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ABSTRACT
Parameter/gradient exchange plays an important role in
large-scale distributed machine learning (DML). However,
prior solutions such as parameter server (PS) or ring-allreduce
(Ring) fall short since they are not resilient to issues or un-
certainties like oversubscription, congestion or failures that
may occur in datacenter networks (DCN).

This paper proposes RAT, a new solution that determines
the communication pattern for DML. At its heart, RAT es-
tablishes allreduce trees taking into account the physical
topology and its oversubscription condition. The allreduce
trees specify the aggregation pattern in which each aggrega-
tor is responsible for aggregating gradients from all workers
within an oversubscribed region at the reduce phase, and
broadcasting the updates back to workers at the broadcast
phase. We show that such an approach can effectively reduce
cross-region traffic and shorten dependency chain compared
to prior solutions. We have evaluated RAT in both oversub-
scribed network and network with failures and found that
RAT is resilient to these issues or uncertainties. For example,
it delivers an average of 25X and 5.7X speedup compared
to PS in oversubscribed network and Ring in network with
failures, respectively.
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1 INTRODUCTION
Recent years have witnessed an explosive use of deep neu-
ral network (DNN) in multiple application domains such
as Computer Vision and Natural Language Processing, etc.
As DNN training jobs may consume days or weeks to com-
plete, distributed system has been adopted for the purpose
of timely training. As a result, we are witnessing tons of
researches and approaches involving expediting distributed
machine learning (DML) training both in academia and the
commercial industry [14, 27, 29, 34].
As a compute-intensive task, DML attracts concentrated

efforts to perform efficient cluster scheduling for computa-
tion resources. Meanwhile, we detect a shift of performance
bottleneck from computation to communication as GPU gets
faster and models grow larger [27]. For instance, when train-
ing large models such as VGG-16 [31] over 32 GPUs, the
communication can take up to 90% of the overall completion
time [27]. Substantial approaches have emerged in alleviat-
ing the bottleneck in DML, whose purposes vary in network
scheduling [13, 18, 29], synchronization mechanisms [16, 22]
and communication reduction [23], etc. In this paper we fo-
cus on the parameter exchange process in DML.
Parameter exchange schemes describe how parameters

are communicated among servers in each iteration. As DNNs
are usually trained in 100s to 1000s iterations, there are po-
tential gains for investigating it. PS [21] and Ring [10] are
the representative exchange schemes [33] on the market and
have been integrated in the mainstream DNN frameworks
such as TensorFlow [1], PyTorch [28] and MXNet [6], etc.

https://doi.org/10.1145/3411029.3411037
https://doi.org/10.1145/3411029.3411037
https://doi.org/10.1145/3411029.3411037


APNet ’20, August 3–4, 2020, Seoul, Republic of Korea X. Wan, et al.

Through analysis, however, we reveal that either PS or
Ring is essentially static which is topology-agnostic, and
not resilient to various issues or uncertainties in datacenter
networks (DCN) (see §2). PS adopts a direct communication
between workers and servers, which inevitably introduces
more cross-rack traffic and creates communication bottle-
necks under oversubscription. Meanwhile, Ring adopts chain-
like communication pattern that creates extra hop-by-hop
dependencies during parameter exchange, making it overly
sensitive to events such as congestion or failures. Other alter-
natives such as k-nominal tree [26, 30], butterfly mixing [20]
or recursive halving and doubling [11] can be viewed as an
intermediate state between PS and Ring. However, they also
suffer from similar problems as PS and Ring to some extent,
as they are agnostic to network topology as well. Moreover,
some topology-aware schemes [7, 9, 24, 25] have been in-
vestigated in recent years, but they either require specific
topologies or impose extra hardware requirements (§2).
In response to the aforementioned challenges, we intro-

duce RAT, Resilient Allreduce Tree, as a new parameter
exchange scheme with the awareness of physical cluster
topology for DML. At its core, RAT resembles the physical
topology and establishes allreduce trees over oversubscribed
regions (e.g., racks or pods) iteratively. The resultant allre-
duce trees specify the aggregation pattern in which each
aggregator is responsible for aggregating gradients from all
workers within an oversubscribed region at the reduce phase,
and broadcasting the updates back to workers at the broad-
cast phase. In this way, RAT effectively minimizes traffic
across oversubscribed regions while still maintaining a rela-
tively short communication dependency chain (Table 1), thus
being adaptive to network oversubscription and resilient to
congestion or failures.

We have evaluated RAT using NS3 simulations with both
oversubscribed network and network with failures. Our re-
sults show that RAT is resilient to these issues or uncer-
tainties. For example, it delivers an average of 25X and 5.7X
speedup compared to PS in oversubscribed network and Ring
in network with failures, respectively.

2 BACKGROUND AND MOTIVATION
2.1 Datacenter Networks
DCN usually adopt a multi-layer hierarchical topology [5].
In such topology, switches are connected in a hierarchical
way (usually 2 or 3-tier) and servers are grouped by top-of-
rack (ToR) switches at leaf level. This kind of topology makes
DCN highly flexible for scaling up by simply adding switches
at each level and connections between switches and servers.

However, there have been several issues that exist in DCN.
Among them include oversubscription, congestion, and fail-
ures. Oversubscription is introduced to cut down the high

cost of DCN establishment [12]. It leverages the opportu-
nity that all traffic sources are very rarely transmitted at the
same time. For a given cluster scale, the number of switches
and links can be reduced in this way as compared to 1:1 of
the oversubscription ratio. However, oversubscription is a
double-edged sword as it brings in a threshold of cluster
traffic. While the total traffic exceeds this threshold, con-
gestion can happen at the backbone and in the worst case,
break down the whole network. Besides, congestion may
occur when bursts flood at certain links or NICs, or when
low priority flows may be starved by the high priorities on
switches, etc. Failures can take place at the physical layer,
for example, physical link failures, nodes failures and so on.

2.2 Distributed Machine Learning
Generally, parallelism schemes of DML can be categorized
as data parallelism and model parallelism, and data paral-
lelism is the most prevailing option. In such paradigm, each
worker manages its local model and trains independently on
a portion of the dataset. The training process is done in an it-
erative way, and each iteration contains two phases. The first
phase is the compute-intensive local model training phase
that involves a forward pass to generate predictions with
the mini-batch input and a backward pass to derive local
gradients with respect to the loss between predictions and
the given labels. The second phase is the communication-
intensive parameter exchange phase, where mean gradients
are calculated across all locally calculated gradients. Updated
parameters are sent back to each worker, and the workers
start the next iteration with the updated version.

The parameter exchange phase described above typically
follows a Bulk Synchronous Parallel (BSP) synchronization
mode, which is already the most prevalent synchronization
in production because of its best ML tasks’ performance and
reproducibility. In this mode, all workers are barriered in
each iteration and the new iteration cannot start until all
workers have finished updating their local models in the
current iteration.

2.3 Drawbacks of Existing Schemes
At each parameter exchange phase, a particular exchange
scheme that describes the logical parameter exchange pro-
cess among servers in each iteration is implemented. Here
we categorize popular parameter exchange schemes for DML
jobs, and discuss each of their limitations as our motivation
to infer the desired properties of DML and yet to design an
efficient parameter exchange mechanism:
• PS: Adopted by several DNN frameworks like TensorFlow
[1], Caffe [19] and MXNet [19]. PS employs a direct com-
munication pattern where parameters are synchronized
directly between workers and PSes. After computing and
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(a) PS (b) Ring-allreduce

Figure 1: Traffic pattern of PS and Ring

generating local gradient updates, workers push them di-
rectly to PSes and pull the updated parameters back as
soon as PSes finish the aggregation.

Though PS is direct yet effective, we reveal that it is ill-
suited to network oversubscription. A PS traffic pat-
tern example is shown in Figure 1(a). Assuming workers
and PSes are co-located in each of the nodes, we observe
that the cross-rack link will always suffer 16/7x workload
compared to each intra-rack link. More generally, given
|r | racks each with |wr | workers with an oversubscription
ratio of o, the average ACT will be at least o · |wr |−1

|wr |−1/ |r | times
worse. This means that the problem will get more severe
for large jobs with more racks, and our experiment in §4
also validates this inference. Note that the server place-
ment in each rack won’t alleviate this problem, because
the inter-rack traffic won’t change given a cluster size.
And the key factor is the direct communication pattern
which is adopted by PS.
• Ring-allreduce: Used in BaiduRing [10] and Horovod [30].
All nodes form a ring topology, and each node transmits
gradients in exactly the same circular direction. It has two
phases: scatter-reduce and all-gather. In the scatter-reduce
phase, after generating gradient updates, each worker
receives a chunk of gradients from its left-hand side (anti-
clockwise for example), aggregates it with its local copy,
and send it to its right peer. After n − 1 iterations, each
worker has precisely one chunk that involves all workers’
updates. Then in the all-gather phase, each of the n work-
ers simply copy the received chunk with n − 1 iterations,
and then complete the communication phase.

Compared to PS, Ring-allreduce minimizes the inter-
rack traffic by aggregating the parameters in each hop (see
Table 1). But it introduces too many dependencies, and is
thus vulnerable to congestion or failures. As the case
shown in Figure 2, n nodes are involved in implementing
allreduce operations, and we assume node 1 cannot send
data temporally, which may result from multiple reasons
such as the link fails, or is congested and priority is given
to other traffic, or it is a straggler and not yet ready to

Figure 2: Ring allreduce suffers from chain blocking

send, etc. In this case, node 2 can only send 1/n of the data
to node 3 via one of its chains, because n − 1 chains are
blocked due to node 1. In turn, node 3 can only send 2/n
of the data to node 4, and so on. Such dependency causes
a cascading effect to all the downstream nodes, leading
to a 50% cutoff on network utilization when n is large.
We refer to such phenomenon as chain blocking, and our
simulation result in §4 shows its impact. In contrast, PS
does not suffer from this problem as direct communication
introduces minimal dependency.
• Other collective allreduce schemes: Other allreduce schemes
like k-nominal tree [26], butterfly mixing [20] and recur-
sive halving and doubling [11] can be viewed as a mixture
of PS and Ring. They have predetermined exchange pat-
terns that are agnostic to network topologies, and suffer
from similar problems like extra traffic for inter-rack com-
munication and long dependencies to some extent. We
list each of their corresponding values in Table 1 and
emphasize their limitations.
• Topology-aware allreduce schemes: Some recent allre-
duce schemes [7, 9, 24, 25] execute gradient aggregations
by awaring the hierarchical network topology, but they
each more or less face problems in the context of large
scale network. BlueConnect [7] breaks up one ring into
multiple small rings with the awareness of the network
topology. It works in a more fine-grained manner and al-
leviates the impact caused by the slowest link of the ring.
However, as it’s a variant of ring-based scheme, it inherits
the vulnerability of Ring and would run worse when each
rack scales up. HiPS [9] embraces RDMA transport for
allreduce and works specifically for server-centric net-
work topology, but would introduce extra dependency
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chain when it runs in ring mode. ParameterHub [24]
works as a parameter exchange scheme that co-designs
both software and hardware. At its core, PBoxes (a server
equipped with 10 NICs) are used within ToRs to reduce
cross-rack traffic. However, it introduces a special prefer-
ence of extra hardware (multiple NICs for aggregation)
and cannot guarantee the minimal cross-region traffic.
PLink [25] applies a 2-level hierarchical aggregation upon
the topology, but have the same issue of extra traffic when
the hierarchy exceeds 2.

3 DESIGN
The limitations discussed in §2.3 inspires us of the desired
properties of the logical parameter exchange scheme:
• Minimum traffic across oversubscribed regions (e.g., rack,
pod) to avoid in-network bottlenecks;
• Short dependency chain for better resilience to traffic con-
gestion and failures;
• Simple structure to enable timely embedding with afford-
able computation and enforcement overhead.
We proceed to introduce RAT, a topology-aware parameter

exchange scheme with the following parts: its key roles that
match network topology, the algorithm that describes the
establishment of each allreduce trees, and reveal that its
properties are accord with the desired ones.
Key roles of RAT: Given a physical network topology T,
we build the logical RAT for a DML job J following a simple
layered structure, resembling the physical topology while
accounting for the oversubscribed regions (i.e., racks, pods).
A node plays one or more of the following roles:

• Leaf: sends its local gradients and receives the global
update. Each worker in job J corresponds to a leaf.
• Aggregator: for each oversubscribed region in the topol-
ogy T, RAT introduces a corresponding aggregation layer
to minimize cross-region traffic. In the reduce phase, an
aggregator aggregates the gradient updates from leaves
and lower level aggregators within the region, and send
the aggregated updates to the higher level aggregator or
root. In the broadcast phase, the communication reverses.
• Root: aggregates all the gradients, calculates the global
update, and sends it back in the reversed direction.

Algorithm of RAT: The general algorithm of RAT for es-
tablishing allreduce trees is described in Algorithm 1. RAT
partitions the whole nodes into different groups and hierar-
chically aggregates gradients based on the topological char-
acteristics. The aggregation process operates in this way:
at the bottom leaf layer, a level-0 aggregator is assigned to
each physical rack, a.k.a oversubscribed regions, and takes
charge of aggregating all gradients within the same racks.

(a) RAT (b) RAT Traffic

Figure 3: The RAT with the topology in Figure 1 and
its traffic pattern

Algorithm 1: RAT Algorithm
Input:
h: The number of hierarchical levels
ni : The number of groups in ith level
G: The total gradients to synchronize by this process
дroupi j_array: The array of node_ids in the jth group
in level i of topology T
begin

Aдд_array = []
for i ← 0 to h − 1 do

for j ← 0 to ni − 1 do
Set Ni j ← Len(дroupi j_array)
Random pick inteдer m from [0,Ni j ]

Set Aддreдator ← дroupi j_array[m]
append Aддreдator to Aдд_array
Reduce(Aддreдator ,G,дroupi j_array)

end
end
Set k ← Len(Aдд_array)
for i ← h − 1 to 0 do

for j ← ni − 1 to 0 do
Aдд_id = Aдд_array[k − 1]
Set Ni j ← Len(дroupi j_array)
Set Aддreдator ← Aдд_id
Broadcast(Aддreдator ,G,дroupi j_array)
k− = 1

end
end

end

Thereafter, a level-1 aggregator is designated from all level-0
aggregators and aggregates gradients among level-1. The
aggregations at higher levels follow the same routine, un-
til all gradients originated at leaves are aggregated in one
single level-(n-1) aggregator, which is also known as the
root. Afterward, the broadcast operation starts and operates
hierarchically in the reversed direction.
As an example, Figure 3 shows a RAT given the network

topology of 8 nodes in 2 racks. Each worker corresponds
to a leaf, and an aggregator/root can be designated to any
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Schemes PS Ring Butterfly Halving
&doubling

K-nominal
tree BlueConnect PLink RAT

Minimum cross
domain traffic ×

√
× × ×

√
×

√

No. of
Dependant steps 2 2(|w | − 1) log2(|w |) 2 log2(|w |) 2 logk (|w |) 2(|l | +max{wr }) 4 2(|l | + 1)

Table 1: RAT achieves good tradeoff minimizing cross-region traffic and length of dependency.

(a) 10Gbps (b) 40Gbps (c) 100Gbps
Figure 4: RAT’s speedup in an oversubscribed scenario

(a) d=1ms (b) d=5ms (c) d=10ms

Figure 5: RAT’s speedup in a network with failures scenario

worker and executes the aggregation task within the same
oversubscribed region. Note that we only consider rack-level
oversubscription/aggregator in our analysis hereafter for
simplicity. Besides, as we can form a total of 32 RATs in this
topology, we uniformly distribute the traffic on each RAT for
load balancing because we assume our network is symmetric
and follow the routine that each RAT carries equal workload.
For the context of the asymmetric network topology, we
leave it as future work for exploration.
Properties of RAT: Table 1 shows how RAT achieves the
desired properties by comparing it against the alternative
parameter exchange schemes. Note that l is the number of
oversubscription layers,w represents the total worker num-
ber, andwr refers to the number of workers in each rack.

Now we show that RAT satisfies the desired properties.
First, we observe that all alternative solutions except Ring
and BlueConnect cannot minimize the traffic cross oversub-
scribed regions. In contrast, RAT is tailored for the physical
topology, which optimizes this by introducing an aggregator
for each oversubscribed region. Second, RAT introduces a
2(|l | + 1) dependency chain. Since a datacenter cluster typi-
cally has few (say 1 or 2) oversubscription layers, this chain
is usually much smaller than alternative patterns except PS.
Third, RAT follows a simple and regular structure with 3
different roles, thus greatly simplifying the computation and
enforcement (§4) of the parameter exchange process.
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4 EVALUATION
In this section, we run simulations to quantify the high uti-
lization of RAT by comparing with two representative pa-
rameter exchange schemes, PS and Ring.

4.1 Simulation Setup
Experimental settings: We use two different experimental
settings in our simulation. In the oversubscribed scenario,
we use a conventional spine-leaf topology with 2 spines
switches and 4 leaf switches. We set the # of workers per
rack as the variant and the oversubscription ratio changes
accordingly (from 2:1 to 32:1). In the network with failures
scenario, we run ML traffic on 64 servers (under 2 racks) in
a 40G network with no oversubscription. We simulate the
network congestion or failures at nodes or links by pausing
some nodes sending data. That is, we randomly select k nodes
temporarily stop sending data, and periodically change the
k nodes every d time. Note that the training performance is
measured as each job’s iteration completion time (ICT).
Traffic: We simulate the traffic pattern of PS, Ring and RAT
in NS3. For PS, we set PSes and workers co-locate with each
other and simulate the process as all-to-all sending equal size
of data simultaneously. For RAT, we construct # of RATs and
assign each workers the root role in each RAT symmetrically.
We distribute the total traffic uniformly on each RATs for
load balancing. And in the Ring case, we connect all nodes
in ring mode logically and allow them to communicate with
neighbors. We simulate the network traffic the same size as
ResNet50 [15] (97MB in total) and distribute it uniformly
upon the three cases. Note that for simplicity, we assume
that there is no overlap between computation and communi-
cation. Though the result may be inaccurate when tensors
are small, we claim that the inaccuracy is limited by recalling
that network-intensive models experience large skewness at
the tensor size.

4.2 Results
Oversubscribed Scenario: As shown in Figure 4, PS per-
forms 25X worse than RAT under all bandwidth settings
because it introduces a large amount of inter-rack traffic and
results in the bottleneck at cross-rack link. Ring minimizes
inter-rack traffic and is expected to perform as well as RAT.
However, from the figure we surprisingly observe a 0.16x
throughput degradation in ring implementation in many
cases. Through analysis, we think Ring’s long dependency
chain may introduce some extra delay at each hop. The delay
at each hop slows down the whole training process.
Network with Failures Scenario: We also demonstrate
the stability of RAT in the network with failures scenario. As

described above, we create a network with failures environ-
ment in our topology and deploy a distributed DML job on it.
Note that to show the performance degradation when there
exist disabled nodes in network, we normalize the results
with the k = 0 case.

The result is shown in Figure 5. Ring suffers from much
severe slowdown (with an average of 12x degradation in the
worst case) compared to PS and RAT, which is consistent
with our analysis in §2. When one node is blocked, other
nodes can still take the available bandwidth to proceed if in
PS or RAT mode. While for Ring, the progress of its down-
stream nodes is also heavily blocked due to chain blocking.
As different nodes can be blocked at different times, a node
in the Ring can always be blocked - either by itself or by
some upstream nodes. In comparison, RAT achieves compa-
rable performance to PS since it only introduces a minimal
number of additional dependencies upon PS (2 in this case).

5 RELATEDWORK
Optimizing DML: There exist many solutions which can
be used to optimize the communication for DML. For ex-
ample, techniques such as gradient compression [23] and
quantization [2] can transfer fewer or compressed gradients
for communication acceleration. Solutions like layer-wise
communication scheduling and prioritization [13, 18, 29] can
maximize the interleave of computation and communication.
Furthermore, traditional approaches that minimize network
flow completion time by using flow scheduling [3, 4] or
coflow scheduling [8, 32, 35] can also be leveraged for DML
communication optimization. All these solutions are orthog-
onal to RAT, and RAT can cooperate with these techniques
by further alleviating the bottleneck of cross-region links.
Cross region training: Someworks [17] explore approaches
for geo-distributed training. They alleviate the impact of la-
tency across regions by reducing dependencies and allow
the use of stale parameters. However, these approaches sac-
rifice the reproducibility of ML jobs and may affect the final
job performance. RAT is designed to reduce traffic across
oversubscribed regions but keeping the widely used BSP for
the promise of reproducibility and great job performance.

6 CONCLUSION
This paper presented RAT, a new parameter exchange so-
lution with topology awareness for DML. At its heart, RAT
establishes allreduce trees by considering the physical topol-
ogy characteristics and the trees form a hierarchical pat-
tern in which each aggregator aggregates gradients from
all workers within an oversubscribed region at the reduce
phase, and broadcasts the updates back to workers at the
broadcast phase. RAT achieves both minimal cross-region
traffic and short dependency chain goals compared to prior
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parameter exchange schemes. We have simulated RAT in
NS3 and our results demonstrated the potential of RAT: it
delivers an average of 25X and 5.7X speedup compared to PS
in oversubscribed network and Ring in network with failures,
respectively.
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