search workload.

• How does PIAS perform compared to information-
aware schemes? As a practical information-agonistic
scheme, PIAS can also deliver comparable perfor-
mance to a clean-slate information-aware design, p-
Fabric [13], in certain scenarios. For example, it only
has a 4.9% gap to pFabric for short flows in the data
mining workload.

• How does PIAS perform in the oversubscribed net-
work? In a 3:1 oversubscribed topology with ECMP
load balancing, PIAS still delivers very good perfor-
mance. Compared to DCTCP, the average FCT for
the short flows with PIAS is ⇠26% lower in the web
search workload.

11

466 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15) USENIX Association

0.4 0.5 0.6 0.7 0.80

1

2

3

4

Load

N
or

m
al

iz
ed

 F
C

T

DCTCP
L2DCT
PIAS
LAS

(a) (0,100KB]: Avg

0.4 0.5 0.6 0.7 0.80

5

10

15

20

Load

N
or

m
al

iz
ed

 F
C

T

(b) (10MB,1): Avg
Figure 15: Web search workload: Normalized FCT

0.4 0.5 0.6 0.7 0.80

1

2

3

4

Load

N
or

m
al

iz
ed

 F
C

T

DCTCP
L2DCT
PIAS
LAS

(a) (0,100KB]: Avg

0.4 0.5 0.6 0.7 0.82

2.5

3

3.5

4

Load

N
or

m
al

iz
ed

 F
C

T

(b) (10MB,1): Avg
Figure 16: Data mining workload: Normalized FCT

Setting: We use a leaf-spine topology with 9 leaf (ToR)
switches to 4 spine (Core) switches. Each leaf switch has
16 10Gbps downlinks (144 hosts) and 4 40Gbps uplinks
to the spine, forming a non-oversubscribed network. The
base end-to-end round-trip time across the spine (4 hops)
is 85.2µs. We use packet spraying [19] for load balanc-
ing and disable dupACKs to avoid packet reordering. A-
gain, we use the web search and data mining workloads
as above.

5.3.1 Comparison with Information-agnostic
Schemes

We mainly compare PIAS with three other information-
agnostic schemes: DCTCP, L2DCT [27] and LAS [30].

Overall performance: Figure 14 shows the average
FCT of information-agnostic schemes under differen-
t workloads and load levels. From the figure, we see that
PIAS performs well overall. First, PIAS has an obvious
advantage over DCTCP and L2DCT in all cases. Sec-
ond, PIAS is close to LAS in the data mining workload,
and significantly outperforms LAS by 28% (at 0.8 load)
in the web search workload. This is because PIAS effec-
tively mitigates the starvation between long flows unlike
LAS. In the data mining workload, there are not so many
large flows on the same link concurrently. As a result,
LAS does not suffer from starvation as significantly.

Breakdown by flow size: We now breakdown the av-
erage FCT across different flow sizes, (0, 100KB] and
(10MB, 1) (Figure 15 and 16). We normalize each
flow’s actual FCT to the best possible value it can achieve
in the idle fabric.

For short flows in (0,100KB], we find that PIAS signif-
icantly outperforms both DCTCP and L2DCT, improv-

0.4 0.5 0.6 0.7 0.80

1

2

3

Load

N
or

m
al

iz
ed

 F
C

T

PIAS
pFabric

(a) Web search workload

0.4 0.5 0.6 0.7 0.80

1

2

3

Load

N
or

m
al

iz
ed

 F
C

T

(b) Data mining workload
Figure 17: Average normalized FCT for (0,100KB]

ing the average FCT by up to 50% and 40% respective-
ly. This is because DCTCP and L2DCT use reactive
rate control at the end hosts, which is not as effective
as PIAS for in-network flow scheduling. We further ob-
serve that PIAS achieves similar performance as LAS for
short flows. PIAS only performs slightly worse than LAS
in the web search workload when there is a packet drop
or an explicit congestion notification.

For long flows in (10MB,1), we find that PIAS is
slightly worse than LAS in data mining workload, but
performs significantly better in the web search workload
(50% reduction in FCT at 0.8 load). This is because,
in the web search workload, it is common that multiple
large flows are present in the same link. In such sce-
narios, LAS always stops older flows to send new flows.
Since large flows usually take a very long time to com-
plete, it causes a serious starvation problem. However,
with PIAS, large flows receive their fair sharing in the
lowest priority queue, which mitigates this problem. Fur-
thermore, PIAS performs similarly to DCTCP under the
web search workload and achieves 17% lower FCT in the
data mining workload.

5.3.2 Comparison with Ideal Information-aware
Schemes

We compare PIAS to an ideal information-aware ap-
proach for DCN transport, pFabric [13], on small flows
of the two workloads. We note that the most recent work
PASE [26] can achieve better performance than pFab-
ric in particular scenarios (e.g., very high load and sin-
gle rack). However in our topology setting with realistic
workloads, pFabric is better than PASE and PDQ [22],
and achieves near-optimal performance. Thus, we direct-
ly compare PIAS with pFabric. The result is shown in
Figure 17. In general, PIAS delivers comparable aver-
age FCT for short flows as pFabric, particularly within
4.9% in the data mining workload. We find that the gap
between PIAS and pFabric is smaller in the data min-
ing workload than that in the web search workload. This
is mainly due to the fact that the data mining workload
is more skewed than the web search workload. Around
82% flows in the data mining are smaller than 100KB,
while only 54% of flows in the web search are small-

12

USENIX Association 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15) 467

0.4 0.5 0.6 0.7 0.8

4

5

6

7

8

Load

FC
T

(m
s)

DCTCP
PIAS

(a) Overall: Avg

0.4 0.5 0.6 0.7 0.80

1

2

3

Load

N
or

m
al

iz
ed

 F
C

T

DCTCP
PIAS

(b) (0,100KB]: Avg
Figure 18: Web search workload on a 3:1 oversubscribed
topology with ECMP load balancing.

er than 100KB. For the web search workload, it is more
likely that large flows coexist with short flows in the high
priority queues temporarily, increasing the queueing de-
lay for short flows. pFabric, by assuming prior knowl-
edge of flow sizes, is immune to such problem.

5.3.3 Performance in oversubscribed network
Finally, we evaluate PIAS on a 3:1 oversubscribed net-
work with ECMP load balancing. In this topology, there
are 3 leaf switches and 4 spine switches. Each leaf switch
is connected to 48 hosts with 10Gbps links and 4 spine
switches with 40Gbps links. Given that the source and
destination of each flow is generated randomly, one-third
of traffic is intra-ToR and the rest is inter-ToR traffic.
Hence, the load at the fabric’s core is twice the load at the
edge. We repeat the web search workload and compare
PIAS with DCTCP. Figure 18 gives the results. Note that
the load in the figure is at the fabric’s core. Compared to
DCTCP, PIAS achieves up to ⇠26% and ⇠11% lower
average FCT for short flows and all the flows respective-
ly.

6 Related Work

We classify previous work on minimizing FCT in DC-
Ns into two categories: information-agnostic solution-
s (e.g., [11, 12, 27]) and information-aware solutions
(e.g., [13, 22, 26]).

Information-agnostic solutions [11, 12, 27] generally
improve the FCT for short flows by keeping low queue
occupancy. For example, DCTCP [11] tries to keep the
fabric queues small by employing an ECN-based adap-
tive congestion control algorithm to throttle long ele-
phant flows. L2DCT [27] adds bytes sent information to
DCTCP [11]. HULL [12] further improves the latency
of DCTCP by trading network bandwidth. In summa-
ry, these solutions mainly perform end-host based rate
control which is ineffective for flow scheduling. By con-
trast, PIAS leverages in-network priority queues to em-
ulate SJF for flow scheduling, which is more efficient in
terms of FCT minimization.

Information-aware solutions [13, 22, 26] attempt to
approximate ideal Shortest Remaining Processing Time
(SRPT) scheduling. For example, PDQ [22] employs
switch arbitration and uses explicit rate control for flow
scheduling. pFabric [13] decouples flow scheduling from
rate control and achieves near-optimal FCT with decen-
tralized in-network prioritization. PASE [26] synthesizes
the strengths of previous solutions to provide good per-
formance. In general, these solutions can potentially pro-
vide ideal performance, but they require non-trivial mod-
ifications on switch hardware or a complex control plane
for arbitration. By contrast, PIAS does not touch the
switch hardware or require any arbitration in the control
plan, while still minimizing FCT.

There are also some other efforts [18, 33, 34] targeting
at meeting flow deadlines. D3 [34] assigns rates to flows
according to their sizes and deadlines explicitly, where-
as D2TCP [33] and MCP [18] add deadline-awareness
to ECN-based congestion window adjustment implicitly.
They all require prior knowledge of flow information and
do not directly minimize FCT, unlike PIAS.

7 Conclusion

Through PIAS, we leverage existing commodity switch-
es in DCNs to minimize the average FCT for flows, e-
specially the smaller ones, without assuming any pri-
or knowledge of flow sizes. We have implemented a
PIAS prototype using all commodity hardware and eval-
uated PIAS through a series of small-scale testbed ex-
periments as well as large-scale packet-level ns-2 simu-
lations. Both our implementation and evaluation results
show that PIAS is a viable solution that achieves all our
design goals.

Acknowledgements

This work was supported by the Hong Kong RGC EC-
S 26200014, the China 973 Program under Grant No.
2014CB340303, the ICT R&D program of MSIP/IITP,
Republic of Korea [14-911-05-001], and the Basic Sci-
ence Research Program of NRF funded by MSIP, Rep.
of Korea (2013R1A1A1076024). We thank Mohammad
Alizadeh for sharing codes of pFabric, Haitao Wu for in-
sightful discussions, our shepherd Dushyanth Narayanan
and the anonymous NSDI reviewers for their construc-
tive comments.

References

[1] http://www.pica8.com/documents/pica8-datasheet-picos.
pdf.

[2] “Apache Storm,” https://storm.incubator.apache.org/.

13

468 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15) USENIX Association

[3] “Cisco Nexus 5500 Series NX-OS Quality of Service
Configuration Guide,” http://www.cisco.com/c/en/
us/td/docs/switches/datacenter/nexus5500/sw/qos/7x/
b 5500 QoS Config 7x.pdf.

[4] “DCTCP Patch,” http://simula.stanford.edu/⇠alizade/
Site/DCTCP.html.

[5] “Hadoop,” http://hadoop.apache.org/.

[6] “Linux netfilter,” http://www.netfilter.org.

[7] “Memcached,” http://memcached.org/.

[8] “Microsoft SQL Server,” http://www.microsoft.com/
en-us/server-cloud/products/sql-server/.

[9] “OpenStack Object Storage,” http://docs.openstack.
org/api/openstack-object-storage/1.0/content/
chunked-transfer-encoding.html.

[10] “The Network Simulator NS-2,” http://www.isi.edu/
nsnam/ns/.

[11] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Pa-
tel, B. Prabhakar, S. Sengupta, and M. Sridharan, “Data
center TCP (DCTCP),” in SIGCOMM 2010.

[12] M. Alizadeh, A. Kabbani, T. Edsall, B. Prabhakar,
A. Vahdat, and M. Yasuda, “Less is more: trading a lit-
tle bandwidth for ultra-low latency in the data center,” in
NSDI 2012.

[13] M. Alizadeh, S. Yang, M. Sharif, S. Katti, N. McKeown,
B. Prabhakar, and S. Shenker, “pFabric: Minimal near-
optimal datacenter transport,” in SIGCOMM 2013.

[14] W. Bai, L. Chen, K. Chen, D. Han, C. Tian, and W. Sun,
“PIAS: Practical Information-Agnostic Flow Scheduling
for Datacenter Networks,” in HotNets 2014.

[15] W. Bai, L. Chen, K. Chen, D. Han, C. Tian, and H. Wang,
“Information-Agnostic Flow Scheduling in Commodi-
ty Data Centers,” http://sing.cse.ust.hk/papers/pias-tr.pdf,
Technical Report HKUST-CS15-01, 2015.

[16] T. Benson, A. Akella, and D. A. Maltz, “Network Traf-
fic Characteristics of Data Centers in the Wild,” in IMC
2010.

[17] J. G. Carlsson and J. Shi, “A linear relaxation algorithm
for solving the sum-of-linear-ratios problem with lower
dimension,” Operations Research Letters, vol. 41, no. 4,
pp. 381–389, 2013.

[18] L. Chen, S. Hu, K. Chen, H. Wu, and D. Tsang, “Toward-
s Minimal-Delay Deadline-Driven Data Center TCP,” in
HotNets 2013.

[19] A. Dixit, P. Prakash, Y. C. Hu, and R. R. Kompella, “On
the impact of packet spraying in data center networks,” in
INFOCOM 2013.

[20] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Mas-
inter, P. Leach, and T. Berners-Lee, “Hypertext transfer
protocol–HTTP/1.1, 1999,” RFC2616, 2006.

[21] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula,
C. Kim, P. Lahiri, D. A. Maltz, P. Patel, and S. Sengup-
ta, “VL2: a scalable and flexible data center network,” in
SIGCOMM 2009.

[22] C.-Y. Hong, M. Caesar, and P. Godfrey, “Finishing
flows quickly with preemptive scheduling,” in SIGCOM-
M 2012.

[23] K. Jang, J. Sherry, H. Ballani, and T. Moncaster, “Si-
lo: Predictable Message Completion Time in the Cloud,”
Tech. Rep. MSR-TR-2013-95, 2013.

[24] V. Jeyakumar, M. Alizadeh, D. Mazieres, B. Prabhakar,
C. Kim, and A. Greenberg, “EyeQ: practical network per-
formance isolation at the edge,” in NSDI 2013.

[25] B. Kalyanasundaram and K. R. Pruhs, “Minimizing flow
time nonclairvoyantly,” Journal of the ACM (JACM),
vol. 50, no. 4, pp. 551–567, 2003.

[26] A. Munir, G. Baig, S. M. Irteza, I. A. Qazi, A. Liu,
and F. Dogar, “Friends, not Foes - Synthesizing Existing
Transport Strategies for Data Center Networks,” in SIG-
COMM 2014.

[27] A. Munir, I. A. Qazi, Z. A. Uzmi, A. Mushtaq, S. N. Is-
mail, M. S. Iqbal, and B. Khan, “Minimizing flow com-
pletion times in data centers,” in INFOCOM 2013.

[28] Y. Peng, K. Chen, G. Wang, W. Bai, Z. Ma, and L. Gu,
“HadoopWatch: A First Step Towards Comprehensive
Traffic Forecasting in Cloud Computing,” in INFOCOM
2014.

[29] S. Radhakrishnan, Y. Geng, V. Jeyakumar, A. Kabbani,
G. Porter, and A. Vahdat, “SENIC: scalable NIC for end-
host rate limiting,” in NSDI 2014.

[30] I. A. Rai, G. Urvoy-Keller, M. K. Vernon, and E. W. Bier-
sack, “Performance Analysis of LAS-based Scheduling
Disciplines in a Packet Switched Network,” in SIGMET-
RICS 2004.

[31] K. Ramakrishnan, S. Floyd, and D. Black, “RFC 3168:
The addition of explicit congestion notification (ECN) to
IP,” 2001.

[32] S. Schaible and J. Shi, “Fractional programming: the
sum-of-ratios case,” Optimization Methods and Software,
vol. 18, no. 2, pp. 219–229, 2003.

[33] B. Vamanan, J. Hasan, and T. Vijaykumar, “Deadline-
aware datacenter tcp (d2tcp),” in SIGCOMM 2012.

[34] C. Wilson, H. Ballani, T. Karagiannis, and A. Rowtron,
“Better never than late: Meeting deadlines in datacenter
networks,” in SIGCOMM 2011.

[35] H. Wu, J. Ju, G. Lu, C. Guo, Y. Xiong, and Y. Zhang,
“Tuning ECN for data center networks,” in CoNEXT
2012.

[36] Y. Xu, M. Bailey, B. Noble, and F. Jahanian, “Small is
Better: Avoiding Latency Traps in Virtualized Data Cen-
ters,” in SOCC 2013.

[37] M. Yu, A. G. Greenberg, D. A. Maltz, J. Rexford,
L. Yuan, S. Kandula, and C. Kim, “Profiling Network
Performance for Multi-tier Data Center Applications.” in
NSDI 2011.

14

