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Abstract— Deep Leakage from Gradients (DLG) could reveal
training data privacy from gradients transmitted over an insecure
channel in Cross-Silo Federated Learning (CSFL) systems. So
far, One-Time Pad (OTP) based on secret keys generated by
Quantum Key Distribution (QKD) is the only perfectly secure
approach to defending channel security and preserving privacy.
Nevertheless, current QKD systems cannot generate keys at a rate
high enough to support OTP in practical CSFL systems, while
we find that encrypting only part of the gradients or several
bits of each gradient is not adequate to preserve data privacy.
To overcome these challenges, we propose QuGrad to encrypt
each gradient using only one bit of secret keys. In QuGrad, it is
unpredictable which or how many bits of each gradient will be
changed and the encrypted gradient vector will be orthogonal to
the original one, which potentially hides the maximum amount of
training data information. By implementing QuGrad on a testbed
and conducting extensive experiments, we show that QuGrad can
reduce the average Jaccard similarity between the recovered data
and the original ones by up to 89% compared with the state-of-
the-art technique to defend training data against DLG.

I. INTRODUCTION

Cross-Silo Federated Learning (CSFL) [1, 2] is widely used
by industry organizations (e.g., Alibaba, Microsoft, Amazon,
etc.) to train Machine Learning (ML) models with the data
collected by their data centers (i.e., data silos) geographically
located at different places connected through a Wide Area
Network (WAN). The conventional wisdom is that training
data privacy can be protected in CSFL systems since only
the model parameters or gradients, instead of training data,
are transmitted through insecure channels over the WAN.
However, it has been recently shown that sensitive information
about the training data could still be leaked from the gradients
- a phenomenon referred to as Deep Leakage from Gradients,
or DLG [3]–[5]. In this paper, we will study how to combat
such DLG in CSFL systems.
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Quantum Key Distribution (QKD) [6, 7], a technique to
distribute perfectly secure keys between two communication
parties, is considered as the ultimate solution to ensure channel
security. With the perfectly secure secret keys generated by
QKD devices, we may XOR every bit of plaintext with one bit
of disposable secret keys. This is called One-Time Pad (OTP)
and has been proven to be the only encryption technique that
is impossible to break [8]. To achieve OTP when encrypting
gradients transmitted over the WAN in a CSFL system, QKD
devices have to distribute keys between every worker (i.e., a
data silo) and the parameter server at a rate as fast as the
gradient transmission over the WAN.

Current QKD techniques suffer from a low rate of secret
key distribution and cannot enable us to achieve OTP in
CSFL systems. A pair of commodity QKD devices, which cost
hundreds of thousands of dollars, can distribute keys at the rate
of only tens of kilobits per second [9]. Even in an experimental
environment, a first-class QKD system can distribute only
several megabits of secret keys per second [10]. As a result,
current QKD techniques are not able to support OTP at runtime
in CSFL systems, where the gradient transmission rate (over a
WAN) is usually tens of megabits per second [11]. If we collect
enough secret keys before starting each training epoch or each
training job, it is time consuming and will result in a huge
waste of computation resources. Accordingly, it is impractical
to encrypt every bit of the gradients with one bit of disposable
secret keys generated by existing QKD systems.

In this paper, we propose QuGrad to defend training data
privacy in CSFL systems using keys generated by a QKD
system. The central idea of QuGrad is to encrypt each gradient
(e.g., 32 bits) with just one bit of disposable secret keys, which
significantly reduces the number of required secret keys. There
are two main challenges in QuGrad: (i) QuGrad needs to hide
the maximum amount of information about the real training
data; and (ii) QuGrad should not impact the convergence rate
of the training process and the accuracy of the derived model.
To overcome these two challenges, we propose a deliberate
encryption mechanism that changes unpredictable number of
bits in every gradient and ensures that an encrypted gradient
vector lies in the orthogonal space of the original gradient



vector. In addition, with proposed decryption method, the
parameter server can get a scale of the original gradients.

Though QuGrad deviates from an ideal implementation of
OTP, our extensive experiments using a real QKD system show
that (i) QuGrad can better defend training data privacy against
DLG compared with the State-Of-The-Art (SOTA) anti-DLG
schemes, e.g., Soteria [12] and FedCDP [13]. Specifically,
when the training data are images, compared with SOTA anti-
DLG schemes, QuGrad can increase the Learned Perceptual
Image Patch Similarity (LPIPS) [14], a metric to quantify
the difference of two figures according to human’s natural
perception, by up to 2.3× (a smaller LPIPS indicates that a
human being feels that two images are more similar to each
other). It also decreases the Jaccard similarity [15], a metric
to evaluate the similarity of two images from the computer
vision perspective, by up to 89% and decreases HaarPSI [16],
a metric to evaluate the similarity of two images from the
signal processing perspective, by up to 69%; (ii) QuGrad will
not impact the convergence rate of the training process nor the
accuracy of a derived model, even if the QKD system suffers
from a Quantum Bit Error Rate (QBER) of 10%.

To the best of our knowledge, QuGrad is the first work that
applies the current QKD technique to a prevailing application
system such as CSFL to ensure the channel security, and in
particular, the first effort in turning an ideal OTP proposal
into a practical implementation. The technique proposed in our
work can be easily extended to other communication systems
to defend channel security and preserve data privacy.

The main technical contributions of this work are
• Show that encrypting only part of the gradients or several
bits of each gradient cannot perfectly preserve training data
privacy via both analysis and experiments (Section IV-A);

• Propose QuGrad to defend training data privacy against
DLG in CSFL systems (Section IV-B);

• Implement QuGrad using a real QKD testbed and conduct
extensive experiments to show the superior performance of
QuGrad (Section V).

II. BACKGROUND AND MOTIVATION

In this section, we introduce some preliminary knowledge
to provide background and motivation for our work.

A. Federated Learning and Privacy Leakage

Cross-Silo Federated Learning. In this work, we focus on
a Cross-Silo Federated Learning (CSFL) [1, 2] system using
the standard synchronous parameter server approach [17, 18].
In a CSFL system, multiple data centers belonging to the
same organization (called workers), i.e., data silos, spreading
over different locations will collaborate to train a unified ML
model. To this end, each worker keeps a copy of this model
(called local model). In each training epoch, every worker
trains its local model with its private data (called local data)
and pushes the derived gradients to the parameter server. When
receiving gradients from all workers, the parameter server
aggregates them, updates the global model parameters, and

pushes back the updated model parameters to every worker
who will perform the next epoch of training.

In CSFL, the gradients derived from local training should be
sent through a WAN. In a practical WAN, the data transmission
rate is usually tens of megabits per second [11], which is
much smaller than the rate to generate gradients. Accordingly,
the available bandwidth in the WAN determines the data
transmission rate between a worker and the parameter server
in a practical CSFL system.
Deep Leakage from Gradients (DLG). A recent study [3]
showed that training data privacy may be leaked from publicly
shared gradients in CSFL. More specifically, suppose F (x;w)

is a differentiable ML model, w are the parameters of model F ,
and l(F (x,w), y) is the loss function associated with training
sample (x, y), then given the gradients v transmitting in the
WAN, one can recover the training data by finding (x∗, y∗)

to minimize the distance between u∗ and v, i.e., D(u∗,v),
where u∗ =

∂l(F (x∗,w),y∗)
∂w . Usually, D(u∗,v) is defined as

cosine distance, i.e., D(u∗,v) = 1− 〈u∗,v〉
‖v∗‖‖v‖ . [5] showed that

training data privacy would also be leaked from the summation
of gradients associated with a batch of training data. All
DLG algorithms assumed that a smaller distance between two
gradient vectors indicates a smaller distance between the two
corresponding training data.
B. Previous Works on Combating DLG

The intuitive method to combat DLG is using an encryp-
tion based approach, e.g., encrypting plaintext according to
Transport Layer Security (TLS) and Advanced Encryption
Standard (AES). Recently, homomorphic encryption based
methods [19]–[21] have become popular since they permit
users to perform computation on encrypted data without
first decrypting it. The keys in all existing encryption based
schemes would be reused, which incurs a risk that the keys
will be broken based on the ciphertext.

Customized for combating DLG, some noise-based meth-
ods [12, 13, 22]–[25] that do not need secret keys are proposed.
Among these works, Soteria [12] and FedCDP [13] are two
representatives. Soteria noted that most high-quality informa-
tion of the training data is contained in the representation layer.
Accordingly, it proposed to perturb the gradients associated
with the parameters in the representation layer. By limiting the
magnitude of perturbation enforced to the gradients, Soteria
can ensure the convergence of FedAvg [26] while defending
the training data privacy against DLG.

FedCDP enforced perturbation to all gradients instead of
perturbing the gradients only in the representation layer. Fed-
CDP first scaled the gradients associated with every layer,
such that the norm of these gradients (in each layer) has a
limited magnitude. Then, by introducing Gaussian noise to
the scaled gradients, FedCDP can achieve instance-level per-
example differential privacy, which is robust to DLG.

Both Soteria and FedCDP achieved a good performance
in combating conventional DLG algorithms [3]–[5]. However,
neither of them is suitable to the CSFL scenario, where an
attacker may get the training data features before trying to
recover (or distill the privacy of) training data.



C. Challenges to Combating DLG in CSFL

In CSFL, a unique feature is that a DLG attacker itself
may be able to collect some training data and distill some
a priori knowledge about the data by e.g., training a Generative
Adversary Network (GAN). With such a GAN, say it is
G(z), we can find (z∗, y∗) to minimize D(u∗,v), where
u∗ = ∂l(F (G(z∗),w),y∗)

∂w , and G(z∗) will be the recovered data.
With the help of the GAN, the search space is reduced and
hence more information can be recovered from training data.
The representative of leveraging a GAN to recover training
data is Generative Gradient Leakage (GGL) [27].

Since recovered data in GGL is directly generated by a
GAN, it may be significantly different from the original one.
To solve this problem, ROGS [15] first obtained low-resolution
recovered data based on conventional DLG algorithms (with-
out the help of a GAN), such as iDLG [4], and then leveraged
a GAN to improve the resolution of the recovered data (e.g.,
output by iDLG). In this way, ROGS recovered training data
at the semantic level and was able to derive recovered data
more similar to the original ones.

In the simulation (i.e., Section V), we will see that when
an attacker has a priori knowledge about the training data
features, which is practical in CSFL, the SOTA schemes to
defend data privacy against DLG, e.g., Soteria and FedCDP,
no longer work. Both ROGS [15] and GGL [27] can distill
useful information, even recover the original picture, from the
gradients protected by either Soteria or FedCDP.
D. Quantum Key Distribution

Quantum Key Distribution (QKD) is a secure commu-
nication method that implements a cryptographic protocol
involving components of quantum mechanics. It enables two
parties to produce shared random secret keys known only to
them. In general, QKD techniques have two main features.
Low QKD Rate. Since a quantum particle, e.g., a photon, has
very little energy, it is very likely to be lost during transmission
along a quantum channel. Accordingly, the existing QKD
systems suffer from a low rate of distributing secret keys. With
a commodity QKD device, we can distribute secret keys at the
rate of tens to hundreds of kilobits per second [9]. Even in an
experimental environment, the secret keys can be generated at
a rate of only several megabits per second [10], which is much
lower than the data transmission rate in a practical WAN.
Non-negligible Quantum Bit Error Rate (QBER). Due to
the imperfections of the physical devices and the channel
through which the quantum states propagate, the state of a
quantum particle my change during transmission and it will
incur a non-negligible QBER. According to the current tech-
nique, without a Quantum Error Correction (QEC) scheme, the
QBER will be about 3.4% [28]. In this work, we will propose
an encryption method that is robust to quantum bit errors.

III. CONCEPT AND DESIGN GOALS
In this section, we will first introduce the proposed concep-

tual design to defend training data privacy against DLG based
on QKD in CSFL systems, and then present the desirable
properties of such a system.

A. QKD-based Gradient Encryption Systems

In a QKD-based system to defend training data privacy
against DLG in CSFL systems, we have to deploy one or
multiple pairs of QKD devices between each worker and the
parameter server to distribute secret keys. When a worker has
produced the gradients via local training, it will first encrypt
these gradients based on the secret keys generated by its QKD
devices and then send the encrypted gradients to the parameter
server through a classic channel. When the parameter server
receives the encrypted gradients from a worker, it will decrypt
them based on the secret keys from QKD devices before
aggregating gradients from all workers and updating the global
model parameters.

Though the parameter server has to send the updated
parameters back to all workers, we do not need to encrypt
these parameters. Even if a malicious attacker recovers a
training data from the global model parameters, it cannot
figure out from which worker such a training sample comes.
Accordingly, we can preserve the data anonymity. On the
other hand, without caring about the data ownership, one may
generate similar training data with a generative model trained
based on some data collected by itself. Furthermore, we can
use the same defensive scheme as encrypting gradients sent
from a worker to the parameter server to encrypt the updated
parameters sent from the parameter server to workers at the
cost of another set of QKD devices to distribute more keys.

To encrypt gradients on time so that the training process
will not be significantly prolonged, suppose the gradient
transmission rate between a worker and the parameter server is
B bits per second (bps), the worker generates gradients at the
rate of G bps, and E (0 < E ≤ 1) bit of secret key is used to
encrypt one bit of gradients on average, the secret keys should
be generated at least at the rate of R bps, such that

R ≥ Emin{B,G} (1)

In a practical CSFL system, each worker generates gradients
at the rate of several to tens of gigabits per second (Gbps),
while the available bandwidth between two data silos is tens
to hundreds of megabits per second (Mbps). However, a SOTA
QKD device can only distribute secret keys at the rate of
several Mbps. As a result, we have to encrypt tens of bits of
gradients based on one bit of secret keys generated by QKD
devices.

In this work, we assume a gradient is quantized with 32 bits
and presented following the IEEE 754 Floating-Point Standard
(i.e., FP32 numbers). We leave the case that gradients are
encoded in other formats, e.g., [29], to our future work.

B. Desired Properties

We identify the following goals when designing a QKD-
based system to defend training data privacy in CSFL.
• Privacy preservation: Our proposed system has to defend
training data privacy against DLG, even if a malicious
attacker has a set of data following the same distribution
of the training data. With such a set of training data,
the attacker can train a Generative Adversarial Network



(GAN) [30] to help reduce search space of recovering
training data from gradients.
• Scalability: All the gradients transmitted from a worker
to the parameter server should be encrypted based on the
secret keys online generated by QKD devices. Since we
do not know how many epochs a training job will run, it
is difficult for us to estimate how many secret keys we
should prepare for a specific training job. If we online
collect secret keys for each training epoch and then start
the corresponding gradient transmission, we may need too
much time to collect enough keys and the CSFL system
will stay idle. It results in serious resource wastage.
• Robustness: In a robust system, the training convergence
and model accuracy should not be significantly degraded
when QKD devices suffer a modest QBER (e.g., about
3.4% [28]).

IV. QUGRAD DESIGN

In this section, we will design QuGrad to preserve train-
ing data privacy in CSFL systems. We first propose some
principles that QuGrad should follow based on experiments
and analysis, and then present QuGrad in detail. At last, we
theoretically analyze the performance of QuGrad and discuss
some practical issues on using QuGrad in practice.

A. Preliminary Analysis

The straightforward way to encrypt gradients with a limited
number (and distribution rate) of secret keys is to XOR
only some of the gradients or several (but not all) bits
of each gradient with secret keys. In this section, we will
demonstrate that we cannot achieve a good performance in
combating DLG in CSFL following this line of thought via
both experiments and analysis. To test the performance of each
straightforward defensive scheme, we assume that an attacker
leverages ROGS [15] or GGL [27] to recover the training
data from gradients of training a ResNet18 [31] model based
on the ImageNet [32] data set. Since both ROGS and GGL
need to infer the ground truth label of training data and they
cannot correctly recover training data from gradients based on
a wrong label, to design a more general data privacy defensive
scheme (rather than only preventing an attacker to obtain the
ground truth label), we always input ground truth labels instead
of inferring them using iDLG [4].

For brevity, here we only show the case for recovering one
specific data sample (i.e., one picture in ImageNet). Similar
results can be derived based on other training samples. All
experiment results for analysis in this section are summarized
in Tab. I. When no defensive scheme is adopted (in the column
labeled as “None”), ROGS can derive a fuzzier copy of the
original figure. Though GGL derives a picture different from
the original one, we can recognize the main information of
the original figure, namely, there is a crab on the rock.
Encrypt All gradients at the Representation layer (EAR).
Soteria [12] has shown that the gradients or parameters in the
representation layer contain the most high-quality information
of the training data. Thus, one may consider only encrypting

the gradients in the representation layer. Since it may result
in a number that does not satisfy the IEEE 754 Floating-Point
Standard by XORing every bit of a gradient with secret keys,
to present a conservative analysis, we test the performance of
combating DLG by dropping all gradients in the representation
layer and applying ROGS and GGL to recover the training
data. From the results shown in Tab. I (column EAR), we
observe that compared with the case without any defensive
schemes, despite both ROGS and GGL getting a fuzzier figure,
neither of them suffer from more semantic information loss.
Encrypt Several Bits of Some Gradients (ESBSG). An
alternative to encrypting only the gradients at the represen-
tation layer is to encrypt more gradients, but doing so by only
XORing some of the bits in the encrypted gradients with secret
keys. The ESBSG column in Tab. I shows the performance of
encrypting 25% of the gradients, but for each gradient, only
the sixth to the ninth bits will be XORed with secret keys (the
resulting number will always obey the IEEE 754 Floating-
Point Standard). Using this approach, the magnitude of each
gradient can be scaled by as much as 16 times. From the
derived results, we can observe that although we can achieve
a better defense performance than dropping all gradients at
the representation layer, the major semantic information in the
training data is still recovered by either ROGS or GGL.
Encrypt One bit of Every Gradient (EOEG). Following
the idea of encrypting several bits of some of the gradients,
the extreme case is to encrypt only one bit of every gradient.
By randomly choosing a bit to encrypt, in most cases, we
will end up with encrypting a mantissa bit. Since we cannot
significantly change the value of a gradient by flipping its
mantissa bit, doing so would not be adequate for defending
data privacy against DLG. If we encrypt an exponent bit, only
the gradients whose magnitudes are significantly changed help
hide training data privacy. However, the attacker can simply
drop all those gradients having an extremely large magnitude
before attempting to recover training data. The remaining
option is to encrypt the sign bit. By doing so, we will get
gradients much different from original ones and it is difficult
to identify which gradients have been changed. Accordingly,
it would be the best choice to encrypt the sign bit of all
gradients. However, the gradient magnitude information is kept
and this still may reveal too much information to the attacker,
especially when a GAN can be adapted.

To verify our analysis, we conduct an experiment to in-
vestigate the performance of defending training data privacy
by encrypting the sign bit of every gradient. The experiment
results are shown in the EOEG column of Tab. I. From the
results, we can see that encrypting the sign bit of all gradients
achieve a better performance in combating DLG than other
two encrypting approaches discussed above and an attacker
can get little useful information by using ROGS, however, we
can still get some useful information via GGL that there is a
crab-like reptile on the rack in the training sample.
Takeaways. Based on the above analysis, we have the fol-
lowing takeaways: (i) to defend training data privacy against
DLG, it is not adequate to encrypt only a small percentage of



TABLE I
VISUALIZED RESULTS FOR PRELIMINARY ANALYSIS

Original ATK
DEF None EAR ESBSG EOEG

GGL

ROGS

the gradients, no matter whether they are randomly selected
or strategically selected (e.g., at the representation layer); and
(ii) it is also not adequate to encrypt only some strategically
selected bits (e.g., the sign bit) in each gradient. Accordingly,
we have the following proposition.
Proposition 1. QuGrad should be capable of changing a
number of bits in every gradient.

In order to design a high-performance defensive scheme,
we still need to know what properties the encrypted gradients
should have such that we can hide the most information of
training data. For brevity, we assume that a DLG algorithm
uses the cosine distance. Then, we have 0 ≤ D(u,v) ≤ 2

for any vectors u and v. According to the encrypted gradient
vector v̂i, the attacker will synthesize a data sample that
can derive a gradient vector ûi as close to v̂i as possible.
Accordingly, to hide the maximum amount of information
about the training data, the encrypted gradients v̂i should be
as far away from the original gradients vi as possible. When
D(v̂i,vi) < 1, we can change v̂i to increase D(v̂i,vi), such
that a DLG algorithm will derive data further away from
the original data and hence the recovered data contains less
information about the original one. When D(v̂i,vi) > 1, since
D(−v̂i,vi) = 2 − D(v̂i,vi) < 1, the larger D(v̂i,vi) is, the
better evidence −v̂i will be for a DLG algorithm to recover
the training data. Accordingly, by trying to infer the training
data based on both of −v̂i and v̂i, a DLG algorithm will
obtain a data such that the distance between its corresponding
gradient vector and the original one is less than 1. As a result,
the best way to encrypt the gradients is to map the original
gradient vector vi to v̂i, such that D(v̂i,vi) = 1. In other
words, 〈v̂i,vi〉 = 0, i.e., the encrypted gradients should lie in
the orthogonal space of the original gradients. According to
above discussions, we propose the following proposition.
Proposition 2. The encrypted gradients in QuGrad should lie
in the orthogonal space of the original gradients.
B. QuGrad in Detail

Based on the two propositions we proposed above, we
design the following encryption scheme.
Encryption at the worker’s side. To encrypt the gradients
vi = {vik}|Kk=1, a worker i first collects K bits of secret keys
from QKD devices and generates a vector si = {sik}|Kk=1 such
that sik = 1 if the kth bit of secret keys is “1”, and sik = 0

otherwise. Then, the worker encrypts vi following

v̂i =


〈vi,si〉
‖vi‖2

vi − si, if 〈vi, si〉 ≥ 0

si − 〈vi,si〉‖vi‖2
vi, if 〈vi, si〉 < 0

(2)

where v̂i = {v̂ik}|Kk=1 are the encrypted gradients. Specif-
ically, after encryption, a gradient vik will become either
v̂ik =

〈vi,si〉
‖vi‖2

vik − sik if 〈vi, si〉 ≥ 0 or v̂ik = sik −
〈vi,si〉
‖vi‖2

vik
if 〈vi, si〉 < 0. Accordingly, the values of all gradients
will change. In addition, by scaling the real gradients and
combining them with the secret keys, a (unpredictable) number
of bits in each gradient value will change and which bits that
are changed in each gradient value is also unpredictable. Last
but not least, we can verify that 〈vi, v̂i〉 = 0, i.e., the encrypted
gradients v̂i is orthogonal to the original gradients vi.
Decryption at the parameter server’s side. Via QKD, the
parameter server has the secret keys (i.e., si) used to encrypt
the gradients. In addition, the parameter server will receive the
encrypted gradients (i.e., v̂i) from the classic communication
channel. Note that

〈v̂i, si〉 =

{
(cos2 θ − 1)‖si‖2 < 0, if 〈vi, si〉 ≥ 0

(1− cos2 θ)‖si‖2 > 0, if 〈vi, si〉 < 0
(3)

where θ is the angle between v̂i and si, the parameter server
could decrypt the gradients according to

v̄i =

{
v̂i + si, if 〈v̂i, si〉 < 0

si − v̂i, if 〈v̂i, si〉 > 0
(4)

As a result, the decrypted gradients derived by the parameter
server will become

v̄i =
|〈vi, si〉|
‖vi‖2

vi (5)

Though this is not exactly the same as the original gradients,
vi, when all workers are hosting IID data, QuGrad will only
impact the learning rate but not the convergence of training
process (see details in Theorem 1).
Non-IID training data. When all workers are hosting non-IID
data, the parameter server has to recover the exact gradients
from each worker. According to (5), the decrypted gradient
vector v̄i is a scaling of vi with the factor |〈vi,si〉|‖vi‖2

. Since
|〈vi,si〉|
‖vi‖2

=
v̄ik
vik

for all worker i and all gradient index k, each
worker i can send one of its gradients vik 6= 0 to the parameter
server, and the latter can recover the original gradients as vi =
vik
v̄ik

v̄i. However, in QuGrad, worker i would not send such
a plain value to the parameter server as long as it does not
impact the convergence of the training process, since it may
incur additional privacy leakage.

C. Theoretical Analysis

As discussed earlier, the parameter server may only get a
scaled gradient vector from each worker and the QKD may
suffer non-negligible QBER. In this section, we will analyze
how these two issues impact the performance of model training
in CSFL through the following two theorems. Due to the space
limitation, we omit the proofs of these two theorems and we
will show them in our journal version.

Theorem 1. When every worker hosts IID training data,
though the parameter server in QuGrad cannot recover the
original gradients, it only impacts the learning rate but not
the convergence of the training procedure.



Theorem 2. When the QBER is less than 1
2 , QuGrad will

ensure the convergence of the training process.

D. Practical Discussions

Match the QKD and data transmission rates. In QuGrad,
one bit of secret keys is needed to encrypt one gradient. With
a gradient transmission rate of B bps, and each gradient as an
FP32 number, the secret key distribution rate should be at least
B/32 bps. In a WAN with a typical rate up to 150 Mbps, the
QKD rate needed is 4-5 Mbps. Though current SOTA QKD
technology [10] can meet this requirement experimentally,
multiple QKD devices are needed for practical deployment,
which is costly but feasible for large organizations.

To further reduce the cost to distribute secret keys, gradients
can be pruned, i.e., small gradients set to 0 and not encrypted.
This can significantly decrease the keys needed without im-
pacting model accuracy [33, 34]. Additionally, increasing the
batch size can reduce the gradients generated and transmitted,
lowering the secret key distribution rate requirement.
When DLG algorithms minimize l2 norm distance. Some
DLG algorithms, such as [3], minimize the l2 norm distance
instead of the cosine distance between the original and recov-
ered gradients [3]. In such cases, scaling the original gradients,
as done in QuGrad (i.e., scaling with a factor of 〈vi,si〉‖vi‖2

),
can help preserve data privacy. Section V-C demonstrates that
QuGrad maintains good performance in preserving training
data privacy even when minimizing the l2 norm distance.

V. EXPERIMENTAL EVALUATION

We experimentally evaluate QuGrad using a QKD-based
testbed running federated learning tasks. The key findings are:
• QuGrad can eliminate data privacy leakage from gradients
in CSFL systems even if the attacker knows the training
data characteristics and adopts a SOTA DLG algorithm.
• QuGrad can increase the average LPIPS between the
recovered image and the original one by up to 2.3×, reduce
the Jaccard similarity [15] and HaarPSI [16] by up to 89%

and 69%, respectively, compared with the SOTA defensive
scheme to combat DLG.
• QuGrad will not impact the convergence rate of the
training process and the accuracy of the derived ML model,
even if the QBER is as large as 10%.

A. Implementation
We implement QuGrad on a testbed with four hosts con-

nected by an Ethernet switch and three pairs of QKD devices.
Three of the hosts, each of which is carrying a NVIDIA RTX
3090 GPU, perform as workers and the remaining one works
as the parameter server. To emulate a WAN environment,
we limit the available bandwidth of each of the switch ports
connecting to a worker as 50 Mbps, while the port connecting
to the parameter server is 150 Mbps.

Between each worker and the parameter server, we allocate
a pair of QKD devices to distribute secret keys. Each pair
of QKD devices are connected through a 50 km fiber (i.e.,
quantum channel). In our experiment environment, each pair
of QKD devices can distribute secret keys at the rate of about

1.5 Mbps over a 50 km fiber. Since a quantum error correction
scheme is enforced in our QKD devices, the QBER is as low
as 10−5 on our testbed. For every QKD device, we implement
a key manager to collect secret keys at its corresponding host.
As a result, there are three key managers at the parameter
server and every worker hosts only one key manager. The two
key managers associated with the same pair of QKD devices
will receive the same sequence of secret keys. During each
experiment, a key manager is continuously collecting secret
keys from the corresponding QKD device. The unused keys
will be stored in the key manager for future use.

In each training epoch, when a worker has prepared its
gradients, it will fetch secret keys from the key manager
to encrypt the gradients and send the encrypted gradients
to the parameter server through a classic channel. If there
are not enough secret keys, the training process (i.e., the
gradient transmission process) will be held until enough keys
are collected. When the parameter server receives a batch of
encrypted gradients from a worker, it will fetch secret keys
from the associated key manager and decrypt these gradients.
It should be noted that there will always be enough secret keys
in the parameter server’s key managers. When gradients from
all workers are received and decrypted, the parameter server
will update the global parameters and push the new parameters
back to all workers to invoke the next training epoch.

B. Methodology

Setting up. We have conducted experiments to investigate the
performance of QuGrad in two aspects: (i) the performance to
defending training data privacy against DLG; (ii) how QuGrad
will impact the performance of CSFL, e.g., the convergence
rate and the accuracy of the derived model. For the first
purpose, we will investigate the performance of QuGrad with
CelebA [35] and ImageNet [32]. The first data set has about
200 thousand pictures of people’s faces, which have been cat-
egorized into males and females, while the second data set has
a thousand classes of ten million pictures. In the former data
set, the data have much fewer features than that in the latter
one. We compare QuGrad with two SOTA schemes to defend
data privacy against DLG, i.e., FedCDP [13] and Soteria [12].
After enforcing different defensive schemes to gradients, we
will leverage ROGS and GGL to recover the training data.
Since both ROGS and GGL need a GAN to recover training
data, when we conduct experiments with ImageNet, we use
the GAN provided in [36] and when conducting experiments
with CelebA, we train a GAN based on CelebA ourselves.
Without loss of generality, the gradients will be generated by
training a ResNet18 [31] model.

For the second purpose, we will train two models, i.e.,
ResNet18 and ShuffleNet V2 [37], based on CIFAR100 [38]
and miniImageNet [39], respectively. In both cases, we evenly
distribute training data among all three workers and train a
uniform model based on FedAvg, and observe how the training
process will be impacted by the QBER.

When either ROGS or GGL is used to recover the training
data, for a conservative evaluation and showing the generality



TABLE II
VISUALIZED RESULTS BASED ON CELEBA

Original ATK
DEF None Soteria FedCDP QuGrad

GGL

ROGS

GGL

ROGS

of QuGrad, we assume a DLG algorithm always knows the
ground truth labels of training data. Without this assumption,
both ROGS and GGL will suffer from errors of recovering
labels and get less useful (or correct) information about the
training data from the gradients. Correspondingly, in practice,
QuGrad actually will achieve more performance improvement
than that we will present in the following.
Metrics. We will use the following metrics to evaluate the
performance of a defensive scheme. All of the following
metrics are used to evaluate the similarity of two pictures.
Accordingly, we will test the following metrics by comparing
a picture recovered by different DLG algorithms according to
the gradients protected by different defensive schemes with
the original picture (i.e., the ground truth).
• Learned Perceptual Image Patch Similarity (LPIPS) [14],
also called perceptual loss. This is a metric to quantify
the difference of two figures according to human’s natural
perception. A small LPIPS indicates that a human being
will feel two comparing figures are similar to each other.
• Jaccard similarity [15]. Suppose A and B are the set of

features for two figures, then the Jaccard similarity of these
two figures is calculated as J(A,B) =

|A∩B|
|A∪B| . The Jaccard

similarity score is a value between 0 and 1. The larger the
Jaccard similarity score is, the two figures are more similar.
• HaarPSI [16]. This is a metric to evaluate the similarity
of two pictures from the signal processing perspective.
The HaarPSI utilizes the coefficients obtained from a Haar
wavelet decomposition to assess local similarities between
two pictures, as well as the relative importance of image
areas. The same to the previous evaluation metric, two
figures similar to each other will result in a large HaarPSI.

C. Experiment results

Microcosmic performance. To recover a training data with
a DLG algorithm, such as ROGS and GGL, it will take 2-
3 hours on a single server carrying a NVIDIA RTX 3090
GPU. Due to such a large time complexity, we cannot try
to recover all pictures in the two training data sets used in
our experiments. To address this issue, we randomly select
100 training data samples in each of the two training data
sets for testing. For a clear observation of the performance of

TABLE III
VISUALIZED RESULTS BASED ON IMAGENET

Original ATK
DEF None Soteria FedCDP QuGrad

GGL

ROGS

GGL

ROGS

QuGrad in a microcosmic perspective, we first pick out two
pictures from each of CelebA and ImageNet, respectively, to
visualize the performance of different defensive schemes to
combat different DLG algorithms in Tabs. II & III. From these
two tables, we can make the following observations.

At first, without deploying any defensive scheme, both
ROGS and GGL can derive a picture very similar to the
original one in most cases. Even if a DLG algorithm cannot
derive the exact original picture (e.g., the first test case in
Tab. III), we can identify a lot of critical information from the
recovered picture.

Secondly, when the training data has few features, i.e., for
the data in CelebA, an (existing) defensive scheme may help
hide more critical information in gradients (compared with the
case that no defensive scheme is enforced). Either Soteria or
FedCDP may achieve a performance better than the other one
in defending data privacy when different DLG algorithms are
adopted, however, neither of them can defend data privacy
against all existing DLG algorithms. For example, in Tab. II,
we can observe that Soteria can better defend data privacy
against GGL, while FedCDP would be a better defensive
scheme to combat ROGS. Neither Soteria nor FedCDP is the
better defensive scheme against both GGL and ROGS.

Thirdly, when the training data has many features, i.e., for
the data in ImageNet, neither existing defensive scheme can
help hide much more data privacy compared with the case
that no defensive scheme is adopted as shown in Tab. III. This
is because more features will provide more hints for a DLG
algorithm to distill data privacy, especially when the training
data feature distribution is known in advance.

Lastly, neither ROGS nor GGL can recover any valu-
able useful information from the gradients once QuGrad is
enforced. Though GGL can sometimes generate a picture
containing some information of the original one, for example,
GGL can generate a human face with the same gender as that
in the original picture, this is because all training samples in
CelebA are human faces and the GAN used in GGL can learn
this fact and always generate a face-like picture. In addition,
for conservative evaluation and showing the generality of
QuGrad, we input the ground truth labels to the GAN in GGL.
Therefore, the human face on every image recovered by GGL



TABLE IV
PERFORMANCE EVALUATION IN LPIPS.

Dataset CelebA ImageNet

Trained Yes No Yes No

DEF
ATK GGL ROGS GGL ROGS GGL ROGS GGL ROGS

None 0.1650(0.1424) 0.8128(0.8305) 0.1262(0.1497) 0.2990(0.3743) 0.5713(0.6750) 0.7428(0.7154) 0.5684(0.5572) 0.3222(0.3579)

Soteria 0.2716(0.4591) 0.7877(0.8376) 0.3773(0.3386) 0.2977(0.3706) 0.6263(0.6286) 0.7808(0.8135) 0.6245(0.6042) 0.3195(0.3561)

FedCDP 0.3420(0.5977) 0.7941(0.8007) 0.2150(0.1681) 0.4292(0.4461) 0.6669(0.6561) 0.7916(0.8169) 0.6769(0.5890) 0.3437(0.4039)

QuGrad 0.5993(0.6348) 0.8087(0.7880) 0.7009(0.6993) 0.7901(0.8602) 0.7191(0.7120) 0.7238(0.8248) 0.8746(0.7977) 0.8633(0.8035)

shows the correct gender. However, the faces generated by
GGL are absolutely different from the original ones. When a
DLG algorithm does not directly generate a picture by using
a GAN, e.g., ROGS who only leverages a GAN to improve
the resolution of the output of iDLG, it cannot get any useful
information from the gradients encrypted using QuGrad.
Macroscopic performance. To investigate the overall per-
formance of QuGrad in an entire data set, we randomly
pick out 100 training samples from each of the training data
sets and calculate the three metrics at the beginning of the
training process and after 100 training epochs, respectively.
The average metrics are shown in Tabs. IV–VI. In these tables,
every item consists of two values. The performance metric
values outside of brackets are derived when a DLG algorithm
minimizes the cosine distance, while the values in brackets
are derived by minimizing l2 norm distance. The property
“trained” is “Yes” (or “No”) means a DLG algorithm recovers
training data from the gradients of a model that has been
trained for 100 epochs (or at the beginning of the training).

From these tables, we can observe that in most scenarios,
QuGrad achieves the largest average values of LPIPS, and the
smallest values of Jaccard similarity and HaarPSI among all
comparison defensive schemes. Especially in the CelebA data
set, compared with the case without any defensive schemes,
QuGrad can help increase the average ILIPS by 4.6×, and
reduce Jaccard similarity and HaarPSI by 92% and 69%,
respectively, at the beginning of the training process (i.e., the
model has not been trained). Even compared with the SOTA
defensive schemes (such as Soteria and FedCDP), QuGrad
can increase the average ILIPS by 2.3×, and reduce Jaccard
similarity and HaarPSI by up to 89% and 69%, respectively.
In other words, with QuGrad, the data recovered from the
gradients protected by QuGrad will be further away from (i.e.,
less similar to) the original one than that recovered from the
gradients protected by SOTA schemes to combat DLG.

There are some exceptions that Soteria or FedCDP achieves
the best performance. Even in some cases, for example, when
ROGS is used to recover the training data in CelebA from the
gradients of a trained model, disabling all defensive schemes
would achieve the best performance metric (see the values
outside of brackets in the second column in Tab. IV). This is
because the gradients of a model that has been trained for 100
epochs themselves contain little information about the training
data and a DLG algorithm cannot distill too much data privacy

from these gradients (verified in [40]). As a result, all defensive
schemes have the similar performance. It is demonstrated by
the observation that when QuGrad is not the best in some
performance metric, all defensive schemes incur the similar
performance metric values.

Another observation that we can make from Tabs. IV–
VI is that compared with ROGA, GGL can derive a picture
more similar to the original one, regardless of which defensive
scheme is adopted and whether or not the gradients are from a
trained model. In the meanwhile, when GGL is used to recover
the training data, QuGrad will always be the best defensive
scheme to protect data privacy. This shows that QuGrad helps
hide the most useful information of the training data among
all comparison defensive schemes.
Extend to l2 norm distance. So far, we only discussed that
case that a DLG algorithm minimizes the cosine distance
between the encrypted gradients and that associated with the
recovered data in order to recover the training data. However,
a DLG algorithm can also adopt other distances, such as the l2
norm distance, to evaluate the quality of a recovered data. To
demonstrate that QuGrad is robust to the distance metric based
on which a DLG algorithm recovers training data, in Tabs. IV–
VI, we also show the macroscopic performance of QuGrad
when ROGS and GGL minimize the l2 norm distance in order
to recover training data from gradients. The corresponding
performance metric values are shown in brackets. Again, at the
beginning of the training procedure, all defensive schemes will
be able to increase the average value of LPIPS and decrease the
values of Jaccard similarity and HaarPSI. QuGrad is always
the best scheme to defend data privacy against DLG. When
training an ML model with the CelebA data set and GGL is
used to recover the training data, QuGrad can help increase
the average ILIPS by 1.3×, and reduce Jaccard similarity and
HaarPSI by 92% and 51%, respectively, compared with Soteria.
Compared with FedCDP, QuGrad can increase the average
ILIPS by 3.2×, and reduce Jaccard similarity and HaarPSI by
90% and 69%, respectively.

When the model has been well-trained (trained for 100
epochs in our experiments), disabling all defensive schemes
would lead to the minimal HaarPSI value. This only appears
when ROGS is used to recover training data and all defen-
sive schemes lead to the similar (and small) HaarPSI value.
Since a DLG cannot achieve a good performance even if no
defensive scheme is adopted, QuGrad may incidentally lead



TABLE V
PERFORMANCE EVALUATION IN JACCARD SIMILARITY.

Dataset CelebA ImageNet

Trained Yes No Yes No

DEF
ATK GGL ROGS GGL ROGS GGL ROGS GGL ROGS

None 0.4852(0.4291) 0.0282(0.0279) 0.5066(0.3596) 0.3677(0.0890) 0.4848(0.5397) 0.1270(0.1325) 0.5569(0.4889) 0.2841(0.2007)

Soteria 0.4122(0.5376) 0.0278(0.0274) 0.3900(0.4322) 0.3984(0.0690) 0.5491(0.5292) 0.0667(0.1250) 0.4800(0.4817) 0.2902(0.2407)

FedCDP 0.3508(0.3541) 0.0299(0.0279) 0.4250(0.4152) 0.2323(0.0929) 0.4928(0.4656) 0.1181(0.1339) 0.4484(0.4900) 0.2973(0.2365)

QuGrad 0.1590(0.2451) 0.0290(0.0267) 0.0450(0.0410) 0.0280(0.0303) 0.3632(0.3635) 0.1422(0.1333) 0.1944(0.2252) 0.1694(0.0509)

TABLE VI
PERFORMANCE EVALUATION IN HAARPSI.

Trained CelebA ImageNet

Model Yes No Yes No

DEF
ATK GGL ROGS GGL ROGS GGL ROGS GGL ROGS

None 0.6220(0.6955) 0.1846(0.1399) 0.6740(0.6760) 0.4899(0.4429) 0.3317(0.2933) 0.3138(0.3325) 0.2855(0.2380) 0.5467(0.5171)

Soteria 0.4273(0.2750) 0.1814(0.1540) 0.3237(0.3798) 0.4942(0.4429) 0.2784(0.2710) 0.3006(0.2871) 0.2651(0.3203) 0.5460(0.5161)

FedCDP 0.3826(0.2133) 0.1954(0.1861) 0.5423(0.6098) 0.4114(0.3619) 0.2849(0.2513) 0.2937(0.2838) 0.2243(0.3165) 0.5280(0.4867)

QuGrad 0.2424(0.1689) 0.2009(0.1860) 0.2204(0.1869) 0.1525(0.0821) 0.2646(0.2481) 0.3080(0.2757) 0.1678(0.2220) 0.2218(0.1190)

0 50 100 150 200

Training epochs

0

20

40

60

80

A
cc

u
ra

cy
 (

%
)

QBER=0

QBER=0.03

QBER=0.05

QBER=0.1

(a) Train a ResNet18 based on CIFAR100.
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(b) Train a ShuffleNet based on mini-ImageNet.
Fig. 1. How QBER impacts the performance of the model training process.

to a recovered data more similar to the real one (in terms
of the evaluation metrics). However, there would be little
useful information in the recovered data samples when they
have such small similarities with the original ones. When a
DLG algorithm has potential to distill useful information from
the gradients, e.g., when GGL, who can achieve a smaller
LPIPS, and larger Jaccard similarity and HaarPSI, is adopted
to recover training data, QuGrad will always the best defensive
scheme compared with other counterpart schemes even if the
l2 norm distance is used in DLG algorithms.
Performance of model training. Since a quantum error
correction scheme is adopted in our QKD devices, we will
experience a low QEBR. To investigate the impact of QEBR
to the performance of model training process, we randomly
flip the keys distributed to the parameter server with one of
the probabilities in {0.03, 0.05, 0.1}. The simulation results are
shown in Fig. 1. From both test cases, we can see that even
if the QBER is as large as 0.1, i.e., 10%, the convergence
rate of the training process and the accuracy of the derived
model will not be significantly impacted. This demonstrates
the robustness of QuGrad to the QEBR.

VI. CONCLUSIONS

In this work, we have proposed QuGrad, the first-of-its-kind
Quantum Key Distribution (QKD) based gradient encryption
approach to defending the training data privacy against leak-
age from gradients in Cross-Silo Federated Learning (CSFL)
systems. Though One-Time Pad (OTP) is proven to be the
only perfect encryption technique, current QKD system cannot
distribute secret keys at the rate of data transmission in
a practical Wide Area Network (WAN). To overcome the
challenge due to the limited QKD rate, QuGrad uses a simple
yet elaborate scheme to encrypt every gradient using only one
bit of the secret keys based on QKD. Thanks to several salient
features of the encrypted gradients, e.g., it is unpredictable
which or how many bits of each gradient will be changed
and the encrypted gradient vector will be orthogonal to the
original one, QuGrad is effective in preserving the privacy of
the training data. We have also implemented QuGrad on a real
testbed. Through extensive experiments, we have demonstrated
that an attacker cannot recover the training data from the
encrypted gradients in QuGrad, even if it knows the features
and distribution of the training data set in advance.
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