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Abstract

Most existing data center network (DCN) flow schedul-
ing solutions aim to minimize flow completion times
(FCT). However, these solutions either require precise
flow information (e.g., per-flow size), which is challeng-
ing to implement on commodity switches (e.g., pFab-
ric [7]), or no prior flow information at all, which is at
the cost of performance (e.g., PIAS [10]). In this work,
we present QCLIMB, a new flow scheduling solution de-
signed to minimize FCT by utilizing imprecise flow in-
formation. Our key observation is that although obtain-
ing precise flow information can be challenging, it is pos-
sible to accurately estimate each flow’s lower and upper
bounds with machine learning techniques.

QCLIMB has two key parts: i) a novel scheduling
algorithm that leverages the lower bounds of different
flows to prioritize small flow over large flows from the
beginning of transmission, rather than at later stages; and
ii) an efficient out-of-order handling mechanism that ad-
dresses practical reordering issues resulting from the al-
gorithm. We show that QCLIMB significantly outper-
forms PIAS (88% lower average FCT of small flows) and
is surprisingly close to pFabric (around 9% gap) while
not requiring any switch modifications.

1 Introduction

Flow scheduling is an effective scheme for low latency
data center network (DCN) transport design [7, 10, 24,
41, 27, 37, 33]. One of the most important goals of flow
scheduling is to minimize flow completion times (FCT),
which is essential for many critical DCN applications,
such as web search [5], key value store [2, 40, 3], and
machine learning training [23]. These applications are
dominated by small messages and have stringent latency
requirements, as a result, even a very small delay can
significantly degrade application performance [37].
There are two lines of prior work aimed at mini-
mizing FCT, known as clairvoyant and non-clairvoyant
scheduling. The clairvoyant scheduling [7, 41, 37, 24]

assumes prior knowledge of precise flow size informa-
tion and uses it to approximate the Shortest Remain-
ing Processing Time (SRPT). This approach can theo-
retically achieve optimal performance, but is very chal-
lenging to be deployed in current DCNs, e.g., requir-
ing too many priority queues [7] or re-factor the entire
TCP/IP stack [41, 37, 24]. The non-clairvoyant schedul-
ing [10, 11, 21, 48] requires no prior flow information
and dynamically estimates flow size (e.g., based on the
bytes the flow has sent [10]). While this approach is easy
to implement in practice, it cannot precisely distinguish
between large and small flows at the beginning, thus fail-
ing to minimize FCTs for latency sensitive short flows.
To minimize FCT and be practical, we explore a new
design space that lies between existing clairvoyant and
non-clairvoyant scheduling solutions. Rather than rely-
ing on precise flow information or no prior flow infor-
mation at all, we ask: Is it possible to use imprecise flow
information to minimize FCT with commodity switches?
Answering this question requires identifying useful,
yet imprecise, flow information and incorporating it into
flow scheduling. Some existing work [23, 42] employ
machine learning (ML) techniques to estimate per-flow
size but fail to get high accuracy (§2.2). Utilizing im-
precise flow information is also very challenging. Sim-
ply feeding imprecise information to existing clairvoyant
schedulers significantly degrades their performance [23].
We address these challenges with QCLIMB, a practi-
cal flow scheduling solution that uses imprecise flow in-
formation to minimize FCT in DCNs. QCLIMB is based
on a key observation that although determining per-flow
size of DCN applications can be difficult, it is possi-
ble to accurately estimate each flow’s lower and upper
bounds. Our experiments (§2.3) on realistic DCN work-
loads have shown that the actual sizes of a majority of
flows (> 99.9%) fall within their lower and upper bounds
estimated by random forest (RF) model. Moreover, we
found the actual sizes of small flows are generally close
to their lower bounds, while medium and large flows may



have a larger gaps between their actual sizes and lower
bounds. These findings provide an opportunity to pre-
cisely differentiate small flows from large flows based on
their lower bounds, making it possible to prioritize small
flows over large ones from the start, rather than in later
stages of transmission.

Based on these findings, we develop a novel schedul-
ing algorithm consisting of two main phases: queue-
climbing-up and queue-climbing-down. Each flow is
initially mapped to a priority queue based on its lower
bound. During the queue-climbing-up phase, the flow is
gradually promoted to higher-priority queues based on
its remaining data size relative to the lower bound. If
the flow is not yet completed after the first phase, it en-
ters the queue-climbing-down phase. During this phase,
QCLIMB gradually demotes the flow to lower-priority
queues based on its bytes sent, and once its upper bound
finishes, it is pulled directly to the lowest priority queue.

QCLIMB’s algorithm is effective at prioritizing small
flows over large ones for two reasons: i) small flows are
close to their lower bounds and thus can finish in the first
few higher priority queues during the queue-climbing-
up phase; and ii) medium and large flows will be trans-
mitted behind small flows during the queue-climbing-up
phase because their lower bounds are relatively larger.
They will also be penalized to the last few lower priority
queues during the queue-climbing-down phase.

In addition to designing the scheduling algorithm, we
must also tackle practical out-of-order (OOQO) issues.
This is because during the queue-climbing-up phase, the
later packets of a flow can enter higher-priority queues
than the earlier ones. The default TCP OOO handling
mechanism considers this event as a packet loss and trig-
gers unnecessary retransmissions. This results in serious
performance degradation, especially for small flows (de-
tails in §5.2).

Addressing the OOO issue needs to overcome two
practical challenges: First, how to differentiate reorder-
ings caused by QCLIMB’s scheduling algorithm from
actual packet loss? Second, for packets reordered by
QCLIMB, how to efficiently reorder them at the receiver
side? Simply relying on the default TCP reordering
mechanism will cause redundant retransmissions.

To tackle the first challenge, we present a priority-
based loss detection mechanism at the receiver (§3.2.1).
The idea is to leverage the fact that the packets carrying
the same priority belonging to the same flow should be in
order, and a gap within the same priority is identified as
a loss. For the second challenge, we take a non-intrusive
approach by customizing ACKs for OOO packets at the
receiver to bypass the default TCP ACKing mechanism.
Through this way, normal TCP ACKs will not be sent for
00O packets, and the senders have no chance to trigger
redundant retransmissions (§3.2.2). Moreover, with the

customized ACK, the sender can quickly retransmit the

lost packet without waiting for timeout (§3.2.3).

We have implemented a QCLIMB prototype (§4),
which only requires end host implementation and the
built-in function (e.g., strict priority queuing) in exist-
ing commodity switches. We implement the schedul-
ing logic and RF model inferencing as Linux kernel
modules, which reside between the NIC driver and the
TCP/IP stack as a shim layer. Further, OOO handling is
implemented within the TCP and IP layers and requires
minimal modifications to the kernel source code but does
not touch the core TCP congestion control code.

We build a small-scale 25G testbed with eight servers
and a Barefoot Tofino switch!, together with large-scale
simulations at 40/100G network, to evaluate the perfor-
mance of QCLIMB (§5). We find that:

e Compared to PIAS [10] that requires no flow size,
QCLIMB reduces the overall average FCT and the
average/tail FCT of small flows by up to 49.5% and
88%/97%, respectively. It also improves the query per-
formance by 70%~97% in a Memcached application.

* Compared to pFabric [7] that assumes precise flow in-
formation, QCLIMB can deliver an average gap of 9%
for overall performance and even show a 6.8% lower
tail FCT of small flows in a PageRank workload.

* QCLIMB’s design components are effective for the
performance. QCLIMB is resilient to extreme cases
with model-application mismatching, coexisting appli-
cations, and tiny workload. Yet, it outperforms PIAS
even with two queues and low model accuracy.

2 Background and Motivation

2.1 Limitations of Existing Approaches

As shown in Table 1, existing DCN flow scheduling so-
lutions can be classified into two categories:
Clairvoyant solutions: Clairvoyant solutions attempt to
approximate the Shortest Remaining Processing Time
(SRPT) scheduling based on prior knowledge of pre-
cise flow size information. In general, they can provide
good performance but have significant limitations in de-
ployability. First, pFabric [7] uses millions of priorities
to implement SRPT, whereas such fine-grained priority
queues require clean-slate switches and are not supported
by existing commodity switches. Second, pHost [24],
Homa [37] and EPN [34] use limited number of priority
queues, but need to re-factor the network stack or rely
on programmable switches. Finally, PDQ [28] and Fast-
Pass [41] do not use priorities but are impractical as well.
For instance, PDQ [28] requires non-trivial switch modi-
fication to adjust the flow rate to implement flow preemp-
tion. FastPass [41], as a centralized scheduling design, is
challenging to be deployed in a large cluster.

IThough the switch is P4-programmable, we use it as a commodity
hardware in our evaluation.



Requiring no switch changes

Schemes
or advanced hardware

Using limited number
of priority queues

Retaining existing
TCP/IP network stacks

Using lower bounds
for flow scheduling

pFabric [7] No No No No

PDQ [28] No X (priority queues are not required) No No

. EPN [34] No Yes Yes No
Clairvoyant - — - — -

FastPass [41] | Yes (but centralized arbiter is required) | x (priority queues are not required) No No

pHost [24] Yes Yes No No

Homa [37] Yes Yes No No

Non-Clairvoyant PIAS [10] Yes Yes Yes No

QCLIMB Yes Yes Yes Yes

Table 1: Summary of main DCN flow scheduling schemes in literature and comparison to QCLIMB.

Non-clairvoyant solutions: Non-clairvoyant schedulers
are agnostic about flow size information and generally
use the idea of flow aging to estimate the pending data
with the bytes a flow has already sent. For exam-
ple, PIAS [10] gives the highest priority to new flows
and then gradually demotes their priorities as they send
more data. It is a readily-deployable solution that works
with multiple priority queues available in commodity
switches and is compatible with legacy TCP/IP stacks.
However, PIAS has limited ability in minimizing FCT
(85).

In short, this short analysis inspires us to think about if
there is a middle-point design between clairvoyant and
non-clairvoyant schedulers, i.e., scheduling flows with
imprecise knowledge and with commodity switches.

2.2 Imprecise Flow Information

Indeed, researchers have shown the possibility to learn
flow size information from past traces using prevailing
ML techniques [23, 42, 35, 30]. Nevertheless, the esti-
mated flow sizes of ML models are often imprecise. To
validate this point, we use a widespread ML technique—
RF, over three workloads?: K-Means, PageRank, and
SGD, provided by [23]. Fig. 1 plots the gap between ac-
tual and estimated flow sizes for different-scale RF mod-
els we trained (i.e., different maximum tree depth d). In
general, a larger d leads to higher prediction accuracy.
However, the gap between actual and estimated flow
sizes always exists. Under d = 10, the mean/maximum
gap can reach 856KB/296811KB, 820KB/333271KB,
and 55KB/54446KB, for the K-Means, PageRank and
SGD workloads, respectively. In particular, for PageR-
ank under d = 10 RF model, 34% of flows have a gap of
over 100KB to their estimated sizes.

Little work can utilize imprecise knowledge well. The
only work, FLUX [23], directly takes imprecisely esti-
mated flow sizes as input for clairvoyant schedulers (e.g.,
pFabric [7]), which, however, suffers degraded FCT per-
formance. Indeed, we did a simulation and the results
show that the average FCT of small flows achieved by
pFabric with imprecise knowledge can be slowed down
by up to 22.8 x (appendix A). Even though the estimated

2We did not use traditional DCN workloads like web search [5] and
data mining [25] because they only provide flow size distribution. The
workloads of [23] are collected from university clusters running real
ML applications and contain enough information for learning.
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Figure 1: The gap between predicted and actual flow sizes.

flow sizes are imprecise, in what follows we demonstrate
that the lower bound part is highly accurate.

2.3 Motivation: Lower Bound on Flow Size

2.3.1 Application Examples

We begin by introducing a few application examples in
which lower bounds on flow sizes indeed exist:

Distributed ML: Training ML models in parallel is an
increasingly important workload in datacenters. During
the model training, each generated flow needs to transfer
at least one parameter update (e.g., a 32-bit integer). This
means that the flow is at least ~40 bytes, considering
the length of various headers including TCP and IP. As
a concrete example, we inspect the flow size distribution
of a SGD workload [23] and find that all flows are more
than 44 bytes (see §5.1).

Web Search: Large-scale web search application is an-
other example, where a query might be sent to many
aggregators and workers, each responsible for a dif-
ferent part of the index. From a networking perspec-
tive, it contains query traffic, delay-sensitive short mes-
sages for cluster coordination, and background traffic
for response-quality-oriented massive data transfer. The
smallest flow comes from the query traffic, e.g., transfer-
ring the index of at least one page between workers and
aggregators, which is typically lager than 1.6KB [5].

2.3.2 Experimental Observations

The above examples only provide application-level iden-
tical lower bounds for all flows. These bounds are loose
for individual flows. That said, they may be far away
from the actual flow sizes, thus limiting the effect of flow
scheduling. To provide a tight lower bound for each in-
dividual flow at its start, we use the RF technique [15].
Specifically, we keep the full conditional distribution of
each RF tree’s decisions and use a quantile regression
forest (QRF) method [36] to build a prediction interval
for each flow’s size (see appendix B). Fig. 2 gives an in-
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Figure 2: Relationship between actual flow sizes and pre-
diction intervals. For better visualization, flows are ordered
according to their prediction intervals.

tuitive visual feeling® for the prediction intervals. We
have the following observations that inform our design.
Observation 1 (O1): With RF model, each flow can have
a bounded interval on its data size, and the vast majority
of flows can be accurately bounded.

A flow is bounded if its actual size falls exactly within
its lower and upper bounds; otherwise, it is an out-of-
bound flow. As shown in Table 2, the ratio of bounded
flows accounts for 99.9055%~100%. This result stems
from the fact that QRF keeps the full conditional distri-
bution of the estimated size; thus, the obtained prediction
intervals can cover each flow with high probability.
Observation 2 (02): For small flows, their actual sizes
are mostly close to their lower bounds.

From Fig. 2, we see that small flows are mostly scat-
tered around their lower bounds. The average gap of
small flows’ actual sizes to their lower bounds can be
only 12983B, 12630B, and 213B, for K-Means, PageR-
ank, and SGD workloads, respectively. For the root
cause of this phenomenon, an intuitive conjecture is that
these workloads exhibit a long-tail distribution where
most flows are short. This makes an RF model have
many small values in its leaf nodes, thus predicting a
lower bound close to the small flow’s size.

Observation 3 (03): Medium and large flows’ lower
bounds are relatively larger than those of small ones.

Across all the cases we examined, the aver-
age lower bound of small flows is 52B~12KB,
1002B~1198B, and 80B~664B, for K-Means, PageR-
ank, and SGD workloads, respectively, For medium
(large) flows, the average lower bound is 52B~124KB
(52B~26899KB), 1002B~2090B (1002B~19060KB),
and 255KB~ 260KB (260KB~1109KB) for the three
workloads, respectively.

Observation 4 (04): For out-of-lower-bound flows, the
small flows have a smaller gap to relevant lower bounds

3Fig. 2 only shows two settings (i.e., the maximum tree depth d = 5
and 10), but our observations are condensed from all settings we tested.

The ratio of The ratio of

Workloads bounded flows out-of-bound flows
KMeans @=5  99.9936% 0.0064%
d=10  99.9301% 0.0699%
d=5 100% 0
PageRank 16 99.9055% 0.0945%
d=5 100% 0
SGD 410 99.9877% 0.0123%

Table 2: The ratio of bounded and out-of-bound flows.

than medium and large ones.

We gather the out-of-lower-bound flows and explore
how far their actual flow sizes are from their lower
bounds. We observe that this differs in different types of
flows. For small flows, the average gap between their ac-
tual sizes and lower bounds is only 2.8B~25KB, across
the cases we tested. For medium and large flows, this
gap can reach 68KB~743KB and 6863KB~-77072KB,
respectively.

Observation 5 (05): For out-of-upper-bound flows, they
are primarily medium and large flows and may go be-
yond their relevant upper bounds a lot.

We barely see any small flows going beyond their up-
per bounds in our experiments. The out-of-upper-bound
flows are dominated by medium and large ones; yet, their
actual flow sizes have a substantial gap to relevant upper
bounds, i.e., 54KB~2322KB and 262KB~43252KB for
medium and large flows, respectively.

Observations 04 and OS can be intuitively caused by

different densities of flow size between small and medi-
um/large flows. Compared to small flows, medium/large
flows have a more sparse distribution of flow size value;
thus, if being out-of-bound, they are more likely to have
a larger gap to their bounds.
Discussion: The observations above might not manifest
for applications without long-tail flow size distributions,
e.g., local file system [22] and archival data [43]. This
is expected because regular RF shows high predictabil-
ity for majority class samples, while small flows in these
applications are minority classes. A possible way would
be to modify the weighting strategy in regular RF [45] to
bias small-value samples and consequently make better
predictions for small flows than medium/large ones.

3 QCLIMB Design
3.1 Lower-bound-based scheduling

The above findings offer an opportunity to differentiate
small flows from large flows precisely, based on their
lower bounds. This makes it possible to prioritize small
flows over large ones from the start, rather than in later
stages of transmission. Based on this insight, we develop
anovel flow scheduling algorithm consisting of two main
phases: queue-climbing-up and queue-climbing-down.

Phase 1: Queue-Climbing-Up. The observations O1 in
§2.3 indicate that the lower bound of each flow is highly
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Figure 3: A queue-climbing-up&-down example with two
flows: f1 and f2. AS: actual size; LB: lower bound.

credible. That said, each flow’s actual size is, with a high
probability, larger than its lower bound. So, QCLIMB
hypothetically believes that each flow’s size equals its
lower bound. In particular, QCLIMB lets each flow en-
ter a lower-bound-matched initial priority queue first and
then gradually promotes it from this initial queue to the
higher-priority ones based on the remaining bytes to its
lower bound (see Fig. 3). In this phase, flows with
smaller lower bounds but the same bytes sent or larger
bytes sent but the same lower bounds are likely to have
higher priority.

Phase 2: Queue-Climbing-Down. The hypothetical
judgment made above can be wrong for the flow not yet
completed after its lower bound part finishes. QCLIMB
thus takes an additional queue-climbing-down phase as
a remedy. Specifically, QCLIMB pulls back the flow to
its initially entered priority queue and punishes it by de-
moting it to lower-priority queues gradually based on its
bytes sent. Moreover, if the bytes sent exceed the upper
bound, QCLIMB takes a greater punishment by dragging
the flow down to the lowest priority queue.

Why this works. Our scheduling algorithm is able to
effectively prioritize small flows over large ones for the
following reasons. First, if a flow is a small one, its size
is near the lower bound (02); thus, it can finish with the
first few higher priorities. Second, small flows can keep
relatively higher priorities than medium and large flows
during the queue-climbing-up phase since their lower
bounds are somewhat smaller (O3). Third, despite very
few small out-of-lower-bound flows, they will not enter
a priority queue lower than the one mapping their actual
sizes because of their small gap to lower bounds (O4)
and the relatively large flow size range of each priority
queue. Fourth, a medium or large flow will eventually
be penalized to lower-priority queues or even the lowest
priority queue (OS).

In comparison to the non-clairvoyant solutions such as
PIAS [10], which demotes flows as they transmit more
data, medium/large flows can only be detected and sep-
arated into low-priority queues after they coexist with
short flows in higher-priority queues for a short period.

In contrast, QCLIMB separates flows into different pri-
ority queues once they start, using their lower bounds.
Putting it all together: QCLIMB adopts multiple prior-
ity queues available in commodity switches. Packets car-
rying different priorities will enter into different priority
queues. Packets in different queues are scheduled with
strict priority, while packets in the same queue follow
FIFO scheduling. Packet priority tagging (appendix C)
is distributed at each end-host, which is triggered when-
ever a new packet p arrives. It first gets the bytes sent B,
lower bound L, and upper bound U for the parent flow
of the arriving packet p. It then relies on the following
three steps working cooperatively.

1. Priority Promoting: If B < L, we invoke get_priority
for determining packet p’s priority, which scans queue
thresholds bottom-up and returns the first priority hav-
ing a threshold smaller or equal to L — B. Meaning, a
flow is initially mapped to a priority queue according
to its lower bound. Then, it climbs up from this initial
queue to higher-priority queues gradually based on the
remaining bytes to its lower bound.

2. Delay Demoting: A flow may only contain minor er-

rors: its lower/upper bounds map to the same priority.
Such flow can only remain a small amount of data af-
ter the first phase. So, we take a delay demoting ap-
proach here, i.e., we keep each flow’s priority (mostly
the highest one) for a short while to transmit a slack
size S more data to hope it can finish.

3. Priority Demoting: At this point, if a flow is not yet

completed, we will change the strategy and gradually
demote its packets to lower-priority queues according
to its bytes sent. If the flow is not end even after the
upper bound portion finishes, we move it to the lowest
priority queue directly.
Choice of Slack Size S: A larger slack size S may al-
low more flows to complete before switching to lower-
priority queues while leading more large flows to coexist
with small flows. The optimal value of S in terms of aver-
age FCT is closely related to the gap between the actual
sizes and lower bounds of flows, and varies under differ-
ent traffic patterns and different RF models. However,
as mentioned earlier, almost all small flows are close
to their lower bounds and can finish within the queue-
climbing-up phase, making QCLIMB beneficial under a
wide range of S (see §5.2).

3.2 Out-of-Order Handling

In addition to designing the scheduling algorithm, we
must also tackle practical out-of-order (OOQ) issues.
This is because during the queue-climbing-up phase, the
later packets of a flow can enter higher-priority queues
than the earlier ones. As a result, the subsequent pack-
ets of a flow may arrive at the receiver before previous
ones, i.e., out-of-order (OOO). The default TCP OOO
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Figure 4: Priority-based loss detection.

retransmission is required

handling may treat this event as loss, thus triggering un-
necessary retransmissions and significantly hurting the
performance, especially for the tail FCT of small flows
(see Fig. 15 in §5.2). Addressing the OOO issue needs
to overcome two practical challenges: (i) how to differ-
entiate reorderings caused by QCLIMB’s scheduling al-
gorithm from actual packet loss? and (ii) for packets re-
ordered by QCLIMB, how to efficiently reorder them at
the receiver side?

3.2.1 Loss detection

To detect if an OOO event is due to loss, QCLIMB adopts
a priority-based loss detection mechanism at the receiver.
This mechanism leverages the fact that for each flow, the
packets carrying the same priority traverse the same pri-
ority queue in each switch along the transmission path*
and should be in-order. A gap within the same priority is
assumed to be a loss. For a better intuition of this point,
we consider a concrete example in Fig. 4. As we can
see, there appears a sequence number gap. We check if
the left-hand packet of this gap has different priority as
the right-hand packet. If yes, the packet may be in-flight,
and reordering is required (§3.2.2); Otherwise, the rel-
evant packet must be lost, and the retransmission logic
will be invoked (§3.2.3). Note that because a flow may
transmit multiple packets using the same priority, there
could be a corner case. More specifically, when the gap
occurs at the boundary of a priority, it will not be iden-
tified as a loss with the above mechanism, but it is still
likely to be a loss. In this paper, we leave such loss de-
tection to timeout.

3.2.2 Packet reordering

Packet reordering is conducted by separating OOO pack-
ets into slow path, as detailed below. Starting from the
bottom to up, packets arrive at the NIC and are read into
the kernel as skbs. Once a packet is copied to skb, it will
be pushed up to the TCP layer, where QCLIMB checks if
it is in-ordered. If yes, this packet will be sent along the
fast path that directly connects to the application layer re-
ceiver buffer. Otherwise, this packet will be identified as
an OOO packet. As such, QCLIMB will send this packet
along the slow path and store it in an OOO receive queue.
After the missing packets arrive, QCLIMB will forward
it up to the application layer receive buffer.

While the reordering is simple, the OOO event caused
by QCLIMB’s scheduling may mislead the default TCP

4We consider single-path routing for each flow, i.e., ECMP [29].

stack to trigger duplicate ACKs from receiver to sender,
thus leading to redundant retransmissions. To avoid this
phenomenon, we let the receiver bypass the default TCP
ACKing mechanism by directly sending a customized
ACK to the sender on receiving any OOO packet. Mean-
while, we let the sender maintain a scoreboard to track
which packets have been cumulatively and selectively
acknowledged. Here, each customized ACK carries the
cumulative acknowledgment (indicating its expected se-
quence number), a scoreboard update flag, and a SACK
tag (indicating the OOO packet received). Upon receiv-
ing such ACK, the QCLIMB sender checks if this ACK
contains an update flag. If yes, the sender will update its
scoreboard to allow TCP to continue as usual. As such,
the sender will not have a chance to trigger redundant re-
transmissions because the TCP’s normal ACKs for OOO
packets will not be sent.

3.2.3 Packet retransmission

When a loss is detected, the receiver will not discard
the OOO packet, and the sender will retransmit the lost
packet. More precisely, the receiver also sends a cus-
tomized ACK, which has the same format as that in
§3.2.2 but has a different (retransmission) flag. Upon
receiving such an ACK, the QCLIMB sender checks if
this ACK contains a retransmission flag. If yes, it enters
loss recovery mode, where the sender retransmits the first
packet that corresponds to the cumulative acknowledg-
ment value. Any subsequent packet will be retransmit-
ted if the sender receives another ACK carrying a higher
cumulative acknowledgment value and a retransmission
signal. Through this way, we can quickly retransmit the
lost packets without waiting for the timeout.

Note that to guarantee the delivery of all ACKs, we
transmit them at the highest priority. Moreover, we also
give the highest priority to retransmitted packets because
we want to fill the gap as soon as possible to minimize
the resequencing buffer’s memory footprint.

4 Implementation

We have implemented a QCLIMB prototype under the
Linux 4.15 kernel, as detailed below.

4.1 Sender

Flow monitoring: We implement this module in Linux
kernel space and integrate it with the RF inferencing and
packet tagging modules. It collects flow information us-
ing the Netfilter hook [1]. For each new flow, we collect
its start time, flow gap (time since the end of the previ-
ous flow), flow sizes for the last 5 flows, and TCP 5-tuple
(i.e., source/destination IPs and ports, protocol ID) and
feed them into the RF inference module. During the flow
lifetime, we also record its bytes sent to guide the packet
tagging. For each finished flow, we append its flow size
to the features and transfer the collected information to
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RF training using the netlink channel.

RF training: This module is in user-space. It receives
flow information and performs RF training. We trans-
fer the trained RF model to the RF inferencing module,
again using the netlink channel.

RF inferencing: We implement this module in the ker-
nel space to avoid frequent cross-space communication
between packet tagging and RF inferencing. Specifically,
we use C to implement the RF model in the kernel. This
module performs online inference to obtain the lower/up-
per bounds for each flow and passes the inferred informa-
tion to the packet tagging module for flow scheduling.
Packet tagging: This module enforces the scheduling
policies of QCLIMB algorithms by marking packets with
priorities at end hosts. We implement it as a Linux ker-
nel module, locating between TCP/IP stack and Linux
TC. For each outgoing packet, this module has three key
operations. First, it maintains a hash-based flow table
that stores the 5-tuple and bytes sent. Second, it iden-
tifies the flow the packet belonging to and updates the
bytes sent of the relevant entry in the flow table. Third,
based on the lower/upper bounds and bytes sent of the
flow, it calculates a priority for this packet and invokes
the ipv4_change_dsfield function to tag the priority
into this packet’s IP header using three bits of the TOS
field (as shown in Fig. 5). Note that three bits can repre-
sent 8 priorities at most, which can match the number of
priority queues in most commodity switches.

Packet retransmission: This module is mainly respon-
sible for retransmitting the lost packet identified by the
priority-based loss detection mechanism. Specifically,
we have two operations. First, using some newly added
codes in the tcp_rcv_established function, we check
if an arriving ACK contains a flag (the 2nd and 3rd bit in
TOS field). If no, the TCP/IP stack continues as usual.
Otherwise, we go to the second operation, which first
further checks the value of this flag. If the flag equals to
01, retransmission is needed; if it is 10, only scoreboard
update is required. For retransmission, we get the se-
quence number of the lost packet according to the ACK’s
ack_seq field and then invokes the tcp_transmit_skb
function to retransmit the lost packet.

Rate control: Since our implementation does not touch
the congestion control code, QCLIMB is compatible
with any TCP-like congestion control implementations
(e.g., TCP, DCTCP). Note that when a loss is detected
by the priority-based detection mechanism (§3.2.1), we
halve the window size of the relevant flow to avoid in-
jecting too many traffic in the network.
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Figure 6: Workloads used for evaluation.

4.2 Receiver

Loss detection: This module contains three opera-
tions to enforce the loss detection mechanism described
in §3.2.1. First, as packets are read in off the wire
and converted to skbs, the packet priority is copied to
the skb->priority field. Second, we compare the
skb->priority of the first segment in the OOO receive
queue with that of the last segment in the in-order TCP
receive buffer to check if there is a missing gap. Third,
QCLIMB adds a new skb->flag field in skb_buff. The
skb->flag equals to O by default and skb->flag=1
means that the lost packet needs retransmission. Note
that skb->flag is in the receiver’s kernel, we need to
send it over the network to the relevant sender. To do this,
we call a newly added function, tcp_send_ack_qclimb,
to send a customized ACK and tag the skb—>flag in
this ACK packet. Specifically, we copy the skb->flag
value to the 2nd&3rd bits of the TOS field in this ACK’s
IP header. Note here, when an OOO event is not due to
loss, we will also send a customized ACK, but set the
skb->flag value to 2 and copy it to the ACK’s header
to notify the sender to update the scoreboard solely.
Packet reordering: As OOO packets and in-order pack-
ets are separated into different queues, the reordering
module is quite simple. Whenever there is a data packet,
the receiver scans the OOO receive queue to move any
in-sequence packets to the in-order receive buffer. After
that, users leverage recv function to copy data from the
TCP receive buffer to application layer receive buffer.
Remark: On the switch side, QCLIMB only needs to
configure strict priority queuing (SP); if TCP/ECN trans-
port is in use, ECN is also required. Both SP and ECN
are standard features in existing commodity switches.

5 Evaluation

We evaluate QCLIMB through a combination of testbed
experiments and large-scale simulations and show that

¢ QCLIMB achieves lower FCTs than PIAS (§5.1).

* QCLIMB’s design components are effective (§5.2).

* QCLIMB works well in large datacenters (§5.3).

5.1 Testbed Experiments

Testbed: We build a small-scale testbed consisting of
8 servers connected to a Barefoot Tofino switch using
25Gbps links. Each server is equipped with a 16-core
CPU (Intel Xeon Silver 4314@2.4GHz), 64G memory,
a 25G NIC (Mellonax CX5), and installed with Ubuntu
(kernel version 4.15.1). The switch runs SONIC and is
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Figure 8: 99th percentile tail FCT of 0-100KB small flows.

configured with strict priority queuing with at most 8
queues. We use the DCTCP as the rate control.
Comparisons: We compare QCLIMB with PIAS [10]
and QCLIMB-PS. We chose PIAS because it has the
same practical features as QCLIMB but falls short
in FCT minimization. QCLIMB-PS is a variant of
QCLIMB that takes precise flow sizes as input and pro-
motes a flow to higher-priority queues based on its re-
maining bytes. For OOO handling, it uses the same com-
ponent as in §3.2. QCLIMB-PS is essentially a clair-
voyant scheduler and is used for quantifying how far
QCLIMB is from the scheme that has precise knowledge.
Workloads: As mentioned in §2, we mainly use three
workloads provided by the paper [23]: K-Means, PageR-
ank and SGD. Their distributions are shown in Fig. 6.
All the three workloads exhibit a heavy-tailed distribu-
tion, where most flows are short and most of the traffic
are dominated by a small percent of large flows. To re-
play these workloads in our testbed, we strictly keep the
message arrival order and let message sizes follow the
original testing traces. We reset the inter-arrival time of
requests to match a particular network load.

Setup: For each workload, we first train an RF model
(with the maximum tree depth d = 10 by default) for ~3
minutes using 80% of the dataset and then use the trained
RF model for testing with the remaining dataset to con-
duct our evaluation. We use 8 priority queues by default.
We use the same queue thresholds as the PIAS paper [10]
for all workloads. We set slack size S to 100KB by de-
fault. We set the RTO,,;, to 10ms and use a per-port
buffer of 350KB at each switch.

Performance of small flows: Fig. 7 and Fig. 8 first
show the average and tail FCT of small flows, respec-
tively, for the K-Means, PageRank and SGD workloads
with the network load varying from 0.3 to 0.9. We
have the following two observations. First, for all work-
loads, QCLIMB outperforms PIAS in both the average
and tail FCT of small flows. Compared to PIAS, it
reduces the average/tail FCT of small flows by up to
44%/96%, 58%/96%, and 88%/97%, for the K-Means,
PageRank, and SGD workloads, respectively. This is be-
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Figure 10: Average FCT of >10MB large flows.

cause QCLIMB promotes a flow’s priority until its lower
bound part finishes, while small flows are mostly scat-
tered around their lower bounds. Therefore, unlike PIAS,
QCLIMB will not let small flows suffer from the queue-
climbing-down phase (see §5.2). Second, QCLIMB
shows a comparable average and tail FCT of small flows
with QCLIMB-PS. Particularly, compared to QCLIMB-
PS at 0.7 network load, QCLIMB has a 3% gap for the
small average FCT in PageRank workload and a 5% gap
for the small tail FCT in SGD workload.

Performance of other flows: Fig. 9, Fig. 10 and Fig. 11
depict the FCT statistics for the other flows. The first ob-
servation is that QCLIMB outperforms PIAS for medium
flows. Under a moderate 0.5 load, QCLIMB reduces the
average FCT of medium flows over PIAS by 8%, 24%,
and 8% for the K-Means, PageRank, and SGD work-
loads, respectively. This is expected because medium
flows are more likely to leave a small amount of data
after their lower bound parts finish (see Fig. 2), thus are
more likely to complete in QCLIMB’s delay demoting
step. As the second observation, we find that QCLIMB
even performs slightly better than PIAS for large flows in
some cases. For instance, compared to PIAS, QCLIMB
reduces the average FCT of large flows by 5% on aver-
age across all network loads in the SGD workloads. The
last observation is for the average FCT of all flows. More
precisely, QCLIMB shows up to 6%, 15%, and 23% re-
ductions in overall average FCT over PIAS for the K-
Means, PageRank, and SGD workloads, respectively.
Results with the Memcached application: We further
build a Memcached application to evaluate QCLIMB’s
performance. We use one host as the client and the re-
maining 7 hosts as servers. Before sending each GET
query (i.e., memcached_get()), the client will first send
a SET (i.e., memcached_set()) request to pre-populate
each server with a key-value pair. The key is flow id.
The value is flow size which is randomly chosen ac-
cording to a Facebook Memcached workload [8]. Once
the SET request is completed, the client immediately
sends a GET query to each server to get the value just
populated by the SET request. We repeat this process
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Figure 12: QCT statistics across different query sizes.

roughly 140000 times and thus generate around 140000
GET queries. A GET query completes only when the
client receives all servers’ responses. We only consider
GET queries and measure the query completion time
(QCT) as the application performance metric. We also
inject background traffic, which is a mix of small and
large flows generated according to a Web Search work-
load [5]. The background traffic load varies from 0.3
to 0.9. We calculate each query’s size as the sum of
its individual flows’ size. Fig. 12 compares the QCT
of QCLIMB with that of PIAS, across different query
sizes and different background traffic loads. Compared
to PIAS, QCLIMB reduces the overall average QCT
by 70%~97%, the average/tail QCT of 0-100KB small
queries by 70%~97%/6%~99.8%, and the average QCT
of >100KB queries by 21%~94%. Note that QCLIMB’s
QCT does not increase with background traffic load.
This is because background traffic is transmitted with the
lowest priority, while all queries’ traffic is in flows less
than 100MB and will not overlap with background traffic
in the same queue under QCLIMB’s scheduling logic.

Tiny workload: We further evaluate QCLIMB in a Ten-
sorflow workload from the Flux dataset [23]. This work-
load contains a significant proportion (i.e., 77%) of very
tiny flows (i.e., with less than 100B) and thus is more
likely to cause congestion than the other workloads. De-
spite this, we can observe from Fig. 13 that QCLIMB
still shows superior performance. Compared to PIAS, it
reduces the overall average FCT by up to 81.1%. For
the average/tail FCT of small flows, the improvement of
QCLIMB over PIAS is up to 70%/96.4%. The reduc-
tions of QCLIMB in small flows do not penalize other
flows. In fact, QCLIMB even reduces the average FCT
of >100KB flows by 22.7%~44.2%, compared to PIAS.
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5.2 QCLIMB Deep Dive

5.2.1 Effectiveness of the design components

Effect of lower-bound-based scheduling: We first
check the effectiveness of QCLIMB’s scheduling design.
We construct two baselines, both of which directly use
the estimated flow sizes for scheduling. The first one,
QCLIMB-FP, determines a flow’s priority only once by
comparing its estimated flow size with queue thresholds.
The second one, QCLIMB-PP, has two more steps than
QCLIMB-FP. More precisely, it gradually promotes a
flow’s priority according to its remaining bytes to the
estimated size. Afterward, if the flow is not yet ended
and the sent bytes exceeds the estimated size, it directly
pulls this flow to the lowest priority queue. Fig. 14 shows
the results for different workloads under load 0.5. We
observe that compared to QCLIMB-FP and QCLIMB-
PP, respectively, QCLIMB brings up to 16% and 12%
improvements in overall average FCT, and especially,
it brings up to 70%/97% and 60%/96% improvements
in average/tail FCT of small flows. Since QCLIMB is
at most 1.63x slower than QCLIMB-PS for the aver-
age FCT of small flows (see 0.7 load in Fig. 7a), the
3.29x speedup of QCLIMB over QCLIMB-PP means
that QCLIMB reduces the impact of prediction size er-
rors on small flows by % =72%.

Effect of priority-based loss recovery: To quantify the
effectiveness of our priority-based loss recovery mecha-
nism, we construct a variant of QCLIMB, which aban-
dons the proposed OOO design (§3.2) and uses the
default TCP loss recovery mechanism. Fig. 15 com-
pares the FCT performance achieved by this variant and
QCLIMB for the K-Means, PageRank and SGD work-
loads under load 0.7. As we can see from this figure,
QCLIMB outperforms the constructed variant signifi-
cantly, with the overall average FCT and the average/tail
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FCT of small flows being reduced by up to 1.12x and
1.86x/17.2x, respectively. Meaning, the priority-based
loss recovery design brings up to 11% and 46%/94% im-
provements for the two flow types, respectively.
Performance breakdown: QCLIMB differs from PIAS
because it has an additional scheduling step—queue-
climbing-up, making it complete small flows with the
first few higher-priority queues while separating medi-
um/large flows into relatively low-priority queues. To
confirm this, we conduct a performance breakdown eval-
uation for QCLIMB and PIAS under the PageRank
workload at load 0.7. As we can see from Fig. 16, though
QCLIMB has more processing steps for flow schedul-
ing, it delivers significantly lower FCTs than PIAS. We
further observe that for small flows in QCLIMB, only
0.52% of the FCT is spent for RF model inference, and
the queue-climb-up step accounts for 99.47%, the re-
maining 0.01% is for the slacking step. By contrast,
PIAS only contains a queue-climbing-down step and will
keep demoting small flows to lower-priority queues, thus
delivering poor performance. Medium and large flows in
QCLIMB first go through model inference step and then
climb up to higher-priority queues. They will stay in the
highest-priority queue for short while using the slack-
ing step, and finally will be penalized to lower-priority
queues using the queue-climbing-down step. Owing to
the queue-climbing-up step, QCLIMB achieves lower
FCTs of medium/large flows than PIAS. Note that across
all flow types, the model inference time is ~3.1 us,
which is negligible as compared to the FCT of flows
(603 s~784 ms). This means QCLIMB can quickly ob-
tain the lower/upper bounds for each flow and has the
potential to apply to high-speed datacenter networks.
00O handling Overhead: We conduct a testbed evalu-
ation and consider two types of OOO handling overheads
at receivers: the average CPU utilization (including soft-
ware interrupts) and the OOO buffer space. Fig. 17 first
compares the CPU overheads of QCLIMB with that of a
QCLIMB variant using default TCP OOO. We observe
that QCLIMB incurs up to 17.4% less CPU overhead
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Figure 17: CPU overhead and software interrupts for ker-
nel packet processing.

Load QCLH\I/[(faMeanS QCLH\P;IaBgeRank QCLIMBS e
(tcp 000) | CHMB | rcp 000y | ACHMB | (1cp o0y | ACHIMB
03 | 133870 | 591.66 1204 25 60439 179306 | 936581
05 | 277605 | 154854 | 192427 | 76942 200602 | 181235
07 | 575296 | 4979.13 | 313381 | 262044 | 231689 | 1888.72
09 | 8077.62 | 609689 | 343634 | 278749 | 333334 | 2016.14

Table 3: Buffer length (bytes) for storing OOO packets.

than the baseline. Yet, the software interrupts only oc-
cupy 6.2%~17% of the total CPU overhead. Table 3
further shows the buffer length for OOO packet storing.
We observe that QCLIMB incurs 194B~623B less OO0
buffer than the default TCP OOO, equaling a 10%~60%
reduction. The reason why QCLIMB incurs less CPU
overhead and OOO buffer space is that QCLIMB can
quickly detect the loss and retransmit the lost packets to
fill the gap in the receiver’s sequence number list. Thus,
00O packets do not need to stay too long in the OOO
buffer and can be quickly removed from this buffer.

5.2.2 Never-seen-before flow handling

One can either use QCLIMB or simply fall-back to PIAS
for handling never-seen-before flows.

Using QCLIMB: Using QCLIMB for never-seen-before
flow scheduling forms a model-application mismatching
scenario. To test QCLIMB in this case, we evaluate the
performance of the PageRank workload at 0.7 network
load while using the RF models trained based on the
K-Means and SGD workloads. Fig. 18 shows the FCT
statistics. We observe that when using the SGD model
for the PageRank workload, the average FCT of all flows
and small flows can be prolonged by 3.63x and 2.33x,
respectively. This is expected because the PageRank and
SGD workloads have very different flow size distribu-
tions (see Fig. 6). By contrast, when using the RF model
derived from a workload having a similar flow size dis-
tribution, the FCTs will not be affected too much. For
example, the average FCT of small flows is slowed down
by only 0.5% when using the K-Means RF model for the
PageRank workload.

Using PIAS: Using PIAS for never-seen-before flows
leads to QCLIMB flows coexisting with PIAS ones. To
show how these flows affect each other, we conduct
an experiment where PIAS traffic uses the WebSearch
workload [5] at load 0.3, and QCLIMB traffic is the
PageRank workload at load 0.5. We compare this mix-
ing solution with a baseline that uses PIAS for all traffic.
Fig. 19 shows the results. We see that for both workloads,
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the mixing solution achieves lower FCTs than the base-
line. Particularly, the average FCT of small flows can be
reduced by 62.7% and 10.1% for the PageRank and Web-
Search workloads, respectively. This implies that mixing
QCLIMB traffic in the network helps improve the perfor-
mance of non-QCLIMB traffic. Moreover, as the PIAS
flows does not use QCLIMB, the reduction of their FCTs
under the mixing solution is less than that of QCLIMB-
enabled PageRank flows.

Varying QCLIMB-enabled flow ratio: We proceed to
investigate the impact of the QCLIMB-enabled flow ra-
tio. We use PageRank workload at network load 0.7
and divide the traffic into two parts. The first part is
non-QCLIMB flows that use PIAS for scheduling, while
the second is QCLIMB-enabled flows. We vary the
QCLIMB-enabled flow ratio from 0.2 to 0.8. We com-
pare PIAS, QCLIMB, and the QCLIMB+PIAS mixing
solution. Fig. 20 depicts the results. As expected, the
performance of the mixing solution is between PIAS and
QCLIMB. Even when there are 20% QCLIMB flows, the
mix solution delivers ~10% lower average FCT of small
flows than PIAS. We further observe that the higher the
QCLIMB-enabled flow ratio, the more flows can depart
quicker, thus leaving more room for non-QCLIMB flows
and consequently delivering lower FCTs.

5.2.3 Sensitivity to parameter settings

Impact of number of queues: To validate the impact of
the number of queues on QCLIMB, we further conduct
the testbed evaluation with 2 and 4 priority queues under
the PageRank workload at 0.7 load. Fig. 21 shows the re-
sults. We observe that in general, QCLIMB outperforms
PIAS under all shown settings. Even with two queues,
QCLIMB works well and reduces the overall average
FCT and the average/tail FCT of small flows by 28.6%
and 74.3%/96.3%, respectively, compared to PIAS.
Impact of model accuracy: To understand the impact of
the flow size predictor, we tested QCLIMB in the PageR-
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Figure 21: Impact of number of queues.
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Figure 22: PageRank workload with different RF models.

ank workload at 0.5 load, under different RF models with
varying maximum tree depth d. Fig. 15 shows the re-
sults. It is clear that the overall average FCT decreases
as d grows. This means that the higher the RF model’s
accuracy, the better performance QCLIMB achieves. We
can further find that even under d = 5, QCLIMB still
performs significantly better than PIAS, with the over-
all average FCT reduced by 16.3% and the average/tail
FCT of small flows by 50%/93.8%. Note that for the
extreme case of d = 1, the RF model may predict a wide
size range for each flow, thus making QCLIMB achieve a
similar overall average FCT with PIAS. But the predicted
lower bounds of this d = 1 model might help QCLIMB
complete most small flows during the queue-climbing-
up phase. This makes QCLIMB achieve a dramatically
lower average/tail FCT of small flows than PIAS (see
Fig. 22b and Fig. 22¢).

Impact of slack size S: QCLIMB allows each flow to
transmit a slack size S more data after its lower bound
part finishes. QCLIMB outperforms PIAS under a wide
range of S, and setting S to 100KB achieves the best per-
formance for QCLIMB (appendix D).

5.3 Large-scale Simulations

Settings: In our simulations, we use the same topology
as prior evaluations of PIAS [10] and pFabric [7], con-
sisting of 144 hosts divided among 9 racks with a 2-level
switching fabric; the difference is that we use 40Gbps
host links and 100Gbps core links. Again, we use the
K-Means, PageRank, and SGD workloads as above. We
vary the load from 0.3 to 0.9.

Comparison with PIAS: Fig. 23 compares the
FCT statistics of QCLIMB with that of PIAS.
Compared to PIAS, QCLIMB reduces the over-
all average FCT by 17.4%~47.9%, 9.1%~38.3%,
and 37.9%~49.5%, for the K-Means, PageRank
and SGD workloads, respectively. QCLIMB also
achieves 1%~30.1%/1%~62%, 1%~35.1%/1%~55%,
and 3%~46.5%/2%~42.5% lower average/tail FCT of
small flows than PIAS, in the K-Means, PageRank and
SGD workloads, respectively. Such good results demon-
strate the effectiveness of QCLIMB’s scheduling. Note
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Figure 24: Comparison with QCLIMB-PS and pFabric in

simulations (KM: K-Means; PR: PageRank).

that QCLIMB’s overall improvement over PIAS in SGD
workload is relatively larger than those in other work-
loads. The reason is that the SGD workload is more
skewed. Around ~95% and ~74% flows in the K-Means
and PageRank workloads, respectively, are smaller than
100KB, while only ~66% flows in the SGD workload,
are smaller than 100KB. In such case, large flows are
more likely to coexist with short flows under PIAS.
QCLIMB is less likely to be affected by such problems,
as medium and large flows have relatively higher lower
bounds and take less time in queue-climbing-up phase,
thus exhibiting less time to coexist with small flows.
Comparison with precise-knowledge-aware schemes:
We compare QCLIMB, QCLIMB-PS (§5.1) and pFab-
ric [7]. Note that QCLIMB-PS and pFabric take precise
flow sizes as scheduling input. Fig. 24 depicts the re-
sults and reveals the following findings. First, QCLIMB
does not show severely worse overall performance in
the K-Means and PageRank workloads. Specifically,
under K-Means, QCLIMB achieves 0.4%~1.4% and
12%~17% higher overall average FCT than QCLIMB-
PS and pFabric, respectively. For PageRank, this gap is
1.6%~5.9% to QCLIMB-PS and 4.6%~13.1% to pFab-
ric. The average gap of QCLIMB to pFabric is 9% in
PageRank workload. Second, for the SGD workload,
QCLIMB’s overall performance has a relatively large
gap to QCLIMB-PS and pFabric. This is because that
the SGD workload is more skewed, leading large flows
in QCLIMB to be more likely to coexist with small flows.
Third, QCLIMB can achieve comparable performance

Flow bins Small | Medium | Large All
! flows flows flows flows
124
QCLIMB 0 0 124 (83 by loss detection)
. 414
pFaric 10 25 414 (all by timeout)

Table 4: Loss events comparison (K-Means, 0.7 load).
with QCLIMB-PS for small flows.For the average FCT
of small flows, QCLIMB has 1%~2.8%, —0.2%~5.7%,
and 0.4%~10.5%, for the K-Means, PageRank and SGD
workloads, respectively. Fourth, we find that the per-
formance gap between QCLIMB and QCLIMB-PS in
the K-Means workload is smaller than that in the other
workloads. This is because the RF model trained over
K-Means has a higher prediction accuracy than that over
the PageRank and SGD workloads. Note that QCLIMB
does not severely penalize large flows. In fact, Compared
to PIAS, it achieves up to 48.2% lower average FCT of
large flows. Further, it has at most 15% gap to pFabric in
the average FCT of large flows. For more details on the

performance of large flows, please see appendix D.
Remark: Fig. 24g and Fig. 24h reveal that QCLIMB can

even deliver a slightly lower tail FCT of small flows than
pFabric. This is because QCLIMB incurs fewer packet
loss events than pFabric. As a concrete example, Table 4
shows that QCLIMB has 70% fewer loss events than
pFabric and incurs no packet loss for small and medium
flows, under the K-Means workload at network load 0.7.
Moreover, 83 of these 124 loss events can be quickly de-
tected by QCLIMB’s priority-based loss detection mech-
anism (§3.2.1), whereas the packet loss events in pFabric
can only be detected by timeout.

6 Conclusion

Scheduling flows with imprecise knowledge is an impor-
tant and practical problem that has been neglected by
prior work in this field. QCLIMB bridges this gap with a
key observation that it is possible to accurately estimate
each flow’s lower bounds with ML techniques. QCLIMB
employs a lower-bound-based flow scheduling scheme to
ensure small flows can be prioritized over medium/large
ones from the beginning of transmission. It also con-
tains fast priority-based lost recovery and packet reorder-
ing mechanisms to handle OOO issues resulting from the
scheduling. We have implemented a QCLIMB prototype
using all commodity hardware, and evaluated it through
small-scale testbed experiments and large-scale simula-
tions. The results show that QCLIMB is a viable solution
for scheduling flows with imprecise size information.
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A The Performance of pFabric under Im-
precise Knowledge

In this section, we want to know how pFabric [7] per-
forms when scheduling flows with imprecise flow sizes.
We use the same topology and workloads as §5.3. The
load is 0.7. Fig. 25 shows the FCT statics across different
flow sizes when using imprecise flow sizes for pFabric
[7] as compared to using precise knowledge. From this
figure, we observe that due to the errors in flow sizes,
the FCT achieved by pFabric can be slowed down signif-
icantly. More specifically, the overall average/tail FCT
achieved by pFabric with imprecise flow sizes can be in-
creased by up to 1.8x/2.2x. Moreover, the average FCT
slowdown of small flows can even reach 22.8 x.

B Obtaining Prediction Intervals

For brevity, let us consider an RF model with T trees,
trained over a set of flows, i.e., A4 = {1,...,n}. Each
flow i is identified by (X;,y;), where X; contains the flow
features and y; is the flow size. For a new (testing)
flow with its X = x, each tree ¢ will drop it down to
a specific leaf node /. Let .4; denote the set of flows
falling in /. The tree ¢ will predict a size for this flow
as the weighted average over the sizes of all flows in
M, ie, yr = YE  wi(x,t) - yi, where w;(x,1) = 1/|A4]]
if flow i € 4] and O otherwise. For the entire RF,
the predicted size is thus the average prediction of all
trees, i.e.,, y = %Z,T:l v =Y wi(x) - yi, where w;(x) =
%ZtT:lw,'(x,t) represents the weight of flow i in pre-
dicting the new flow’s size. This implies that the con-
ditional mean of y, given X = x, is approximated by a
weighted mean over the sizes of all flows in .4, namely,

E(y|X =x) = XLy wi(x)yi-
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Figure 25: FCT slowdown across different flow sizes when
using imprecise flow sizes for pFabric [7] as compared to
using precise knowledge.

Unlike RF focusing on the conditional mean, QRF
considers the conditional distribution of y under X =
x by defining it as the probability that for X =x, y
is smaller than Y/, ie., F(Y/|IX =x) = Py <y|X =
x) = E(1{y<yy|X = x). Just as the way approxi-
mating E(y|X = x), E(1{y<y}|X = x) can be approx-
imated by the weighted mean over the observations
of l1{y<yy. This leads to F(y'[X = x) = X wi(x) -
ly<yy.  With this function, the a-quantile Qg (x) is
defined such that the probability of y being smaller
than Qu(x) is, for a given X = x, exactly equal to a,
ie., Og(x) =inf{y’ : F(y/|X =x) > a}. Using Qg(x),
one can build a prediction interval. For instance, a
B (0 < B < 1) prediction interval for the value of y
is [Q(],ﬁ)/z(x),Q(1+ﬁ>/2(x)]. Thus, Q(l,ﬁ)/z(x) and
Qa14p) /z(x) are taken as the lower and upper bounds, re-
spectively, for the estimated size of the new flow. We set
B to 1 unless otherwise specified.

C QCLIMB’s Scheduling Algorithm

Algorithm 1 shows the pseudocode of QCLIMB’s
lower-bound-based scheduling. To understand this pro-
cedure, we use an illustrating example in Fig. 26. In this
example, there are two flows (i.e., f1 and f2) and one
switch port capable of transmitting 1 unit of data at each
time. This port has three priority queues (i.e., Q1, Q2,
and Q3), with queue thresholds being < 2, [3,5], and > 6,
respectively. We consider S = 0 for ease of presentation.
As shown in Fig. 26(a), f1 is actually larger than {2, but
its predicted size is smaller than f2’s. Purely performing
queue-climbing-up according to predicted size will make



K-Means PageRank SGD
Load PIAS | QCLIMB-PS | pFabric PIAS [ QCLIMB-PS [ pFabric PIAS [ QCLIMB-PS | pFabric
03 | 1.21/1.67 0.99/1.0 0.89/1.07 | 1.11/1.41 0.99/1.0 0.96/1.09 | 1.25/1.11 1.0/1.01 1.06/1.06
0.5 | 1.93/1.53 0.99/1.0 0.86/0.95 | 1.60/1.84 0.99/1.0 0.95/1.07 | 1.22/1.16 1.02/1.05 1.07/1.08
0.7 | 1.48/1.37 0.99/0.99 0.85/1.07 | 1.47/1.56 0.99/1.0 0.92/1.10 | 1.29/1.23 1.05/1.04 1.10/1.10
09 | 1.41/1.25 0.99/1.01 0.86/1.08 | 1.34/1.58 0.99/1.01 0.91/1.09 | 1.36/1.27 1.06/1.05 1.08/1.07

Table 5: Average/tail FCT of large flows achieved by different schemes in simulation (norm. to QCLIMB).

Algorithm 1 QCLIMB’s Priority Tagging Algorithm
Require: An incoming packet p; A slack size S;
Queue priorities P={P},. .., P} and thresholds o =

{(X] gy (Xk}
1: procedure PRIORITYTAGGING

2: B < bytes_sent_of _parent flow(p)
3: L « lower_bound_of parent_flow(p)
4: U « upper_bound_of _parent_flow(p)
5: if B < L then > priority promoting
6: v < get_priority(L— B, P, Q)
7: else if B < L+ S then > delay demoting
8: v < the value of the highest priority P
9: else if B < U then > priority demoting
10: v <— get_priority(B, P, &)
11: else
12: v < the value of the lowest priority Px
13: end if

14: Tag v into the packet p’s header
15: end procedure
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Figure 26: An example for illustrating QCLIMB’s error-
tolerant scheduling.

fl complete faster than f2 and result in an average FCT of
% =7.5. Conversely, QCLIMB lets f1 and f2 initially
enter Q3 and Q2, respectively, according to their lower
bounds. As a result, f2 has a higher priority than f1 to
transmit data and will be promoted to Q1 when its lower
bound portion reduces to 2. At time 3, since its lower
bound portion has finished, f2 will be moved back to the
queue it initially entered, i.e., Q2, where it finishes its
last packet transmission. After that, f1 starts data trans-
mission until time 10. Thus, the average FCT is reduced

3+9
to == = 6.

D Supplementary Experiment Results

Impact of slack size S [Testbed]: QCLIMB allows
each flow to transmit a slack size S more data after
its lower bound part finishes. To understand the im-
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Figure 27: Sensitivity to the parameter of slack size S.

pact of S, we measure the FCT statistics of QCLIMB
with different S in the PageRank workload at load 0.7.
As we can see from Fig. 27, with various settings
of S, QCLIMB reduces the overall average FCT by
4.1%~18.3% and the average/tail FCT of small flows by
48.6%~62.2%/15.6%~93.4%, compared to PIAS. We
further observe that the overall average FCT of QCLIMB
reduces as § increases at the beginning (e.g., before §
reaches 100KB). This is reasonable because a larger S
makes more flows (especially small ones) complete at
the delay demoting step. However, as S keeps increas-
ing, this step will introduce more medium and large
flows to coexist with small flows in high-priority queues.
That’s why the FCTs of QCLIMB go up after S =100KB.
In general, QCLIMB shows performance improvements
over PIAS under a wide range of S, and we consider set-
ting S to 100KB (§5.1) is a feasible choice.

Large flow performance [Simulation]: Table 5 fur-
ther summarizes the average and tail FCT of large flows
achieved by different schemes in simulations. We have
the following observations. First, QCLIMB achieves
10%~48.2%/10%~45.7% lower average/tail FCT of
large flows than PIAS, across all workloads at all loads.
Second, for the average FCT of large flows, QCLIMB
is worse than pFabric by 14%~4% across the K-Means
and PageRank workloads, and outperforms pFabric by
6%~10% in the SGD workload. Third, QCLIMB main-
tains a lower tail FCT of large flows than pFabric for
most of the tested cases. In particular, it cuts the tail
FCT of large flows by 10% in both PageRank and SGD
workloads at 0.7 load, compared to pFabric. The rea-
son is again that pFabric detects packet loss too late with
timeout, deferring the retransmission of lost packets and
prolonging tail FCTs accordingly.

Comparison with Homa [Simulation]: We compare
QCLIMB with Homa [37] under the PageRank work-
load. The results are shown in Fig. 28. We ob-
serve that QCLIMB has up to a 12.5% gap to Homa
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Figure 28: Comparison with Homa in simulation.
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Figure 29: Comparison with pFabric and Homa using im-
precise knowledge in simulation.

for the overall average FCT. This is expected because
QCLIMB uses the reactive DCTCP for rate control. By
contrast, Homa can proactively allocate bandwidth as
“grants” to senders, who can then send scheduled pack-
ets at the correct rate to realize high utilization. Homa’s
improvements mainly come from medium/large flows.
In fact, our experiments show that Homa can achieve
up to 24.6%/6.7% lower average FCT of medium/large
flows (for brevity, we omit the detailed figures). For
small flows, Homa performs worse than our QCLIMB.
As shown in Fig. 28b and Fig. 28c, the reduction of
QCLIMB over Homa in the average/tail FCT of small
flows is up to 14.6%/24.2%. This is mainly because
of Homa’s proactive nature, which enforces Homa to
blindly transmit unscheduled packets in the first RTT,
causing traffic bursts, non-trivial queuing delay, and
eventually, packet losses. Such first RTT issue will se-
riously affect the performance of small flows [31].
Comparison with pFabric and Homa using impre-
cise knowledge [Simulation]: Readers may wonder
if QCLIMB can outperform pFabric and Homa with
imprecise knowledge as scheduling input. To answer
this, we conduct an experiment over PageRank work-
load with varying network load. The results are shown
in Fig. 29. Compared to pFabric and Homa with impre-
cise knowledge, QCLIMB can reduce the average FCT
of all flows by up to 18.8% and 25.6%, respectively. For
the average/tail FCT of small flows, the reductions of
QCLIMB are even larger: 85.9%~87.1%/96.6%~97.6%
and 74.5%~79.8%/93%~94.7% over pFabric and Homa
with imprecise knowledge, respectively.

E Discussion

The QCLIMB testbed measurements in this paper were
based on 25 Gbps link speeds, but QCLIMB may still
work in higher-speed networks. The reason is that the
dominant overhead of an end-to-end QCLIMB flow is
the end-host processing delay. Such processing delay is
independent of the line-rates and is mainly caused by ker-

nel network stack processing. In our evaluation, we ob-
serve that a 100KB flow requires roughly 200us for the
end-host processing on both sender and receiver sides.
By contrast, QCLIMB’s model inference takes only 3us,
which is negligible as compared to such processing de-
lay. One can further reduce this inference latency to 1us
with advanced FPGA hardware [23] or may even reduce
it to tens of nanoseconds by carefully pipelining RF’s de-
cision tree on hardware [44].

F Other Related Work

We have discussed the closely related works [7, 28,
10, 34, 41, 24, 37, 23] extensively in §2.1. Here, we
only review some other DCN flow scheduling ideas that
have not been discussed elsewhere. For example, NDP
[27] uses receiver-driven scheduling but can only ac-
count for fair sharing rather than SRPT. Moreover, it re-
lies on special hardware support from switches to pro-
vide receivers a full view of the traffic demand. Ae-
olus [31] adds selective dropping and loss recovery on
top of receiver-driven transports (e.g., Home [37], NDP
[27], ExpressPass[20]), suffering the same issues as
above. dcPIM [16] takes multiple rounds of matching
to compute conflict-free pairings of sender and receiver
to achieve high utilization, but relies on precise flow size
information and also needs to refactor the network stack.
QJUMP [26] applies Internet QoS-like techniques (e.g.,
DiffServ [14]) to schedule flows of datacenter applica-
tions but requires the application itself to specify the pri-
orities. Karuna [17] schedules a mix of flows with and
without deadlines. It uses PIAS-like mechanisms for
non-deadline flows and hence suffers from the same ef-
fectiveness problems as PIAS. PASE [39] synthesizes ex-
iting transport designs to provide good performance, but
requires non-trivial switch modification or complex con-
trol plane for arbitration. Auto [19] applies deep rein-
forcement learning (DRL) techniques to flow scheduling
and traffic optimization. Aequitas [51] uses weighted fair
queuing (WFQ) to guarantee RPC-level service-level ob-
jectives (SLOs), while QCLIMB employs strict priority
queuing for prioritizing small flows to minimize FCTs.
Above all, there exist no existing schedulers in the litera-
ture that can address the flow scheduling problems under
imprecise flow sizes.

There are other DCN research efforts such as con-
gestion control (e.g., DCTCP [5], D3 [47], MCP [18],
L2DCT [38], HULL [6], HPCC [32], BCC [13, 9],
MQECN [12], and ECN? [50]) and multi-path load bal-
ancing (e.g., CONGA[4], Flowlet [46], and Hermes
[49]). These designs are insufficient for FCT minimiza-
tion as in-network priority queues are not used.
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