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ABSTRACT

Traffic optimizations (TO, e.g. flow scheduling, load balanc-
ing) in datacenters are difficult online decision-making prob-
lems. Previously, they are done with heuristics relying on
operators’ understanding of the workload and environment.
Designing and implementing proper TO algorithms thus take
at least weeks. Encouraged by recent successes in applying
deep reinforcement learning (DRL) techniques to solve com-
plex online control problems, we study if DRL can be used for
automatic TO without human-intervention. However, our
experiments show that the latency of current DRL systems
cannot handle flow-level TO at the scale of current datacen-
ters, because short flows (which constitute the majority of
traffic) are usually gone before decisions can be made.
Leveraging the long-tail distribution of datacenter traffic,
we develop a two-level DRL system, AuTO, mimicking the
Peripheral & Central Nervous Systems in animals, to solve
the scalability problem. Peripheral Systems (PS) reside on
end-hosts, collect flow information, and make TO decisions
locally with minimal delay for short flows. PS’s decisions
are informed by a Central System (CS), where global traffic
information is aggregated and processed. CS further makes
individual TO decisions for long flows. With CS&PS, AuTO
is an end-to-end automatic TO system that can collect net-
work information, learn from past decisions, and perform ac-
tions to achieve operator-defined goals. We implement AuTO
with popular machine learning frameworks and commodity
servers, and deploy it on a 32-server testbed. Compared to
existing approaches, AuTO reduces the TO turn-around time
from weeks to ~100 milliseconds while achieving superior
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performance. For example, it demonstrates up to 48.14% re-
duction in average flow completion time (FCT) over existing
solutions.
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1 INTRODUCTION

Datacenter traffic optimizations (TO, e.g. flow/coflow sched-
uling [1, 4, 8, 14, 18, 19, 29, 61], congestion control [3, 10],
load balancing &routing [2]) have significant impact on ap-
plication performance. Currently, TO is dependent on hand-
crafted heuristics for varying traffic load, flow size distri-
bution, traffic concentration, etc. When parameter setting
mismatches traffic, TO heuristics may suffer performance
penalty. For example, in PIAS [8], thresholds are calculated
based on a long term flow size distribution, and is prone
to mismatch the current/true size distribution in run-time.
Under mismatch scenarios, performance degradation can be
as much as 38.46% [8]. pFabric [4] shares the same problem
when implemented with limited switch queues: for certain
cases the average FCT can be reduced by over 30% even if the
thresholds are carefully optimized. Furthermore, in coflow
scheduling, fixed thresholds in Aalo [18] depend on the op-
erator’s ability to choose good values upfront, since there is
no run-time adaptation.

Apart from parameter-environment mismatches, the turn-
around time of designing TO heuristics is long—at least
weeks. Because they require operator insight, application
knowledge, and traffic statistics collected over a long period
of time. A typical process includes: first, deploying a mon-
itoring system to collect end-host and/or switch statistics;
second, after collecting enough data, operators analyze the
data, design heuristics, and test it using simulation tools and
optimization tools to find suitable parameter settings; finally,
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tested heuristics are enforced! (with application modifica-
tions [19, 61], OS kernel module [8, 14], switch configura-
tions [10], or any combinations of the above).

Automating the TO process is thus appealing, and we de-
sire an automated TO agent that can adapt to voluminous,
uncertain, and volatile datacenter traffic, while achieving
operator-defined goals. In this paper, we investigate rein-
forcement learning (RL) techniques [55], as RL is the subfield
of machine learning concerned with decision making and
action control. It studies how an agent can learn to achieve
goals in a complex, uncertain environment. An RL agent
observes previous environment states and rewards, then de-
cides an action in order to maximize the reward. RL has
achieved good results in many difficult environments in re-
cent years with advances in deep neural networks (DNN):
DeepMind’s Atari results [40] and AlphaGo [52] used deep
RL (DRL) algorithms which make few assumptions about
their environments, and thus can be generalized in other set-
tings. Inspired by these results, we are motivated to enable
DRL for automatic datacenter TO.

We started by verifying DRL’s effectiveness in TO. We
implemented a flow-level centralized TO system with a basic
DRL algorithm, policy gradient [55]. However, in our exper-
iments (§2.2), even this simple algorithm running on cur-
rent machine learning software frameworks? and advanced
hardware (GPU) cannot handle traffic optimization tasks at
the scale of production datacenters (>10° servers). The crux
is the computation time (~100ms): short flows (which con-
stitute the majority of the flows) are gone before the DRL
decisions come back, rendering most decisions useless.

Therefore, in this paper we try to answer the key question:
How to enable DRL-based automatic TO at datacenter-scale?
To make DRL scalable, we first need to understand the long-
tail distribution of datacenter traffic [3, 11, 33]: most of the
flows are short flows?, but most of the bytes are from long
flows. Thus, TO decisions for short flows must be generated
quickly; whereas decisions for long flows are more influential
as they take longer time to finish.

We present AuTO, an end-to-end DRL system for datacenter-
scale TO that works with commodity hardware. AuTO is a
two-level DRL system, mimicking the Peripheral & Central
Nervous Systems in animals. Peripheral Systems (PS) run on
all end-hosts, collect flow information, and make instant TO
decisions locally for short flows. PS’s decisions are informed
by the Central System (CS), where global traffic information

1 After the heuristic is designed, its parameters can usually be computed in
a short time for average scenarios: minutes [8, 14, 19] or hours [61]. AuTO
seeks to automate the entire TO design process, rather than just parameter
selection.

2e.g. TensorFlow [57], PyTorch [48], Ray [42]

3The threshold between short and long flows is dynamically determined in
AuTO based on current traffic distribution (§4).
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are aggregated and processed. CS further makes individual
TO decisions for long flows which can tolerate longer pro-
cessing delays.

The key to AuTO’s scalability is to detach time-consuming
DRL processing from quick action-taking for short flows.
To achieve this, we adopt Multi-Level Feedback Queueing
(MLFQ) [8] for PS to schedule flows guided by a set of thresh-
olds. Every new flow starts at the first queue with highest
priority, and is gradually demoted to lower queues after its
sent bytes pass certain thresholds. Using MLFQ, AuTO’s PS
makes per-flow decisions instantly upon local information
(bytes-sent and thresholds)?, while the thresholds are still
optimized by a DRL algorithm in the CS over a relatively
longer period of time. In this way, global TO decisions are
delivered to PS in the form of MLFQ thresholds (which is
more delay-tolerant), enabling AuTO to make globally in-
formed TO decisions for the majority of flows with only
local information. Furthermore, MLFQ naturally separates
short and long flows: short flows complete in the first few
queues, and long flows descend down to the last queue. For
long flows, CS centrally processes them individually using a
different DRL algorithm to determine routing, rate limiting,
and priority.

We have implemented an AuTO prototype using Python.
AuTO is thus compatible with popular learning frameworks,
such as Keras/TensorFlow. This allows both networking
and machine learning community to easily develop and test
new algorithms, because software components in AuTO are
reusable in other RL projects in datacenter.

We further build a testbed with 32 servers connected by
2 switches to evaluate AuTO. Our experiments show that,
for traffic with stable load and flow size distribution, AuTO’s
performance improvement is up to 48.14% compared to stan-
dard heuristics (shortest-job-first and least-attained-service-
first) after 8 hours of training. AuTO is also shown to learn
steadily and adapt across temporally and spatially heteroge-
neous traffic: after only 8 hours of training, AuTO achieves
8.71% (9.18%) reduction in average (tail) FCT compared to
heuristics.

In the following, we first overview DRL and reveal why
current DRL systems fail to work at large scale in §2. We
describe system design in §3, as well as the DRL formulations
and solutions in §4. We implement AuTO in §5, and evaluate
it with extensive experiments in §6 using a realistic testbed.
Finally, we review related works in §7, and conclude in §8.

2 BACKGROUND AND MOTIVATION

In this section, we first overview the RL background. Then,
we describe and apply a basic RL algorithm, policy gradient,

4For short flows, AuTO relies on ECMP[30] (which is also not centrally
controlled) for routing/load-balancing and makes no rate-limiting decisions.
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Figure 1: A general reinforcement learning setting us-
ing neural network as policy representation.

to enable flow scheduling in TO. Finally, we show the prob-
lem of an RL system running PG using testbed experiments,
motivating AuTO.

2.1 Deep Reinforcement Learning (DRL)

As shown in Figure 1, environment is the surroundings of
the agent with which the agent can interact through ob-
servations, actions, and feedback (rewards) on actions [55].
Specifically, in each time step ¢, the agent observes state s;,
and chooses action a;. The state of the environment then
transits to s;11, and the agent receives reward r;. The state
transitions and rewards are stochastic and Markovian [36].
The objective of learning is to maximize the expected cumu-
lative discounted reward E[Y.2 ,y*r;] where y,€(0,1] is the
discounting factor.

The RL agent takes actions based on a policy, which is
a probability distribution of taking action a in the state s:
7(s,a). For most practical problems, it is infeasible to learn
all possible combinations of state-action pairs, thus function
approximation [31] technique is commonly used to learn the
policy. A function approximator y(s,a) is parameterized by
0, whose size is much smaller (thus mathematically tractable)
than the number of all possible state-action pairs. Function
approximator can have many forms, and recently, deep neu-
ral networks (DNNs) have been shown to solve practical,
large-scale dynamic control problems similar to flow sched-
uling. Therefore, we also use DNN as the representation of
function approximator in AuTO.

With function approximation, the agent learns by updat-
ing the function parameters 0 with the state s;, action a;,
and the corresponding reward r; in each time period/step t.
We focus on one class of updating algorithms that learn by
performing gradient-descent on the policy parameters. The
learning involves updating the parameters (link weights)
of a DNN so that the aforementioned objective could be
maximized.
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0—0+ az Vo log rrg(st,ar) vy (1)
t

Training of the agent’s DNN adopts a variant of the well-
known REINFORCE algorithm [56]. This variant uses a mod-
ified version of Equation (1), which alleviates the drawbacks
of the algorithm: convergence speed and variance. To mit-
igate the drawbacks, Monte Carlo Method [28] is used to
compute an empirical reward, v;, and a baseline value (the
cumulative average of experienced rewards per server) is
used for reducing the variance [51]. The resultant update
rule (Equation (2)) is applied to the policy DNN, due to its
variance management and guaranteed convergence to at
least a local minimum [56]:

00+ aZ Vo log g (st,a:) (v — baseline)  (2)
7

2.2 Example: DRL for Flow Scheduling

As an example, we formulate the problem of flow scheduling
in datacenters as a DRL problem, and describe a solution
using the PG algorithm based on Equation (2).

Flow scheduling problem We consider a datacenter net-
work connecting multiple servers. For simplicity, we adopt
the big-switch assumption by previous works in flow sched-
uling [4, 14], where the network is non-blocking with full-
bisection bandwidth and proper load-balancing. Following
this assumption, the flow scheduling problem is simplified
to the problem of deciding the sending order of flows. We
consider an implementation that enables preemptive sched-
uling of flows using strict priority queueing. We create K
priority queues for flows in each server [23], and enforce
strict priority queuing among them. K priority queues are
also configured in the switches, similar to [8]. The priority of
each flow can be changed dynamically to enable pre-emption.
The packet of each flow is tagged with its current priority
number, and will be placed in the same queue throughout
the entire datacenter fabric.

DRL formulation
Action Space: The action provided by the agent is a mapping

from active flows to priorities: for each active flow f, at time
step ¢, its priority is p;(f)€[1,K].

State space: The big-switch assumption allows for a much
simplified state space. As routing and load balancing are out
of our concern, the state space only includes the flow states.
In our model, states are represented as the set of all active
flows, F!, and the set of all finished flows, F é, in the entire
network at current time step t. Each flow is identified by
its 5-tuple [8, 38]: source/destination IP, source/destination
port numbers, and transport protocol. Active flows have an
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additional attribute, which is its priority; while finished flows

have two additional attributes: FCT and flow size®.

Rewards: Rewards are feedback to the agent on how good its
actions are. The reward can be obtained after the completion
of a flow, thus is computed only on the set of finished flows
F é for time step t. The average throughput of each finished
flow f is Tputles:lc%. We model the reward as the ratio

between the average throughputs of two consecutive time
steps.

_ Zf’eFéTputft
th—1 eFL! Tpul‘;f1

It signals if the previous actions have resulted in a higher
per-flow throughput experienced by the agent, or it has de-
graded the overall performance. The objective is to maximize
the average throughput of the network as a whole.

®)

r:

DRL algorithm We use the update rule specified by Equa-
tion (2). The DNN residing on the agent computes probability
vectors for each new state and updates its parameters by eval-
uating the action that resulted in the current state. The eval-
uation step compares the previous average throughput with
the corresponding value of the current step. Based on the
comparison, an appropriate reward (either negative or posi-
tive) is produced which is added to the baseline value. Thus,
we can ensure that the function approximator improves with
time and can converge to a local minimum by updating DNN
weights in the direction of the gradient. The update which
follows (2) ensures that poor flow scheduling decisions are
discouraged for similar states in the future, and the good
ones become more probable for similar states in the future.
When the system converges, the policy achieves a sufficient
flow scheduling mechanism for a cluster of servers.

2.3 Problem Identified

Using the DRL problem of flow scheduling as an example,
we implement PG using popular machine learning frame-
works: Keras/TensorFlow, PyTorch, and Ray. We simplify the
DRL agent to have only 1 hidden layer. We use two servers:
DRL agent resides in one, and the other sends mock traffic
information (states) to the agent using an RPC interface. We
set the sending rate of the mock server to 1000 flows per
second (fps). We measure the processing latency of different
implementations at the mock server: the time between finish
sending the flow information and receiving the action. The
servers are Huawei Tecal RH1288 V2 servers running 64-bit
Debian 8.7, with 4-core Intel E5-1410 2.8GHz CPU, NVIDIA
K40 GPU, and Broadcom 1Gbps NICs.

SFlow size and FCT can be measured when the flow ends using either OS
utility[44] or application layer mechanisms[49, 61].
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Figure 2: Current DRL systems are insufficient.

As shown in Figure2, even for small flow arrival rate of
1000fps and only 1 hidden layer, the processing delays of
all implementations are more than 60ms, during which time
any flow within 7.5MB would have finished on a 1Gbps link.
For reference, using the well-known traffic traces of a web
search application and a data mining application collected in
Microsoft datacenters[3, 8, 26], a 7.5MB flow is larger than
99.99% and 95.13% of all flows, respectively. This means,
most of the DRL actions are useless, as the corresponding
flows are already gone when the actions arrive.

Summary Current DRL systems’ performance is not enough
to make online decisions for datacenter-scale traffic. They
suffer from long processing delays even for simple algorithms
and low traffic load.

3 AUTO DESIGN

3.1 Overview

The key problem of current DRL systems is the long latency
between collection of flow information and generation of
actions. In modern datacenters with >10Gbps link speed,
to achieve flow-level TO operations, the round-trip latency
of actions should be at least sub-millisecond. Without in-
troducing specialized hardware, this is unachievable (§2.2).
Using commodity hardware, the processing latency of DRL
algorithm is a hard limit. Given this constraint, how to scale
DRL for datacenter TO?

Recent studies [3, 11, 33] have shown that most datacenter
flows are short flows, yet most traffic bytes are from long
flows. Informed by such long-tail distribution, our insight
is to delegate most short flow operations to the end-host,
and formulate DRL algorithms to generate long-term (sub-
second) TO decisions for long flows.

We design AuTO as a two-level system, mimicking the Pe-
ripheral and Central Nervous Systems in animals. As shown
in Figure 3, Peripheral Systems (PS) run on all end-hosts,
collect flow information, and make TO decisions locally with
minimal delay for short flows. Central System (CS) makes in-
dividual TO decisions for long flows that can tolerate longer
processing delays. Furthermore, PS’s decisions are informed
by the CS where global traffic information are aggregated
and processed.
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3.2 Peripheral System

The key to AuTO’s scalability is to enable PS to make glob-
ally informed TO decisions on short flows with only local
information. PS has two modules: an enforce module and a
monitoring module.

Enforcement module To achieve the above goal, we adopt
Multi-Level Feedback Queueing (MLFQ), introduced in PIAS [8])
to schedule flows without centralized per-flow control. Specif-
ically, PS performs packet tagging in the DSCP field of IP
packets at each end-host as shown in Figure 4. There are K
priorities, P;,1<i<K, and (K-1) demotion thresholds, «;,1<
J<K-1. We configure all the switches to perform strict pri-
ority queueing based on the DSCP field. At the end host,
when a new flow is initialized, its packets are tagged with
Py, giving them the highest priority in the network. As more
bytes are sent, the packets of this flow will be tagged with
decreasing priorities P; (2<j<K), thus they are scheduled
with decreasing priorities in the network. The threshold to
demote priority from P;_; to P; is aj_;.

With MLFQ, PS has the following properties:

o It can make instant per-flow decisions based only on local
information: bytes-sent and thresholds.
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Figure 5: AuTO: A 4-queue example.

o It can adapt to global traffic variations. To be scalable, CS
must not directly control small flows. Instead, CS opti-
mizes and sets MLFQ thresholds with global information
over a longer period of time. Thus, thresholds in PS can be
updated to adapt to traffic variations. In contrast, PIAS [8]
requires weeks of traffic traces to update the thresholds.

e It naturally separates short and long flows. As shown in
Figure 5, short flows finished in the first few queues, and
long flows drop to the last queue. Thus, CS can centrally
process long flows individually to make decisions on rout-
ing, rate limit, and priority.

Monitoring module For CS to generate thresholds, the
monitoring module collects flow sizes and completion times
of all finished flows, so that CS can update flow size distri-
bution. The monitoring module also reports on-going long
flows that have descended into the lowest priority on its
end-host, so that CS can make individual decisions.

3.3 Central System

The CS is composed of two DRL agents (RLA): short flow RLA
(sRLA) is for optimizing thresholds for MLFQ, and long flow
RLA (IRLA) is for determining rates, routes, and priorities
for long flows. sRLA attempts to solve a FCT minimization
problem, and we develop a Deep Deterministic Policy Gra-
dient algorithm for this purpose. For IRLA, we use a PG
algorithm (§2.2) to generate actions for the long flows. In
the next section, we describe the two DRL problems and
solutions.

4 DRL FORMULATIONS AND SOLUTIONS
In this section, we describe the two DRL algorithms in CS.

4.1 Optimizing MLFQ thresholds

We consider a datacenter network connecting multiple servers.
Scheduling of flows is imposed by using K strict priority
queues at hosts and network switches (Figure 4) by setting
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the DCSP field in each of the IP headers. The longer the
flow is, the lower priority is assigned to the flow as it is de-
moted through host priority queues in order to approximate
Shortest-Job-First (SJF). The packet’s priority is preserved
throughout the entire datacenter fabric till it reaches the
destination.

One of the challenges of MLFQ is the calculation of the
optimal demotion thresholds for the K priority queues at
the host. Prior works [8, 9, 14] provide mathematical anal-
ysis and models for optimizing the demotion thresholds:
{o1,00,...,ak-1}. Bai et al. [9] also suggest weekly/monthly
re-computation of the thresholds with collected flow-level
traces. AuTO takes a step further and proposes a DRL ap-
proach to optimizing the values of the ’s. Unlike prior works
that used machine learning in datacenter problems [5, 36, 60],
AuTO is unique due to its target - optimization of real val-
ues in continuous action space. We formulate the threshold
optimization problem as an DRL problem and try to explore
the capabilities of DNN for modeling the complex datacenter
network for computing the MLFQ thresholds.

As shown in §2.2, PG is a basic DRL algorithm. The agent
follows a policy my(als) parameterized by a vector 8 and
improves it with experience. However, REINFORCE and
other regular PG algorithms only consider stochastic policies,
1o (als)=P[als;0], that select action a in state s according to
the probability distribution over the action set A parame-
terized by 6. PG cannot be used for value optimization prob-
lem, as a value optimization problem computes real values.
Therefore, we apply a variant of Deterministic Policy Gradient
(DPG) [53] for approximating optimal values {ag,as,...,a,}
for the given state s such that a;=pg(s) for i=0,...,n. Figure
6 summarizes the major differences between stochastic and
deterministic policies. DPG is an actor-critic [12] algorithm
for deterministic policies, which maintains a parameterized
actor function g for representing current policy and a critic
neural network Q(s,a) that is updated using the Bellman
equation (as in Q-learning [41]). We describe the algorithm
with Equation (4,5,6) as follows: The actor samples the en-
vironment and has its parameters 6 updated according to
Equation (4). The result of Equation (4) follows from the fact
that the objective of the policy is to maximize the expected
cumulative discounted reward Equation(5) and its gradient
can be expressed in the following form Equation(5). For more
details, please refer to [53].

OF*L — 0% 4 qF [V V.0 (s, }
— aE k| Voro(s)VaQ" (s.a) 0] @)

k
wherep” " is the state distribution at time k.

J(0)= fS P (5)r(5.10(5))ds
=Es~p” [r(s,yg (3))]
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Algorithm 1: DDPG Actor-Critic Update Step

1 Sample a random mini-batch of N transitions
(si,a;i,ri,siv1) from buffer

2 Sety;=ri +yQp o (Siv1:tip, (Sit1))

3 Update critic by minimizing the loss:
L=2% 3N (yi—Qpo (51,a:))?

4 Update the actor policy using the sampled policy
gradient:

N
1
Veﬂjzﬁzvﬁﬂ(si),ueQ(si)VaiQGQ(si,ai)a:‘u o
i=1 i oQ \Si

5 Update the target networks:
09" — 769 + (1-1)6<
0" — 7O* + (1-1)0*
where y and r are small values for stable learning

ds
a=pg(s) )

3
:Es~p” [VHﬂQ(S)VaQH (s,a) ]
a=pg(s)

Deep Deterministic Policy Gradient (DDPG) [35] is an
extension of DPG algorithm, which exploits deep learning
techniques [41]. We use DDPG as our model for the opti-
mization problem and explain how it works in the following.
Same as DPG, DDPG is also an actor-critic [12] algorithm,
and it maintains four DNNs. Two DNNG, critic Qgo (s,a) and
actor jgu (s) with weights 09 and 0¥, are trained on sampled
mini-batches of size N, where an item represents an experi-
enced transition tuple (s;,a;,r;,5;+1) while the agent interacts
with the environment. The DNNs are trained on random
samples, which are stored in a buffer, in order to avoid cor-
related states which cause the DNNs to diverge [41]. The
other two DNN, target actor yy and target critic Q/QQ, (s,a),

Vo (o)= fs P (5)Vopia(5)Va QM (s.0)

are used for smooth updates of the actor and critic networks,
respectively (Algorithm (1) [35]). The update steps stabilize
training the actor-critic networks and achieve state-of-the-
art results on continuous space actions [35]. AuTO applies
DDPG for optimizing threshold values to achieve better flow
scheduling decisions.

DRL formulation Next, we show that the optimization of
thresholds can be formulated as an actor-critic DRL problem
solvable by DDPG. We first develop an optimization problem
of choosing an optimal set of thresholds {¢;} to minimize
the average FCT of flows. Then we translate this problem
into DRL problem to be solved using DDPG algorithm.
Denote the cumulative density function of flow size distri-
bution as F(x), thus F(x) is the probability that a flow size
is no larger than x. Let L; denote the number of packets a
given flow brings in queue Q; for i=1,...,K. Thus, E[L;]<
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(aj—a;i—1)(1=F(a;-1)). Denote flow arrival rate as A, then the
packet arrival rate to queue Q; is A;=AE[L;]. The service rate
for a queue depends on whether the queues with higher pri-
orities are all empty. Thus, P; (highest priority) has capacity
1=y where p is the service rate of the link. The idle rate
of Q1 is (1—p;) where p;=A;/p; is the utilization rate of Q;.
Thus, the service rate of Q, is y,=(1—p;)p since its service
rate is y (the full link capacity) given that P; is empty. We
have yizrl;;(l)(l—pj)y, with py=0. Thus, T;=1/(y;—A;) which
is the average delay of queue i assuming M/M/1 queues. For
a flow with size in [@;_1,2;), it experiences the delays in dif-
ferent priority queues up to the i-th queue. Denote T; as the
average time spent in the i-th queue. Let i,,,x(x) be the in-
dex of the smallest demotion threshold larger than x. So the
average FCT for a flow with size x, T(x), is upper-bounded
by: 27T,

Let g;=F(a;)—F(a;-1) denote the percentage of flows with
sizes in [a;_1,a;). Thus, g; is the gap between two consecu-
tive thresholds. Using g; to equivalently express «;, we can

formulate the FCT minimization problem as®:

1

K K
PILARNCHI R
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!
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K

min T (1gh=) (9
=1

subjectto ¢;>0, i=1,....K-1

We proceed to translate Problem (7) into a DRL problem.

State space: In our model, states are represented as the set of
the set of all finished flows, Fy, in the entire network in the
current time step. Each flow is identified by its 5-tuple[8, 38]:
source/destination IP, source/destination port numbers, &
transport protocol. As we report only finished flows, we also
record the FCT and flow size as flow attributes. In total, each
flow has 7 features.

Action Space: The action space is computed by a centralized
agent, sSRLA. At time step ¢, the action provided by the agent
is a set of MLFQ threshold values {al.t }.

%For a solution to this problem, e.g. { g}, we can retrieve the thresholds
{a}} with aézF"l(Zj.:lgj), where F~1(+) is the inverse of F(-).
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Rewards: Rewards are delayed feedback to the agent on how
good its actions are for the previous time step. We model the
reward as the ratio between objective functions of two con-
secutive time steps: rt:%. It signals if the previous actions
have resulted in a lower average FCT, or it has degraded the
overall performance.

DRL algorithm We use the update rule specified by Equa-
tion (4) (Algorithm 1). The DNN computes g;’s for each newly
received state from a host, and stores a tuple: (s;,a;,r;,S;+1)
in its buffer for later learning. Reward r, and the next state
s¢+1 are only known when the next update comes from the
same host, so the agent buffers s; and a, until all needed in-
formation is received. Updates of parameters are performed
in random batches to stabilize learning and to reduce prob-
ability of divergence [35, 41]. The reward r; is computed
at a host at step ¢ and is compared to the previous average
FCT. Based on the comparison, an appropriate reward (either
negative or positive) is produced which is sent to the agent
as a signal for evaluating action a;. By following Algorithm
1, the system can improve the underlying actor-critic DNNs
and converge to an solution for Problem (7).

4.2 Optimizing Long Flows

The last threshold, ax_, separates long flows from short
flows by sRLA, thus ax—; is updated dynamically according
to current traffic characteristics, in contrast to prior works
with fixed threshold for short and long flows [1, 22]. For long
flows and IRLA, we use a PG algorithm similar to the flow
scheduling problem in §2.2, and the only difference is in the
action space.

Action Space: For each active flow f, at time step ¢, its cor-
responding action is {Prio;(f),Rate;(f),Path;(f)}, where
Prio;(f) is the flow priority, Rate,(f) is the rate limit, and
Path,(f) is the path to take for flow f. We assume the paths
are enumerated in the same way as in XPath [32].

State space: Same as §2.2, states are represented as the set
of all active flows, F’, and the set of all finished flows, F é,
in the entire network at current time step . Apart from its
5-tuple [8, 38], each active flow has an additional attribute:
its priority; each finished flow has two additional attributes:
FCT and flow size.

Rewards: The reward is obtained for the set of finished flows
F (;. Choices for the reward function can be: difference or
ratios of sending rate, link utilization, and throughput in
consecutive time steps. For modern datacenters with at least
10Gbps link speed, it is not easy to obtain timely flow-level in-
formation for active flows. Therefore, we choose to compute
reward with finished flows only, and use the ratio between
the average throughputs of two consecutive time steps as
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reward, as in Equation (3). The reward is capped to achieve
quick convergence [35].

5 IMPLEMENTATION

In this section, we describe the implementation. We develop
AuTO in Python 2.7. The language choice facilitates inte-
gration with modern deep learning frameworks [17, 45, 57],
which provide excellent Python interfaces [45]. The current
prototype uses the Keras [17] deep learning library (with
TensorFlow as backend).

5.1 Peripheral System

PS is a daemon process running on each server. It has a
Monitoring Module (MM) and an Enforcement Module (EM).
The MM thread collects information about flows including
recently finished flows and the presently active long flows (in
the last queue of MLFQ). At the end of each period, the MM
aggregates collected information, and sends to CS. The PS’s
EM thread performs tagging based on the MLFQ thresholds
on currently active flows, as well as routing, rate limiting,
and priority tagging for long flows. We implement a Remote
Procedure Call (RPC) interface for communications between
PS and CS. CS uses RPC to set MLFQ thresholds and to
perform actions on active long flows.

5.1.1  Monitoring Module (MM):. For maximum efficiency,
the MM can be implemented as a Linux kernel module, as
in PIAS[8]. However, for the current prototype, since we
are using a flow generator (as seen in [8, 10, 20]) to produce
workloads, we choose to implement the MM directly inside
the flow generator. This choice allows us to obtain the ground
truth and get rid of other network flows that may interfere
with the results.

For long flows (flows in the last queue of MLFQ), every
T seconds, MM merges n; active long flows (each with 6
attributes), and m; finished long flows (each with 7 attributes)
into an list. For short flows (in the first few queues of MLFQ)
in the same period, MM collects m; finished flows (each
with 7 attributes) into an list. Finally, MM concatenates the
two lists and sends them to CS as an observation of of the
environment.

AuTO’s parameters, {n;,m;,m;}, are determined by traffic
load and T for each server, nj (m;) should be the upper-bound
of number of active (finished) long flows within T, and m;
should also be the upper-bound of finished short flows. In the
case that the actual number of active (finished) flow is less
than {n;,m;,m;}, the observation vector is zero-padded to
the same size of the corresponding agent’s DNN(s). We make
this design choice because the number of input neurons
of the DNN in CS is fixed, therefore can take only fixed-
sized inputs. We leave dynamic DNN and recurrent neural
network structure as future work. For the current prototype
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and experiments on the prototype, since we control the flow
generator, it is easy to comply with this constraint. We choose
{n;=11,m;=10,m;=100} in the experiments.

5.1.2  Enforcement Module (EM):. EM receives actions
from CS periodically. The actions include new MLFQ thresh-
olds, and TO decisions on local long flows. For MLFQ thresh-
olds, EM builds upon the PIAS [8] kernel module, and adds
dynamic configuration of demotion thresholds.

For short flows, we leverage ECMP [30] for routing and
load-balancing, which does not require centralized per-flow
control, and DCTCP [3] for congestion control.

For long flows, the TO actions include priority, rate lim-
iting, and routing. EM leverages the same kernel module
for priority tagging. Rate limiting is done using hierarchi-
cal token bucket (HTB) queueing discipline in Linux traffic
control (tc). EM is configured with a parent class in HTB
with outbound rate limit to represent the total outbound
bandwidth managed by CS on this node. When a flow de-
scends into the last queue in MLFQ, EM creates a HTB filter
matching the exact 5-tuple for that flow. When EM receives
rate allocation decisions from the CS, EM updates the child
class of the particular flow by sending Netlink messages to
Linux kernel: the rate of the TC class is set as the rate that
centralized scheduler decides, and its ceiling is set to the
smaller of the original ceiling and twice of the rates from CS.

5.2 Central System

CS runs RL agents (SRLA & IRLA) to make optimized TO deci-
sions. Our implemented CS follows a SEDA-like architecture
[58] when handling incoming updates and sending actions to
the flow generating servers. The architecture is subdivided
into different stages: http request handling, deep network
learning/processing, and response sending. Each stage has
its own process(es) and communicate through queues to pass
required information to the next stage. Such an approach
ensures that multiple cores of the CS server are involved in
handling the requests from the hosts and load is distributed.
The multi-processing architecture has been adopted due to
the Global lock problem [24] in the CPython implementa-
tion of the Python programming language. The states and
actions are encapsulated at the CS as an "environment” (sim-
ilar to [47]), with which the RL agents can interact directly
and programmatically.

5.2.1 sRLA. As discussed in §4.1, we use Keras to im-
plement the sSRLA running the DDPG algorithm with the
aforementioned DNNs (actor, critic, target actor, and target
critic).

Actors: The actors have two fully-connected hidden layers
with 600 and 600 neurons, respectively, and the output layer
with K—1 output units (one for each threshold). The input
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layer takes states (700 features per-server (m;=100)) and
outputs MLFQ thresholds for a host server for time step ¢.

Critics: The critics are implemented with three hidden layers,
thus the networks are a bit more complicated as compared
to the actor network. Since the critic is supposed to ’criticize’
the actor for bad decisions and ’compliment’ for good ones,
the critic neural network also takes as its input the outputs of
the actor. However, as [53] suggests, the actor outputs are not
direct inputs, but are only fed into the critic’s network at a
hidden layer. Therefore, the critic has two hidden layers same
as the actor and one extra hidden layer which concatenates
the actor’s outputs with the outputs of its own second hidden
layer, resulting in one additional hidden layer. This hidden
layer eventually is fed into the output layer consisting of one
output unit - approximated value for the observed/received
state.

The neural networks are trained on a batch of observa-
tions periodically by sampling from a buffer of experience:
{s¢,as,7¢,5¢+1) - The training process is described in Algorithm

(1)

5.2.2 [RLA. For IRLA, we also use Keras to implement
the PG algorithm with a fully connected NN with 10 hidden
layer of 300 neurons. The RL agent takes a state (136 features
per-server (n;=11, m;=10)) and outputs probabilities for the
actions for all the active flows.

Summary The hyper-parameters (structure, number of
layer, height, and width of DNN) are chosen based on a few
empirical training sessions. Our observation is that more
complicated DNNs with more hidden layers and more pa-
rameters took longer to train and did not perform much
better than the chosen topologies. Overall, we find that such
RLA configurations leads to good system performance and
is rather reasonable considering the importance of computa-
tion delay, as we reveal next in the evaluations.

6 EVALUATION

In this section, we evaluate the performance of AuTO using
real testbed experiments. We seek to understand: 1) With
stable traffic (flow size distribution and traffic load are fixed),
how does AuTO compare to standard heuristics? 2) For vary-
ing traffic characteristics, can AuTO adapt? 3) how fast can
AuTO respond to traffic dynamics? 4) what are the perfor-
mance overheads and overall scalability?

Summary of results (grouped by scenarios):

o Homogeneous: For traffic with fixed flow size distribu-
tion and load, AuTO-generated thresholds converge, and
demonstrate similar or better performance compared to
standard heuristics, with up to 48.14% average FCT reduc-
tion.
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e Spatially Heterogeneous: We divide the servers into 4
clusters; each is configured to generate traffic with dif-
ferent flow size distribution and load. In these experi-
ments, AuTO-generated thresholds also converge, with
up to 37.20% average FCT reduction.

e Spatially & Temporally Heterogeneous: Building upon
the above scenario, we then change the flow size distri-
bution and load periodically for each cluster. For time-
varying flow size distributions and traffic load, AuTO
exhibits learning and adaptation behavior. Compared to
fixed heuristics that excel only for certain combinations of
traffic settings, AuTO demonstrates steady performance
improvement across all combinations.

e System Overhead: The current AuTO implementation
can respond to state updates within 10ms on average.
AuTO also exhibits minimal end-host overhead in terms
of CPU utilization and throughput degradation.

Setting We deploy AuTO on a small-scale testbed (Figure 7)
that consists of 32 servers. Our switch supports ECN and
strict priority queuing with at most 8 class of service queues’
Each server is a Dell PowerEdge R320 with a 4-core Intel E5-
1410 2.8GHz CPU, 8G memory, and a Broadcom BCM5719
NetXtreme Gigabit Ethernet NIC with 4x1Gbps ports. Each
server runs 64-bit Debian 8.7 (3.16.39-1 Kernel). By default,
advanced NIC offload mechanisms are enabled to reduce
the CPU overhead. The base round-trip time (RTT) of our
testbed is 100us.

We adopt the traffic generator [20] used in prior works [2,
7,9, 15] that produces network traffic flows based on given
flow size distribution and traffic load. We use two realis-
tic workloads (Figure 8): web search workload [8] and data
mining workload [10]. 15 servers hosting flow generators
are called application servers, and the remaining one hosts

7 As in most production datacenters [8, 10, 14], some queues are reserved for
other services, such as latency-sensitive traffic and management traffic[15].
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the CS. Each application server is connected to a data plane
switch using 3 of its ports, as well as to a control plane switch
to communicate with the CS server using the remaining port.
The 3 ports are configured to different subnets, forming 3
paths between any pair of application servers. Both switches
are Pronto-3297 48-port Gigabit Ethernet switch. States and
actions are sent on the control plane switch (Figure 7).

Comparison Targets We compare with two popular heuris-
tics in flow scheduling: Shortest-Job-First (SJF), and Least-
Attained-Service-First (LAS). The main difference between
the two is that SJF schemes [1, 4, 29] require flow size at
the start of a flow, while LAS schemes [8, 14, 43] do not. For
these algorithms to work, sufficiently enough data should
be collected before calculating their parameters (thresholds).
The shortest period to collect enough flow information to
form an accurate and reliable flow size distribution is an
open research problem [9, 14, 21, 34], and we note that pre-
viously reported distributions are all collected over periods
of at least weeks (Figure 8), which indicates the turn-around
time are also at least weeks for these algorithms.

In the experiments, we mainly compare with quantized
version of SJF and LAS with 4 priority levels. The priority
levels are enforced both in the server using Linux qdisc [23]
and in the data plane switch using strict priority queue-

ing [8]:

e Quantized SJF (QSJF): QSJF has three thresholds: ag,a1,5.

We can obtain flow size from the flow generator at its
start. For flow size s, if x<ay, it is given highest priority;
if xe(ag,a1], it is given the second priority; and so on. In
this way, shorter flows are given higher priority, similar
to SJF.

All the flows are given high priority at the start. If a flow
sends more than f; bytes, it is then demoted to the (i+1)-
th priority. In this way, longer flows gradually drop to
lower priorities.

The thresholds for both schemes can be calculated using
methods described in [14] for "type-2/3 flows", and they are
dependent on the flow size distribution and traffic load. In
each experiment, unless specified, we use the thresholds
calculated for DCTCP distribution at 80% load (i.e. the total
sending rate is at 80% of the network capacity).

6.1 Experiments

6.1.1 Homogeneous traffic. In these scenarios, the flow
size distribution and the load generated from all 32 servers
are fixed. We choose Web Search (WS) and Data Mining (DM)
distributions at 80% load. These two distributions represent
different group of flows: a mixture of short and long flows
(WS) and a set of short flows (DM). The average and 99th
percentile (p99) FCT are shown in Figure 9. We train AuTO

Quantized LAS (QLAS): QLAS also has thresholds: fy,f1,f2-
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for 8 hours and use the trained DNNs to schedule flows for

another hour (shown in Figure 9 as AuTO).
We make the following observations:

e For a mixture of short and long flows (WS), AuTO out-
performs the standard heuristics, achieving up to 48.14%
average FCT reduction. This is because it can dynamically
change priority of long flows, avoiding the starvation
problem in the heuristics.

e For distribution with mostly short flows (DM), AuTO per-
forms similar to the heuristics. Since AuTO also gives
any flow highest priority when it starts, AuTO performs
almost the same as QLAS.

e Training the RL network results in average FCT reduction
of 18.31% and 4.12% for WS&DM distribution respectively,
which demonstrates AuTO is capable to learn and adapt
to traffic characteristics overtime.

e We further isolate the incast traffic [16] from the collected
traces, and we find that they are almost the same with
both QLAS and QSJF. This is because incast behavior is
best handled by the congestion control and parameter
setting. DCTCP [3], which is the transport we used in
the experiments, already handles incast very well with
appropriate parameter settings [3, 9].

6.1.2  Spatially heterogeneous traffic. We proceed to di-
vide the servers into 4 clusters to create spatially hetero-
geneous traffic. We configure the flow generators in each
cluster with different distribution and load pairs: <WS, 60%>,
<WS, 80%>, <DM, 60%>, <DM, 60%>. We use AuTO to con-
trol all 4 clusters, and plot the average and p99 FCTs in
Figure 10. For the heuristics, we compute the thresholds for
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each cluster individually according to its distribution and
load. We observe similar results compared to the homoge-
neous scenarios. Compared to QLAS(QS]JF), AuTO is shown
to reduce the average FCT by 37.20%(27.95%) and p99 FCT
by 19.78%(11.98%). This demonstrates that AuTO can adapt
to spatial traffic variations.

6.1.3  Temporally & spatially heterogeneous traffic. In these
scenarios, we change the flow size distribution and network
load every hour: The load value is chosen from {60%,70%,80%},
and the distribution is randomly chosen from the ones in
Figure 8. We ensure that the same distribution/load does
not appear in consecutive hours. The experiment runs for 8
hours.

The average and p99 FCTs are plotted against time in
Figure 11&12. We can see:

o For heuristics with fixed parameters, when the traffic char-
acteristics match the parameter setting, both average and
p99 FCTs outperform the other schemes. But when mis-
match occurs, the FCTs sharply drop. This shows that
heuristics with fixed parameter setting cannot adapt to
dynamic traffic well. Their parameters are usually chosen
to perform well in the average case, but in practice, the
traffic characteristics always change [8].

e AuTO is shown to steadily learn and adapt across time-

varying traffic characteristics, in the last hour, AuTO achieves

8.71% (9.18%) reduction in average (p99) FCT compared
to QSJF. This is because that AuTO, using 2 DRL agents,
can dynamically change the priorities of flows in different
environments to achieve better performance. Without any
human involvement, this process can be done quickly and
scalably.
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Considering AuTO, a constant decline in FCTs indicates
learning behavior, which eventually, as we have discussed
in §4, lead to convergence to a local optimum for the dy-
namic traffic generation process. Figure 11&12 confirms our
assumption that datacenter traffic scheduling can be con-
verted into a RL problem and DRL techniques (§4) can be
applied to solve it.

6.2 Deep Dive

In the following, we inspect the design components of AuTO.

6.2.1 Optimizing MLFQ thresholds using DRL. We first ex-
amine the MLFQ thresholds generated by sRLA. In Figure 13,
we compare the MLFQ thresholds generated by sRLA and
those by an optimizer [9, 14]. We obtain a set of 3 thresholds
(for 4 queues) from sRLA in CS after 8 hours of training for
each flow size distribution at 60% load. We observe that both
sets of thresholds are similar in the thresholds of the first
3 queues, and the main difference is in the last queue. For
example, the last SRLA threshold (a3) for Web Search distri-
bution is 64 packets, while a5 from optimizer is 87 packets.
The same is true for Data Mining distribution. However, the
discrepancy does not reflect in significant difference in terms
of performance. We plot the average and p99 FCT results
for both sets of thresholds in Figure 14&15. The results are
grouped by flow size. For sRLA generated thresholds and
optimizer-generated thresholds, we observe that the differ-
ence in FCT is small in all groups of flow sizes. We conclude
that, after 8 hours of training, SRLA generated thresholds are
similar to optimizer-generated ones in terms of performance.

6.2.2 Optimizing Long Flows using DRL. Next we look at
how IRLA optimizes long flows. During the experiments in
§6.1.3, we log the number of long flows on each link for 5 min-
utes in IRLA. Denote L as the set of all links, Nj(t) as the num-
ber of long flows on link /€L at time ¢, and N (t)={N;(t),¥I}.
We plot max(N(t))—min(N(t)),Vt in Figure16, which is the
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Figure 16: Load balancing using IRLA (PG algorithm):
difference in number of long flows on links.

difference in number of long flows on the link that have the
most long flows and the link that have the least. This metric
is an indicator of load imbalance. We observe that this metric
is less than 10 most of the time. When temporary imbal-
ance occurs, as shown in the magnified portion of Figure 16
(from 24s to 28s), IRLA reacts to the imbalance by routing the
excess flows onto the less congested links. This is because,
as we discussed in §2.2, the reward of the PG algorithm is
directly linked to the throughput: when long flows share a
link, the total throughput is less than when they are using
different links. IRLA is rewarded when it places long flows
on different links, thus it learns to load balance long flows.

6.2.3 System Overhead. We proceed to investigate the
performance and overheads of AuTO modules. First, we look
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at the response latency of CS, as well as its scalability. Then
we examine the overheads of the end-host modules in PS.

CS Response Latency During experiments, response delay
of the CS server (Figure 17) is measured as follows: t,, is the
time instant of CS receiving an update from one server, and
ts is the time instant of CS sending the action to that server,
so the response time is t;—#,,. This metric directly shows how
fast can the scheduler adapt to traffic dynamics reported by
PS. We observe that CS can respond to an update within
10ms on average for our 32-server testbed. This latency is
mainly due to the computation overhead of DNN, as well as
the queueing delay of servers’ updates at CS. AuTO currently
only uses CPU. To reduce this latency, one promising direc-
tion is CPU-GPU hybrid training and serving [46], where
CPUs handle the interaction with the environment, while
GPUs train the models in the background.

Response latency also increases with computation com-
plexity of DNN. In AuTO, the network size is defined by
{n;,m;,ms}. Since long flows are few, the increment of n;,m;
are expected to be moderate even for datacenters with high
load. We increase {n;,m;} from {11,10} to {1000,1000}, and
find the average response time for IRLA becomes 81.82ms
(median 25.14ms). However, m; can increase significantly
in high load scenarios, and we conduct an experiment to
understand the impact on response latency of sRLA. In Fig-
ure 18, we vary m; from 100 (used in the above experiments)
to 1000, and measure the response latency. We find that the
average response time only slightly increase for larger m;.
This is because, m; determines the input layer size, which
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only affects the matrix size of link weights between the input
layer and the first hidden layer. Moreover, if in the future
AuTO employs more complex DNNs, we can reduce the re-
sponse latency with parallelization techniques proposed for
DRL [6, 25, 27, 39].

CS Scalability Since our testbed is small, the NIC capacity
of CS server is not fully saturated. Using the same parameter
settings as in the experiments (§6.1.3), the bandwidth of mon-
itoring flows is 12.40Kbps per server. Assuming 1Gbps net-
work interface, the CS server should support 80.64K servers,
which should be able to handle the servers in typical produc-
tion datacenters [50, 54]. We also intend to achieve higher
scalability in the following ways: 1) 1Gbps link capacity is
chosen to mimic the experiment environment, and in current
production datacenters, the typical bandwidth of of server is
usually 10Gbps or above [50, 54]; 2) we expect CS to have
GPUs or other hardware accelerators [46], so that the compu-
tation can complete faster; 3) we can reduce the bandwidth
requirement of monitoring flows by implementing compres-
sion and/or sampling in PS.

PS Overhead End-host overhead refers to the additional
work done for each flow to collect information and enforce ac-
tions. The overhead can be measured by CPU utilization and
reduction in throughput when PS is running. We measured
both metric during the experiments, and rerun the flows
without enabling MM and EM. We find that the throughput
degradation is negligible, and the CPU utilization is less than
1%. Since EM is similar to the tagging module in PIAS [8], our
results confirm that both the throughput and CPU overhead
are also minimal as PIAS.

7 RELATED WORKS

There have been continuous efforts on TO in datacenters. In
general, three categories of mechanisms are explored: load
balancing, congestion control, and flow scheduling. We focus
on the proposals using machine learning techniques.

Routing and load balancing on the Internet have employed
RL-based techniques [13] since 1990s. However, they are
switch-based mechanisms, which are difficult to implement
at line rate in modern datacenters with >10 GbE links. RL
techniques are also used for adaptive video streaming in
Pensieve [37].

Machine learning techniques [59] have been used to opti-
mize parameter setting for congestion control. The parame-
ters are fixed given a set of traffic distributions, and there is
no adaptation of parameters at run-time.

For flow scheduling, CODA [61] uses unsupervised clus-
tering algorithm to identify flow information without appli-
cation modifications. However, its scheduling decisions are
still made by a heuristic algorithm with fixed parameters.
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8 CONCLUDING REMARKS

Inspired by recent successes of DRL techniques in solving
complex online control problems, in this paper, we attempted
to enable DRL for automatic TO. However, our experiments
show that the latency of current DRL systems is the major
obstacle to TO at the scale of current datacenters. We solved
this problem by exploiting long-tail distribution of datacenter
traffic. We developed a two-level DRL system, AuTO, mim-
icking the Peripheral & Central Nervous Systems in animals,
to solve the scalability problem. We deployed and evaluated
AuTO on a real testbed, and demonstrated its performance
and adaptiveness to dynamic traffic in datacenters. AuTO is
a first step towards automating datacenter TO, and we hope
many software components in AuTO can be reused in other
DRL projects in datacenters.

For future work, while this paper focuses on employing
RL to perform flow scheduling and load balancing, RL algo-
rithms for congestion control and task scheduling can be
developed. In addition to the potential improvements we
mentioned in §5&6, we also plan to investigate applications
of RL beyond datacenters, such as WAN bandwidth manage-
ment.
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