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Abstract
BERT-like models have been widely adopted in text mining and

web search due to their high accuracy. However, large BERT-like

models suffer from inefficient online inference on GPUs for two

main reasons. First, their high accuracy relies on large model depth,

which linearly increases sequential computation on GPUs. Second,

stochastic and dynamic online workloads lead to extra costs due to

batching and padding. To address the problem, we present Student

Parallelism for efficient GPU inference of BERT-like models under

real-world online workloads. At its core, Student Parallelism adopts

stacking distillation and boosting ensemble, distilling the original

deep model into a group of shallow but virtually stacked student

models running in parallel. This enables Student Parallelism to

achieve a low model depth (e.g., two layers), and thus low inference

latency while maintaining accuracy. In addition, we design adaptive

student pruning to adjust the number of students according to the

dynamic online workloads. For example, during workload bursts,
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it can temporarily decrease the number of students with minimal

accuracy loss to improve system throughput. Extensive experiments

on real-world datasets and workloads show that Student Parallelism

achieves up to 4.1× lower latency while maintaining accuracy and

up to 22.27× higher throughput during workload bursts.

CCS Concepts
• Computing methodologies→ Natural language processing.

Keywords
Text Mining, Information Retrieval, Efficient Inference, Distillation

ACM Reference Format:
Weiyan Wang, Yilun Jin, Yiming Zhang, Victor Junqiu Wei, Han Tian, Li

Chen, Jinbao Xue, Yangyu Tao, Di Wang, and Kai Chen. 2025. Exploiting

Student Parallelism for Low-latency GPU Inference of BERT-like Models

in Online Services. In Proceedings of the 31st ACM SIGKDD Conference on
Knowledge Discovery and Data Mining V.2 (KDD ’25), August 3–7, 2025,
Toronto, ON, Canada. ACM, New York, NY, USA, 12 pages. https://doi.org/

10.1145/3711896.3736949

1 Introduction
BERT-like models [11, 17, 30] have been the cornerstone for discrim-

inative natural language understanding (NLU) tasks like text mining

and web search in online services. However, large BERT-like models

obtain strong model capability at the cost of slow inference, limiting

their applications in time-sensitive services that require efficient

3055

https://doi.org/10.1145/3711896.3736949
https://doi.org/10.1145/3711896.3736949
https://doi.org/10.1145/3711896.3736949
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3711896.3736949&domain=pdf&date_stamp=2025-08-03


KDD ’25, August 3–7, 2025, Toronto, ON, Canada Weiyan Wang et al.

2 4 6 8 10 12
0

5

10

15

La
te

nc
y 

(m
s)

0
100
200
300
400

Th
ro

ug
hp

ut

(a) Model Depth (# Layers)
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(b) Model Width (Hidden Dim.)
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(c) Input Batch Size
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(d) Input Sequence Length

Figure 1: Impacts of variousmodel and input factors on infer-
ence latency (red solid line, left axis) and throughput (green
dashed line, right axis). Detailed settings in Appendix B.1.

online inference. For example, news sentiment classification for au-

tomatic stock trading is time-sensitive as even a sub-millisecond

delay can impact the profits [3]; Retrieval Augmented Generation

(RAG) applications [28] generally have a limited time budget of

∼ 10ms [53] for each query to search for relevant web pages for

informed answer generation; online writing assistants need to im-

mediately respond to text streams while users are typing [22].

Much effort has been devoted to efficient BERT-like model in-

ference, such as compact model designs [44, 52], knowledge dis-

tillation [21, 39, 43], model pruning [13, 18, 34], and early exit

[29, 51, 58]. Although they are effective in reducing the overall

amount of computation during inference, they suffer from two

drawbacks and are thus unsuitable for efficient GPU inference for

online services. First, these methods often fail to reduce the number

of model layers, leading to significant inference latency. Since deep

learning essentially relies on model depth for high model capabil-

ity [27], a high number of layers is necessary to maintain model

accuracy. For example, methods based on compact model designs,

knowledge distillation, and model pruning primarily reduce the

width of the models (i.e. hidden dimension) instead of their depth

(about half of the layers remained). Moreover, for methods based

on early exit, there are always hard data samples that go through

all model layers. Consequently, the high number of layers results in

a significant amount of sequential computation, which still suffers

from high inference latency on parallel-computing devices such as

GPUs even with reduced model sizes. Figure 1(a) shows that model

depth linearly increases the latency due to the layer-by-layer for-

ward propagation. In contrast, both latency and throughput remain

the same with varying model widths (as long as they lie within

the computation capacity of the GPU). Therefore, reducing model

depth is crucial for efficient GPU inference of BERT-like models.

Second, existing works suffer from extra overheads of batch-

ing and padding upon dynamic online inference workloads. Large

data batches are often favored by GPUs due to their strong parallel

computing capacity [26]. For example, as shown in Figure 1(c), in-

ference throughput keeps increasing while latency remains stable

until a batch size of 12. However, different from pre-processed reg-

ular data batches during training, samples during online inference

have different lengths and arrive in dynamic patterns. Therefore, a
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Figure 2: Accuracy-latency tradeoff comparison of all com-
pared methods. Methods closer to the upper-left corner
achieve better tradeoff.

waiting queue is often used to batch sufficient data samples during

online inference [2, 9, 57], leading to increased latency for samples

that arrive earlier. Moreover, as GPUs require uniform data shapes,

padding is applied to pad shorter data samples to the maximum

length of the batch [11], leading to extra computation overhead.

As shown in Figure 1(d), inference latency increases with longer

sequences. Consequently, the overhead of batching and padding

should be mitigated for efficient inference for online services.

To address the challenges, we present Student Parallelism for

efficient GPU inference of BERT-like models for real-world online

workloads. At its core, Student Parallelism distills the original deep

model into an adaptive group of parallel, shallow, but virtually

stacked student models. Thus, the sequential layer-by-layer com-

putation is replaced with parallel computation of students while

maintaining model accuracy. To achieve this, we propose a novel

knowledge distillation method based on explicit boosting ensemble

and virtual stacking distillation (§ 3.1). Despite their parallel infer-

ence, students are sequentially trained with boosting ensemble to

gradually reduce the error between the teacher and the group of

students. Furthermore, each student distills the output features of

all previous students into its intermediate layer, so that it virtually

stacks on previous students. Consequently, the group of students

can maintain accuracy with significantly fewer layers (1/4 of the

original number of layers — sometimes only two), thus reducing in-

ference latency on GPUs. Beyond distillation, we conduct adaptive

student pruning to improve generalization and enable dynamic re-

duction of the number of students. By dynamically dropping some

last-trained students, Student Parallelism improves generalization

of the remaining students. More importantly, it enables dynamic

adjustments of the number of students according to the changing

workload. Upon workload bursts, it can temporarily reduce the

number of students (e.g. one or two) with minimal accuracy loss.

With Student Parallelism, we further make specialized designs to

reduce the overhead of batching and padding. It allocates the stu-

dents of the same group on different GPUs to better parallelize

inference of a single sample. It further replicates the student group

into multiple copies to run concurrently on the same set of GPUs

for better GPU utilization. By employing the length-aware buffer,

it enables immediate and concurrent inference of different samples

to be free of batching large and regular data.
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Evaluation results (§ 4) on real-world online workload traces

show that Student Parallelism achieves up to 4.1× lower average
and tail latency while achieving the best prediction accuracy in all

baselines with compressed models. Upon workload bursts, Student

Parallelism achieves up to 22.27× higher throughput with com-

petitive accuracy by adaptively reducing the number of students.

In addition, Student Parallelism can effectively compress 24-layer

and 48-layer BERT-like models into students with only 1/4 of the

original number of layers (6 and 12 layers, respectively), while

other baselines fail. Figure 2 demonstrates that Student Parallelism

achieves a better tradeoff between accuracy and latency, where

Student Parallelism either achieves better accuracy with the same

latency or lower latency with the same accuracy.

Our contributions can be summarized as follows:

• We leverage virtual stacking and boosting ensemble to distill

the deep model into a group of parallel and shallow students

for low inference latency with comparable accuracy.

• To handle online workloads, we can reduce the student num-

ber with minimal accuracy loss for workload bursts, and

we also make specialized designs for student parallelism to

reduce waiting and padding.

• Comprehensive experimentswith real-worldworkload traces

verify that Student Parallelism achieves better tradeoff be-

tween accuracy and efficiency compared to baselines.

2 Related Work
Previous works have explored various methods for efficient in-

ference of BERT-like models. However, they still suffer from high

inference latency due to large model depth and extra overhead upon

online workloads. Existing works can be categorized as follows:

• Model Compression. Methods based on model compres-

sion generate a single model with fewer parameters but still

suffer from considerable model depth and high latency on

GPUs. MobileBERT [44] and NAS-BERT [52] make compact
model designs that can achieve similar accuracies. Knowl-
edge distillation transfers the knowledge from a large teacher

model [21, 39, 43] or teacher ensemble [4] to a small stu-

dent model, so that the student model mimics the output

of the teacher model. Pruning removes redundant weights,

attention heads, or tokens in well-trained models for lower

inference costs and better generalization [18, 25, 31]. Meth-

ods based on early exit [29, 51, 58] add multiple classifiers on

different layers as paths for early exit, so that ‘easy’ samples

do not go through all layers. Quantization [24, 41, 45, 54]

replaces high-precision floating point operators with faster

integer operators that can be executed in a higher level of

parallelization on GPUs. However, deep learning essentially

relies more on model depth than model width for high model

capability [27], so they still require a considerable number

of model layers to maintain model accuracy. For example,

MobileBERT and NAS-BERT are similarly deep (12 or 24 lay-

ers) but with lower width to avoid accuracy loss. DistilBERT

with 6 layers can maintain 96.3% of the score of 12-layer

teacher BERT model, but the 3-layer PKD-BERT only main-

tains 88.5% (§ 4.2.1). Model pruning methods [18] can only

reduce up to a half of layers to maintain model accuracy. In

models with early exit, "difficult" samples still go through

all layers. Quantization methods maintain the same model

depth as the original model.

• Model Ensemble. Methods based on model ensembles gen-

erate multiple smaller models from the original large model

for efficient inference. Mixture-of-Experts (MoE) models [40,

60] have routers to activate a subset of experts in each MoE

layer and thus can be viewed as an implicit ensemble of ex-

perts. It can scale upmodel widthwhile maintaining constant

inference costs, but fails to decrease depth of the model. Bag-
ging ensembles like Cocktail [8, 15] select different smaller

models from a model pool to run in parallel for lower la-

tency and high accuracy. However, these methods rely on

different model architectures to improve the diversity of the

ensemble, resulting in different inference latencies and thus

the straggler problem. SensAI [49] divides the original multi-

class classification model into an ensemble of pruned binary

classification models, which still have large model depths

and irregular pruned architectures. Progressive ensemble dis-
tillation [10] aims to progressively adds more student models

with different architectures to gradually approximate the ac-

curacy of the teacher model. However, the maximum number

of layers among the heterogeneous students remains large,

and its accuracy decreases significantly upon any dropped

student. Collaborative and Self-distillation [42, 55, 59] explore
distilling multiple teachers and existing students into a new

better student for higher accuracy, but they do not leverage

multiple students together to reduce the number of layers.

• Handling Online Workload. Methods for efficient model

inference discussed above generally ignore the stochastic

online workloads and thus suffer from overheads caused by

batching and padding. They reserve some over-provisioned

GPUs in advance for potential workload bursts, which are

underutilized for most of the time [15, 38, 57]. According

to workload prediction and profiling, some existing works

can dynamically set the batch size and maximum waiting

time to reduce the idle waiting [2, 57], but their effective-

ness are bounded by the empirical profiling. Some recent

works [1, 5, 36, 56] bring in supports of ragged batches to

avoid extra padding, but their support of operators and ap-

plication scenarios remains limited [12].

In contrast, Student Parallelism trains a group of parallel stu-

dents with low model depth instead of a single student with smaller

size but similar depth. All students have the same model architec-

ture, such that Student Parallelism does not suffer from stragglers.

Through adaptive student pruning, Student Parallelism can reduce

the number of student with minimal accuracy loss to achieve higher

throughput, thus alleviating the need for over-provisioned GPUs.

With student parallelism, we also make specialized designs to save

the costs of batching and padding for online workloads. Besides,

Student Parallelism is orthogonal to quantization and can thus

quantize all students for further efficiency improvement.

3 Methodology: Student Parallelism
In this section, we first show how to combine virtual stacking and

boosting ensemble to train the student group generating similar
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Figure 3: The training process of Student Parallelism. The
intermediate layer of a student imitates the output of all
previous students via virtual stacking distillation, while the
top layers reduce the residual error via boosting ensemble.

final representations of the deep teacher. Then, we introduce our

adaptive student pruning to train the final classifier to achieve

better generalization and enable dynamic student number. Finally,

we describe how to orchestrate the multiple students to run in

parallel for online inference workloads.

3.1 Virtual Stacking and Boosting Ensemble
We recall that BERT-like models stack all the attention layers with

residual connections, which add the input of a layer 𝑥 back to

the output of the layer 𝐹 (𝑥), making its output 𝐻 (𝑥) = 𝐹 (𝑥) + 𝑥 .
Because there are multiple attention layers stacked with residual

connections, the output of the model can be considered as the

sum of multiple forward passes within the BERT-like model, with

each path going through different layers, which behaves like the

ensemble of networks with different depths [19, 47].

Inspired by the implicit ensemble within BERT, we propose to

combine virtual stacking and boosting ensemble to build a group of

parallel student models with fewer layers, while generating similar

final representations as deep teachers. To alleviate stragglers, all stu-

dents share the same shallow model architecture, resulting in weak

model capacity and diversity. To improve model capacity, students

are not only added to gradually reduce the error (i.e. boosting), but

also trained with stacking distillation to imitate virtual stacking of

a student upon previous ones, as illustrated in Figure 3. In addition,

the training strategy (Algorithm 1) improves the diversity of the

ensemble from other aspects, including different training losses,

initializations, and subsets of training data.

3.1.1 Boosting Ensemble. To train the group of students for Stu-

dent Parallelism, we first train the first student to directly mimic

the output representations of the teacher. Then, further students

are sequentially trained in the style of boosting ensemble to gradu-

ally correct the residual error between the final representations of

the previous students and of the teacher model. We keep adding

new students until overfitting happens on validation data (Line 3,

Algorithm 1). Formally, we define the boosting ensemble with𝑀

students, each having 𝑁 layers to generate the final representations

𝐵 (𝑀 ) (𝑥) :=
𝑀∑︁

𝑚=1

𝛼 (𝑚)𝑆 (𝑚)
𝑁
(𝑥) (1)

Algorithm 1 Sequential Student Training for Student Parallelism

Require: Teacher model 𝑇 (𝑥), Small pre-trained language model

𝑆𝑝𝑟𝑒 (𝑥)
1: studentList = [𝑆𝑝𝑟𝑒 (𝑥)]
2: 𝑖 = 1

3: while 𝐵 (𝑖−1) (𝑥) not overfitting do
4: 𝑆𝑖 (𝑥) = studentList[-1].copy()

5: Sample training subset for the 𝑖-th student.

6: while Eqn. 4 not converged do
7: Optimize Eqn. 4 to train the 𝑖-th student 𝑆𝑖 (𝑥).
8: end while
9: studentList.append(𝑆𝑖 (𝑥))
10: end while
11: studentList = studentList[:-1]

where 𝑆
(𝑚)
𝑁

is the representations of the𝑚-th student model of its

𝑁 -th layer, and 𝛼 (𝑚) is its multiplier in the ensemble. We optimize

the following residual training loss 𝐿
(𝑖 )
boost

to train the 𝑖-th student,

𝐿
(𝑖 )
boost
(𝑥) = 1

2




𝑇 (𝑥) − 𝐵 (𝑖−1) (𝑥) − 𝑆 (𝑖 )
𝑁
(𝑥)




2 , (2)

where𝑇 (𝑥) is the final representations of the teachermodel,𝐵 (𝑖−1) (𝑥)
is the boosting ensemble of the previous 𝑖 − 1 students. We keep

other models like 𝑇 (𝑥) and 𝐵 (𝑖−1) (𝑥) fixed and only train the 𝑖-th

student model to optimize 𝐿
(𝑖 )
𝑏𝑜𝑜𝑠𝑡

(𝑥). After training the 𝑖-th student,
we can set its multiplier 𝛼 (𝑖 ) by line search to minimize the loss

1

2
(𝑇 (𝑥) − 𝐵 (𝑖 ) (𝑥))2, except that 𝛼 (1) is always 1.

3.1.2 Virtual Stacking. Although all students run independently

in parallel, we propose stacking distillation to virtually stack ev-

ery student upon all previous students. Specifically, each student

learns to distill the ensemble of its previous students into the rep-

resentations of its ⌈𝑁 /2⌉-th layer. By doing so, the intermediate

representations of the 𝑖-th student imitates the ensemble of all the

previous students, and thus the following layers can better correct

the error by refining the representations similar to a deep BERT-like

model. The loss 𝐿
(𝑖 )
stack

for stacking distillation for the 𝑖-th student

is defined as follows

𝐿
(𝑖 )
stack
(𝑥) = 1

2




𝐵 (𝑖−1) (𝑥) − 𝑆 (𝑖 )⌈𝑁 /2⌉ (𝑥)


2 (3)

where 𝑆
(𝑖 )
⌈𝑁 /2⌉ (𝑥) denotes the representations of the 𝑁 /2-th layer

in the 𝑖-th student model. We keep 𝐵 (𝑖−1) fixed and only train 𝑆 (𝑖 ) .
The overall loss 𝐿 (𝑖 ) to train the 𝑖-th student for Student Paral-

lelism is as follows,

𝐿 (𝑖 ) = 𝐿
(𝑖 )
boost

+ 𝜆𝐿 (𝑖 )
stack

(4)

where 𝜆 is a hyper-parameter to balance boosting distillation and

virtual stacking distillation. Each student is trained with a different

𝐿
(𝑖 )
stack

, thus improving the diversity of the ensemble.

Besides different training losses for different students, Student

Parallelism also improves the diversity of students from different

perspectives. All students have different initialized parameters. The

first student is initialized with a small pre-trained language model
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Algorithm 2 Adaptive Student Pruning

Require: Teachermodel𝑇 (𝑥), group of studentmodels 𝑆 (𝑖 ) (𝑥), 𝑖 =
1 . . . 𝑀 learned from Algorithm 1, a classifier layer Classifier.

1: while training do
2: Sample a batch of data 𝑥 .

3: softLabel = 𝑇 (𝑥)
4: for 𝑘 ← 1 to𝑀 do
5: 𝐵 (𝑘 ) (𝑥) = ∑𝑘

𝑗=1 𝛼
( 𝑗 )𝑆 ( 𝑗 ) (𝑥)

6: output𝑘 = Classifier(𝐵 (𝑘 ) (𝑥))
7: 𝐿

(𝑘 )
𝑝𝑟𝑢𝑛𝑒 = softCrossEntropy(output𝑘 , softLabel)

8: Calculate and accumulate gradients for 𝑆 ( 𝑗 ) (𝑥), 𝑗 =

1 . . . 𝑘 .

9: end for
10: Update all students with the accumulated gradients

11: end while
12: for 𝑘 ← 1 to𝑀 do
13: Evaluate Classifier(𝐵 (𝑘 ) (𝑥)) on the validation set.

14: end for
15: Choose the best-pruned group of students.

with fewer layers, while later students are initialized with the pa-

rameters of the previous student (Line 4, Algorithm 1). Additionally,

each student model is trained on a different subset of training data

(Line 5, Algorithm 1), with only the first student trained on all train-

ing data. For each student, we pick the top 𝑎% samples with the

largest residual errors between the teacher and the existing students

and randomly sample another 𝑏% of all training data. All subsets of

training data are augmented following previous works [18, 21].

Following the theory of boosting ensemble [32, 33], we make

mathematical proof on the convergence of the final representations

of all students based on the gradient boosting ensemble as follows:

Theorem 3.1. The MSE loss in Student Parallelism has the lower
bound 0, and it is Lipschitz differentiable loss function (for any L >
1, we always have | ▽ 𝐿boost (𝑥1) − ▽𝐿boost (𝑥1) | < 𝐿 |𝑥1 − 𝑥2 |). Let
𝐹 (0) , 𝐹 (1) , ... be the sequence of combined hypotheses generated by
the Student Parallelism training algorithm, using small enough step-

sizes 𝛼𝑖 := − ⟨▽𝐿boost (𝑇,𝐵
(𝑖−1) ),𝑆 (𝑖 ) ⟩

𝐿 |𝑆 (𝑖 ) |2 . Then our sequential training of

students either halts on round T with −⟨▽𝐿boost (𝑇, 𝐹 (𝑖−1) ), 𝑆 (𝑖 ) ⟩ ≤ 0,
or 𝐿boost (𝐹 (𝑖 ) ) converges to some finite value 𝐿∗, in which case

lim

𝑖
⟨▽𝐿boost (𝑇, 𝐵 (𝑡 ) ), 𝑆 (𝑡+1) ⟩ = 0. (5)

More proof details can be found in Appendix A.1.

3.2 Adaptive Student Pruning
In this section, we introduce our adaptive student pruning, which

prunes the students 𝑆 ( 𝑗 ) (𝑥), 𝑗 = 1 . . . 𝑀 obtained via Algorithm 1

for better generalization and dynamic adjustment of the number of

students. We follow sub-network training in Neural Architecture

Search (NAS) [7] to prune redundant students for more robust final

representations. Then, a classifier layer takes the final representa-

tions from different numbers of students to mimic the predictions of

the teacher. Since later students in the boosting ensemble gradually

,    Resource
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Figure 4: Overview of strategies for online inference: student
allocation and inference sample dispatching.

reduce the residual error, we simply drop and prune the last stu-

dents without computing importance scores as in previous pruning

methods [18]. Following the theory of Occam’s razor, student prun-

ing can improve generalization by removing redundant students

and only keeping necessary ones. Moreover, adaptive student prun-

ing enables dynamic adjustment of the number of students with

minimal accuracy loss. For example, for high throughput, we can

simply drop some of the last students, while the remaining ones are

fine-tuned with adaptive student pruning to maintain high accu-

racy. § 4.3.1 shows the better generalization of the best-pruned set

of students and better accuracy with different numbers of students.

We state the details of adaptive student pruning in Algorithm 2.

For each batch of training data, it samples different numbers of

students (Line 4 in Algorithm 2) to generate the final representations

(Line 5), which incurs limited communication costs due to the small

size of the final representations. We then put a classifier layer on

the output representations of the selected students (Line 6). We

take the soft labels generated by the teacher model (Line 3) as the

target and apply the soft cross-entropy loss (Line 7) to train the

students and the classifier. Since there are multiple forward and

backward passes with different numbers of students in each batch

of data, we accumulate all gradients to update the classifier and all

students (Lines 8 and 10). Finally, we evaluate different numbers

of first-𝑘 students on the validation set to choose the best-pruned

group of students instead of keeping all students (Lines 12-15).

3.3 Efficient Inference upon Online Workloads
We design specialized student allocation and inference sample dis-

patching strategies for efficient GPU inference upon online work-

loads to reduce the extra costs of batching and padding to collect

large and regular data batches. We assume that the GPU cluster for

online inference has multiple nodes, each of which has multiple

GPUs, and a global dispatcher to balance the workloads among

all nodes. Figure 4 shows the overview and procedure of online

inference as follows:

(1) In the initialization, the resource manager starts multiple stu-

dent groups running in parallel, and every group distributes its

students over multiple GPUs.

(2) User submits a request triggering one or more inference samples.

(3) The dispatcher assigns the samples to different GPU nodes in

the round-robin manner.
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Figure 5: Inference sample dispatching with length-aware
buffers. A new sample (the red one with length 30) can be
merged with previous ones into a small batch when they
lie within the same length range and the buffer is not full.
Otherwise, when the buffer is full, the new sample (e.g. the
blue one with length 52) is added to a new buffer at the tail.

(4) After reaching the GPU node, the sample is pre-processed and

then enters the length-aware buffer. And if the buffer is not

empty, it tries to merge the samples of the similar length into

small batches.

(5) Whenever any student group is idle, it immediately sends out the

first buffered data sample or batch of samples in similar lengths

for immediate inference without waiting.

(6) According to the dynamic intensity of online workload, resource

management decreases the student number for larger throughput

or increases it for better accuracy.

(7) It returns results to users.

3.3.1 Student Allocation. As shown in Figure 4, with Student Par-

allelism, we can distribute a group of students over multiple GPUs

in the same node, thereby better parallelizing inference for different

samples. NVIDIA Multi-Process Service (MPS) [35] can guarantee

different students on the same GPU have separate computation

units and memory bandwidth to run concurrently without interfer-

ence. Although communication is needed for students in the same

group to gather the final representations, it only takes about 0.2 ms

due to the small size of the final representations and fast NV-Link or

PCI-E. We further replicate the student group into multiple copies

that run on the same set of GPUs in the node. Specifically, assuming

𝑀 students running on a total of𝐺 GPUs on a node, the 𝑖-th student

of the 𝑗-th student group is allocated on

GPU𝑖𝑑 = (𝑖 + 𝑗 ×𝑀)%𝐺. (6)

Therefore, if 𝑖 + 𝑗 × 𝑀 > 𝐺 , students from multiple groups will

locate on the same GPU to process different samples concurrently.

During inference, the student allocation strategy keeps tracking

the intensity of onlineworkloads (e.g., requests per second) to adjust

the number of student accordingly. It temporarily decreases the

number of students (§ 3.2) to run more student groups for workload

bursts, instead of reserving idle GPUs in advance. Correspondingly,

it can also increase the number of students for high accuracy after

workload bursts. More details about hyper-parameters for student

allocation can be found in Appendix B.3.2).

3.3.2 Inference Sample Dispatching. To reduce the extra costs of

idle waiting and padding, Student Parallelism conducts immediate

and concurrent inference for different samples. If there are idle

student groups and no buffered samples, the dispatcher can imme-

diately send out the current sample for inference without waiting

for batching. Since samples do not arrive at the same time, different

student groups can concurrently process them by overlapping data

transfer to GPU and computation for inference.

However, upon workload bursts, there may be a massive num-

ber of concurrent samples that occupy all student groups. We thus

design length-aware buffers to merge samples with similar lengths

into data batches without much padding. To efficiently merge sam-

ples on-the-fly, the length-aware buffers are organized with a dic-

tionary mapping length ranges to positions to achieve 𝑂 (1) time

complexity, as shown in Figure 5. More details about the length-

aware buffer can be found in Appendix B.3.3.

3.3.3 Efficiency Analysis. We build an analytical model to quantita-

tively analyze the efficiency of Student Parallelism. By considering

factors like model depth 𝐷 , model width𝑊 , batch size 𝐵, input

length 𝑁 , waiting time 𝑄 (𝐵), computation capacity of each GPU

𝐶 , PCI-E bandwidth 𝑇 , the number of GPUs 𝐺 , and the number of

students𝑀 , inference latency can be modeled as:

Latency ∝ 𝐷

⌈𝑊𝐵𝑁 2𝑀

𝐶𝐺

⌉
+𝑄 (𝐵) + 𝐵𝑁

𝑇
(7)

Compared to existingworks, Student Parallelism has the advantages

of lower model depth (lower 𝐷

⌈
𝑊𝐵𝑁 2𝑀

𝐶𝐺

⌉
) and lower overhead for

waiting and padding (lower𝑄 (𝐵)). Please refer to Appendix A.2 for
details about the quantitative analysis and comparison.

4 Evaluation
In this section, we evaluate the effectiveness of Student Parallelism

in terms of accuracy and efficiency.We also conduct ablation studies

to analyze the impacts of individual designs in Student Parallelism

and hyper-parameters. We draw the following main conclusions:

• Accuracy. Student Parallelism achieves the best accuracy

among all compact models with reduced depth or width.

With adaptive student pruning, Student Parallelism achieves

comparable accuracy even with only one student remaining.

• Efficiency. Student Parallelism achieves up to 4.1× lower

latency and up to 22.27× higher throughput compared to

baselines due to the lower model depth, minimal waiting

and padding, and adaptive student pruning.

4.1 Experimental Settings
4.1.1 Implementation Details. We search from all 24 compact BERT

variants [46] and all DeBERTa variants to find the one which

needs the fewest layers to reach the target accuracy of various

teacher models. In practice, we use BERT-2L256D [46] for BERT-

base, BERT-6L768D for BERT-large, and DeBERTa-12L768D for

DeBERTa-xlarge as the student models
1
. We conduct the same

data augmentation following [21, 51]. We conduct a grid search

on various hyper-parameters, including epoch number, batch size,

learning rate, 𝜆, and data sampling ratio. We optimize 𝛼 (𝑖 ) in Eqn.

1 together with the student model as they are both differentiable.

We run experiments over 16 NVIDIA RTX3090 on 4 nodes. More

implementation details can be found in Appendix B.

4.1.2 Datasets and Metrics. We use the GLUE benchmark [48] fol-

lowing [18, 39, 51]. It consists of 8 datasets with various text mining

(SST-2, CoLA, MNLI, and RTE) and information retrieval (MRPC,

QQP, STS-B, and QNLI) tasks. For each dataset, we report the metric

1
The suffix -𝑝L𝑞D denotes a model with𝑝 layers, each of which has a hidden dimension

of 𝑞. Also introduced in Tables 1 and 2.
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Compared Methods # Params (Millions) SST-2 RTE MNLI CoLA (MCC) QQP MRPC (F1) STS-B (PCC) QNLI Overall Score

*BERT-base-12L768D 109 92.7 67 83.6 52.8 89.6 88.6 89 91.8 *81.89 (100%)

*I-BERT-12L768D 109 91.6 65.7 81.3 49.1 87.1 85.2 86.9 87.4 *79.29 (96.82%)

DeeBERT-12L768D 109 91.5 66.1 80 43.4 87.3 85.2 - 87.9 77.34 (94.45%)

DistillBERT-6L768D 67 91.3 58.4 81.1 49 88.1 86.9 86.9 88.9 78.83 (96.26%)

DynaBERT-6L192D 9 92 63.2 82.15 43.7 90.4 81.4 87 88.5 78.54 (95.92%)

TinyBERT-4L312D 15 87.8 60.8 76.9 44.1 87.7 85.8 83.3 86 76.55 (93.48%)

PKD-BERT-3L768D 46 87.5 58.2 76.3 24.8 87.8 80.7 79.8 84.7 72.48 (88.51%)

BERT-2L256D 10 87.1 54.6 74.7 23.2 87 80.3 86 84.4 72.16 (88.12%)

Student Parallelism-2L (pruned to 1) 10 91.3 64.9 77.3 42.3 88.1 86.7 85.2 88.2 78.00 (95.25%)

Student Parallelism-2L (best-pruned) 10𝑀 91.8 65.9 78.2 43.2 88.7 86.9 86.4 89.8 78.86 (96.31%)

*BERT-large-24L1024D 335 93.2 70.4 86.6 60.6 91.3 89.3 90 92.3 83.06 (100%)

Student Parallelism-6L768D (best-pruned) 67𝑀 92.1 61.4 82.5 51.2 89.2 88.9 87.2 89.7 80.28 (96.65%)

*DeBERTa-xlarge-48L1024D 658 97 93.1 91.3 70 92.3 94.3 92.8 95.1 90.40 (100%)

Cocktail - 94.2 72.1 87.1 62.1 91.5 89.7 - 93.4 84.30 (93.25%)

Student Parallelism-12L768D (best-pruned) 109𝑀 M 94.1 78.7 88.8 59.3 91.9 90.1 91.5 93.1 85.94 (95.06%)

Table 1: Experimental results on prediction accuracy. * denotes the teacher model with full depth and width; the suffix -𝑝L𝑞D
denotes a model with 𝑝 layers and a hidden dimension of 𝑞; results in bold are the best overall scores of models without full
depth or width; results with underlines meet the target prediction quality (95%).𝑀 is the number of students in the best-pruned
student group. DeeBERT and Cocktail require class probabilities and thus cannot handle STS-B with continuous outputs.

recommended by GLUE, including accuracy, F1 score, Matthews

correlation coefficient (MCC), and Pearson correlation coefficient

(PCC). We build our workload generator upon the real-world online

trace of twitter [23]. We report average and 95% tail latency for

text mining tasks and throughput for information retrieval tasks,

as retrieval often involves a larger number of samples.

4.1.3 Teachers Models and Baselines. We adopt the fine-tuned 12-

layerBERT-base-12L768D [11], 24-layerBERT-large-24L1024D [11],

and 48-layerDeBERTa-xlarge-48L1024D [17] as the teacher mod-

els. We set the target prediction quality as 95% of the overall scores

achieved by the teacher models, as recommended by MLPerf [37].

We train 2-, 6-, and 12-layer student models for Student Paral-

lelism for each teacher model correspondingly, reducing over 75%

of layers. We compare Student Parallelism with various baselines

related to BERT-like models.

• For the teacher model of BERT-base-12L768D, we conduct

quantization to get I-BERT-12L768D with the same model

architecture. We adoptDeeBERT-12L768D [51] as the base-

line for methods based on early exit. We adopt the 3-layer

PKD-BERT-3L768D [43], 4-layer TinyBERT-4L312D [21],

and 6-layerDistilBERT-6L768D [39] as baselines for knowl-

edge distillation. For pruning baselines, we choose the fastest

version of DynaBERT-6L192D [18] satisfying the target

prediction quality. We also compare with shallow fine-tuned

models like BERT-2L256D [46].

• The above baselines only work for BERT-base instead of

larger teacher models like BERT-large and DeBERTa-xlarge.

Therefore, we only compare our work with Cocktail based
on bagging ensemble to approach the performance of the

teacher model DeBERTa-xlarge.

Following [16, 57], all baselines employ dynamic batch sizes for

dynamic online workloads.We set the time budget as 10ms to set the

batch size and waiting window according to online workloads [57].

4.2 Overall Performance
In this section, we show that Student Parallelism can maintain pre-

diction accuracy while improving inference latency and throughput.

4.2.1 Prediction Accuracy. As shown in Table 1, for BERT-base, Stu-
dent Parallelism achieves the highest prediction accuracy among

all compared methods with only two-layer students. In contrast,

other baselines meeting the target prediction quality can only re-

duce half of the layers of BERT-base (DistilBERT-6L, DynaBERT-6L).

Compared with baselines with no more than 6 layers, Student Par-

allelism has a significant advantage in prediction accuracy. For

example, 3-layer PKD-BERT and 2-layer BERT-2L512D only main-

tain <90% of the overall score of BERT-base. Student Parallelism

also outperforms all baselines with 6 or more layers (i.e. over 3×
deeper than Student Parallelism) and is comparable with I-BERT

having full model depth and width. With improved generalization

from adaptive student pruning, Student Parallelism can use only

one student to handle workload bursts with a competitive overall

score (95.25% of the BERT-base). In addition, with deeper student

models, Student Parallelism can also reduce the model depth of

larger teacher models (BERT-large and DeBERTa-xlarge) by 75%,

while other baselines fail. For example, Cocktail fails to meet the

target prediction quality even with 24 layers.

4.2.2 Latency. In discriminative text mining tasks like news senti-

ment classification for automatic trading, users mainly care about

the inference latency of individual samples. Therefore, Table 2 has

two columns showing the average and tail latency of all methods

on the SST-2 dataset. Student Parallelism achieves both the lowest

average and tail latency among all methods with a reduction of

4.1 ∼ 1.6×. Student Parallelism-2L3S is the best-pruned version

with a slightly higher latency than Student Parallelism-2L1S due

to the final communication among students. Compared with other

baselines except for BERT-2L, Student Parallelism has a lowermodel

depth to achieve low latency. Furthermore, it does not require long

waiting time to collect data batches, leading to a lower latency

than BERT-2L. The different lengths are the main reason for small

latency variances in Student Parallelism. Because average latency
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Compared Methods Model Config (# Params) Avg. Latency 95% Tail Latency Throughput per GPU

Value (ms) Reduction Value (ms) Reduction Value (# samples/s) Improvement (×)

*BERT-base 12L768D (109 M) 11.6 0.00% 11.7 0.00% 691.5 1.00

*I-BERT 12L768D (109 M) 4.9 -57.8% 9.5 -18.80% 2115.99 3.06

DeeBERT 12L768D (109 M) 6.8 -41.38% 11.5 -1.71% 941.4 1.36
DynaBERT 6L192D (9 M) 8.3 -28.45% 9.6 -17.95% 7538.7 10.9

DistilBERT 6L768D (67 M) 8.4 -27.59% 9.7 -17.09% 1508.1 2.18

TinyBERT 4L312D (15 M) 7.3 -37.07% 9.7 -17.09% 5873.6 8.49
PKD-BERT 3L768D (46 M) 6.8 -41.38% 9.5 -18.80% 2781.3 4.02
BERT-2L 2L256D (10 M) 4.5 -61.21% 9.4 -19.66% 14420.3 20.85

Student Parallelism-2L1S 2L256D1S (10 M) 2.8 -75.86% 3.6 -69.23% 15398.6 22.27
Student Parallelism-2L3S 2L256D3S (30 M) 3.0 -74.13% 3.7 -68.37% 5201.91 7.52

*BERT-Large 24L1024D (335 M) 21.1 0.00% 21.3 0.00% 239.6 1.00

Student Parallelism-6L1S 6L768D1S (67 M) 6.3 -70.14% 7.1 -66.67% 1508.2 6.29
Student Parallelism-6L3S 6L768D3S (201 M) 6.6 -68.87% 7.3 -65.72% 512.4 2.14

*DeBERTa-xlarge 48L1024D (658 M) 40.5 0.00% 41.4 0.00% 160.9 1.00

Cocktail - 21.4 -47.16% 22.3 -46.14% 240.4 1.49
Student Parallelism-12L1S 12L1024D1S (109 M) 11.8 -70.86% 12.6 -69.57% 621.5 3.86
Student Parallelism-12L3S 12L1024D3S (327 M) 12.1 -70.12% 12.8 -69.08% 226.5 1.41

Table 2: Experimental results on inference efficiency. * denotes the teacher model with full depth and width; the suffix -𝑝L𝑞D𝑟S
denotes models with 𝑝 layers, a hidden dimension of 𝑞, and 𝑟 students; results in bold have the best efficiency among all
compared; a result in italic indicates that the method fails to satisfy the target prediction quality.

increases with the number of layers, the expected latency of all

models with over 6 layers has already exceeded the overall time

budget. Other baselines like BERT-2L, PKD-BERT, TinyBERT, Distil-

BERT, and DynaBERT are within the time budget, but they have to

wait longer to collect data batches. I-BERT suffers from the original

computation complexity as BERT-base and small batch sizes from

online workload, thus having higher latency. Because different sam-

ples exit from different layers, DeeBERT has the largest difference

between the average and tail latency. The latency of Cocktail is de-

termined by the largest model like 24-layer BERT-large to approach

the accuracy of DeBERTa-xlarge.

4.2.3 Throughput. In information retrieval tasks such as text simi-

larity search, hundreds of document candidates should be scored

to obtain the most relevant ones to the query. Hence, we compare

the throughput per GPU of best-pruned and single-student Student

Parallelism and various baselines. We set the batch size as 64 for all

baselines. The last column of Table 2 shows the throughput per GPU

for all methods on the MRPC dataset, where the single-student Stu-

dent Parallelism, trained with adaptive student pruning, improves

throughput over baselines by up to 22.27× while maintaining pre-

diction accuracy (§ 4.2.1). Meanwhile, even the best-pruned Student

Parallelism (with 3 students) achieves comparable throughput with

competitive baselines like TinyBERT with higher prediction accu-

racy. Even with fast integer operation, the model width and depth

of I-BERT limits its throughput improvement to 3×. The vanilla
BERT-2L256D has high throughout but is far from the target predic-

tion quality. Cocktail suffers from low throughput per GPU since it

has to use multiple GPUs for its models.

4.3 Ablation Studies
We further conduct ablation studies, including hyper-parameter

analysis, accuracy analysis, and latency analysis.

4.3.1 Hyper-parameter Analysis. Weanalyze two key hyper-parameters:

the number of students and model depth, to show their impact on

the prediction accuracy. Results in Figures 6(a) and 6(b) show that

adaptive student pruning can improve the generalization of the

remaining students and reduce the student number with minimal

accuracy loss. Furthermore, we can further improve prediction ac-

curacy with larger model depth with relaxed latency requirements.

Figure 6(a) shows that adaptive student pruning consistently

outperforms direct boosting ensemble with the same number of

students in terms of prediction accuracy, showing that adaptive

student pruning effectively improves generalization. Due to the

improved generalization of the remaining students, 3 students are

sufficient to get the highest accuracy in most datasets (i.e. best-

pruned). Even with only one remaining student, Student Parallelism

can maintain a relatively high score. However, when we directly

train the boosting ensemble without pruning, it is difficult for the

limited number of students to the optimal solution.

As shown in Figure 6(b), Student Parallelism can further improve

prediction accuracy with deeper students. With 4-layer students

instead of 2-layer ones, the overall GLUE score improves from 78.9

to 79.5. Furthermore, Student Parallelism achieves a similar GLUE

score to the original BERT-base with 6-layer students. Compared

with other optimized baselineswith the same number of layers (such

as BERT-2L256D, TinyBERT, and DistilBERT), Student Parallelism

Ablation Variants MRPC (F1)

Student Parallelism 86.9

w/o pruning 86.8

w/o stacking distillation 86.0

replacing boosting with bagging 85.6

Table 3: Ablation experiment results on prediction accuracy.
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Figure 6: Analysis of the impact of hyper-parameters on
prediction accuracy.

Ablation Variants avg (ms) tail (ms)

Student Parallelism (3-layer students) 2.8 3.6

Student Parallelism (4-layer students) 4.5 5.2

with padding 5.1 5.3

with waiting queue 7.5 9.5

Table 4: Ablation experiment results on inference latency.

consistently outperforms them in terms of the overall GLUE score

while having similar inference latency.

4.3.2 Accuracy Analysis. We first conduct ablation experiments

on prediction accuracy to verify the effectiveness of our training

methods on the MRPC dataset. Results are shown in Table 3. When

we directly use all trained students without adaptive student prun-

ing, we observe that the F1 score decreases a little from 86.9 to

86.8. After removing the stacking distillation, the F1 score further

drops to 86.0, showing the effectiveness of the virtual stacking in

improving model capacity. We further replace boosting ensemble

with bagging ensemble, and observe a further decrease of F1 score

to 85.6, showing that boosting more effective in ensembling small

and shallow students in Student Parallelism.

4.3.3 Latency Analysis. We perform ablation experiments to ana-

lyze the impact of our designs on inference latency. Results in Table

4 show that latency increases by over 40% when we increase the

depth of student models from 3 to 4 layers, showing the necessity

to reduce layer-wise sequential computation. After we pad all data

samples to the maximum length, the average latency gets close to

tail latency. It shows that as Student Parallelism require less padding,

the inference costs for shorter data samples are reduced. We further

employ waiting queues to batch enough inference samples. The

increase in both average and tail latency verifies the effectiveness

of Student Parallelism in reducing the overhead of batching.

5 Discussion
Extention to Generative Models. Generative models like GPT [6]

and LLaMA [14] generate tokens step by step, each of which in-

volves classification of the next token. Therefore, our work can be

naturally extended to speed up token classification for generative

models. However, we do not conduct such experiments for three

main reasons. First, evaluating the quality of open-ended genera-

tions is complex, and thus harder to verify if it maintains prediction

quality. Second, we did not find 2-layer pre-trained GPT like BERT-

2L [46] to initialize the generative students. We cannot afford to

collect large datasets and pretrain LLMs neither. Finally and most

importantly, we believe that speeding up BERT is non-trivial. They

have been widely adopted by online services related to text mining

and information retrieval, which will remain important in tasks

like RAG [28] to complement large generative models.

Training Cost. Student Parallelism has a similar training cost to

other model compression methods (e.g. 1.35× as DynaBERT with

comparable accuracy). Although we train multiple students, each

student is much smaller (e.g., 25% depth and 50% width) compared

with other baselines. Each student is only trained on subsets of data

(e.g., 20%) based on the residual error in the boosting ensemble.

Furthermore, training of multiple students can be easily accelerated

by multiple GPUs. For example, we can use one GPU to train the

current student and distribute the inference of previous students

on different GPUs. Most importantly, online services like search

engines have much more inference samples (e.g., billions per day)

than training, which amortizes the training costs.

6 Conclusion and Future Work
We propose Student Parallelism for efficient GPU inference of BERT-

likemodels. It distills the large BERT-like teachermodel into a group

of small and homogeneous student models with fewer layers to

achieve low inference latency. We train the group of students with

boosting ensemble and virtual stacking distillation to maintain the

prediction accuracy. We perform adaptive student pruning to re-

duce the number of students, thus achieving better generalization

and dynamic adjustment of the number of students upon workload

bursts. Finally, we make specialized designs for Student Parallelism

to minimize the overhead of batching and padding. Comprehensive

experiments with real-world online workloads verify the effec-

tiveness of Student Parallelism in terms of accuracy, latency, and

throughput. We plan to extend it to generative models like GPT for

future work.
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A Theory Analysis
In this section, we first conduct the convergence analysis on Student

Parallelism. Then we make the quantitative analysis and compari-

son of the inference efficiency.

A.1 Convergence Analysis
To prove the convergence, we can first prove our sequential training

of students is one special case of Anyboost [32, 33], then we can

reuse the convergence properties and proofs of Anyboost. Specifi-

cally, we take a non-parametric approach to view our sequential

training of students as the numerical optimization problem in func-

tion space. And we consider 𝐵(𝑥)) evaluate at each point 𝑥 as a

"parameter" and seek to minimize the following MSE error:

𝐿(𝑇 (𝑥), 𝐵(𝑥))) = 1

2

|𝑇 (𝑥) − 𝐵(𝑥)) |2, (8)

to make the ensemble of students generates a similar final repre-

sentation with the original teacher 𝑇 (𝑥). In function space, there

are an infinite number of such parameters, but in data sets only

a finite number {𝐵(𝑥)𝑖 )}𝑁
1
are involved. Following the numerical

optimization paradigm we take the solution to be

𝐹 ∗ (𝑥) =
𝑀∑︁
𝑖=0

𝑓 (𝑖 ) (𝑥), (9)

where 𝑓 (0) (𝑥) is the initial student 𝑆 (0) (𝑥) directly mimics the

teacher, and any 𝑓 (𝑖!=0) (𝑥) is the incremental function ("step" or

"boost") defined by the optimization method as follows:

𝑓 (𝑖 ) (𝑥) = −𝛼𝑖𝑔 (𝑖 ) (𝑥) . (10)

And 𝑔 (𝑖 ) (𝑥) is the gradient decent direction of 𝐿(·), namely:

𝑔 (𝑖 ) (𝑥) = 𝑇 (𝑥) − 𝐵 (𝑖−1) (𝑥) (11)

Therefore, our main loss 𝐿
boost

just makes the added i-th student

𝑆 (𝑖 ) (𝑥) fit the 𝑔𝑖 (𝑥):

𝐿
boost
(𝑥) = 1

2




𝑇 (𝑥) − 𝐵 (𝑖−1) (𝑥) − 𝑆 (𝑖 ) (𝑥)


2 = 1

2




𝑔 (𝑖 ) (𝑥) − 𝑆 (𝑖 ) (𝑥)


2
(12)

Although we apply other regularization like stacking distillation,

the final representation of the student is only related with the above

loss. Since the added i-th student 𝑆 (𝑖 ) (𝑥) is trained to fit 𝑔 (𝑖 ) (𝑥)
in the final output and 𝛼𝑖 is determined by the line serach, the

sequential training of students in Student Parallelism belongs to

Anyboost [32, 33]. Therefore, the boosting ensemble of students

to mimic the teacher should share a similar convergence theorem

with Anyboost as follows:

Theorem A.1. The MSE loss in Student Parallelism has the lower
bound 0, and it is Lipschitz differentiable loss function (for any L >
1, we always have | ▽ 𝐿boost (𝑥1) − ▽𝐿boost (𝑥1) | < 𝐿 |𝑥1 − 𝑥2 |). Let
𝐹 (0) , 𝐹 (1) , ... be the sequence of combined hypotheses generated by
the Student Parallelism training algorithm, using small enough step-

sizes 𝛼𝑖 := − ⟨▽𝐿boost (𝑇,𝐵
(𝑖−1) ),𝑆 (𝑖 ) ⟩

𝐿 |𝑆 (𝑖 ) |2 . Then our sequential training of

students either halts on round T with −⟨▽𝐿boost (𝑇, 𝐹 (𝑖−1) ), 𝑆 (𝑖 ) ⟩ ≤ 0,
or 𝐿boost (𝐹 (𝑖 ) ) converges to some finite value 𝐿∗, in which case

lim

𝑖
⟨▽𝐿boost (𝑇, 𝐵 (𝑡 ) ), 𝑆 (𝑡+1) ⟩ = 0. (13)

Because the detailed proof can be found in the previous theory

work [32, 33], we skip the proof for the convergence theorem.

A.2 Efficiency Analysis for GPU Inference
To make the quantitative analysis and comparison, we first build

a performance model for the inference latency and throughput.

In this model, we consider all model and input factors, including

model depth 𝐷 , model width𝑊 , batch size 𝐵, and input length 𝑁 .

Moreover, we also consider the time cost of the waiting queue𝑄 (𝐵)
that collect the maximum 𝐵 samples, and the parallel computation

capability 𝐶 , the PCI-E transferring bandwidth 𝑇 from the host

to the GPU, the GPU number 𝐺 , and the total parallel model or

student group number𝑀 on the cluster. Therefore, we can model

the inference latency of BERT-like models as follows:

Latency ∝ 𝐷

⌈𝑊𝐵𝑁 2𝑀

𝐶𝐺

⌉
+𝑄 (𝐵) + 𝐵𝑁

𝑇
(14)

The first term is the inference computation time on the GPU, in

which

⌈
𝑊𝐵𝑁 2𝑀

𝐶𝐺

⌉
is computation time of one layer and the ceiling

symbol means it is constant if there is enough parallel computation

capability𝐶 . And the second term𝑄 (𝐵) stands for the waiting time

of collecting the data batch, which depends on the workload and

batch size B. The last term means the PCI-E transferring time of the

data size 𝐵𝑀 . Furthermore, we can further model the throughput

per GPU based on the inference latency as follows:

Throughput Per GPU =
𝐵𝑀

Latency ·𝐺 (15)

.

To analyze the efficiency, we thenmake quantitative comparisons

between Student Parallelism and some representative baselines in

optimizing the BERT-base on the MRPC dataset. As all the factors

shown in Table 5, Student Parallelism can outperform the other

baselines due to its model architecture and system designs. Specif-

ically, Student Parallelism can achieve the lowest model depth of

only 2 layers to significantly decreases the latency. Although the

overall model width of 3 students brings in more parallel operators,

the GPUs have enough parallel computation capability to speed
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them up. Because Student Parallelism realizes the direct inference

on different individual samples, there is no waiting 𝑄 and large

batch 𝐵 for PCI-E transferring. And the single sample and small

batches of 2∼4 samples in the same bin are in the similar length.

In terms of throughput, the multiple students sharing the same

GPU make the 𝑀 can be several times larger than 𝐺 , leading to

large enough total concurrent sample number 𝐵𝑀 to fully utilize

the GPUs. Additionally, adaptive student pruning can reduce the

student number to only 1 to improve the student group number𝑀 .

In contrast, the other baselines suffer from the model architec-

ture unfriendly to GPUs and extra costs for data parallelism. The

knowledge distillation baseline TinyBERT has 4 layers fewer than

any other baselines, but it is 2 times larger than Student Parallelism.

In adaptive computing baseline DeeBERT, some "hard" samples

still have to go through all layers. Because Cocktail is the bagging

ensemble of different models, its model depth is determined by the

straggler that have the largest depth max(𝐷𝑖 ). Although the pruning

baseline DynaBERT have the smallest model width of 192 hidden

dimensions in all methods, it mainly reduces the parallel operators

that can be efficiently accelerated by GPUs. All baselines need large

enough data batches for data parallelism, bringing in considerable

waiting queue costs 𝑄 and large PCI-E transferring time. Tradition-

ally, they have to pad all short samples to have the same maximum

length 𝑁 as 128. Otherwise, they need to suffer from extra compil-

ing costs or computation divergence for the ragged batch. Based

on data parallelism, all the baselines only run one model on every

GPU to process different data batches, resulting in𝑀 = 𝐺 .

B Implementation Details
B.1 Motivation Experiment Settings
By default in Fig. 1, the model is a 12-layer BERT-base with 768

hidden dimensions, and the data batch consists of 8 samples with

length of 256. In every sub-figure, we choose one as the changing

variable and fix the others to measure the latency and throughput

and show the influences of the changing variable.

B.2 Testbed and Environment
We use 4 servers each with 4 NVIDIA Geforce 3090 GPUs, Intel

Xeon(R) E5-268340 CPU, and 96 GB memory for all evaluations.

And it runs on the Ubuntu 18.04 operating system. Besides the

global dispatcher, every server has its own logical controller. And

we implement the Student Parallelism with Python and packages

like PyTorch [36], HuggingFace Transformers [50], and NCCL [20].

B.3 Implementation Details
B.3.1 Training details. We consider all 24 compact BERT vari-

ants [46] and all DEBERTA variants as the student candidates.

Depth Width Batch Size Length M Q

BERT-base 12 768 ∼10 128 G Yes

TinyBERT 4 312 ∼10 128 G Yes

DynaBERT 6 192 ∼10 128 G Yes

DeeBERT 1-12 768 ∼10 128 G Yes

Cocktail max(𝐷𝑖 )
∑
𝑖𝑊𝑖 ∼10 128 G Yes

Student Parallelism 2 (1-3)*256 ≤ 4 8(n%8+1) 4G None

Table 5: The comparison on all factors about GPU efficiency.

In practice, we use the BERT-2L256D [46] for BERT-base, BERT-

6L768D for BERT-large, and Deberta-12L768D for DEBERTA-xlarge

as the initialization of student models respectively. Following pre-

vious works [21, 51], we conduct the same data augmentation on

the datasets. We conduct a grid search on various training hyperpa-

rameters to find the best for every dataset, including epoch number,

batch size, learning rate, 𝜆 weights, and data sampling ratio. In

practice, we optimize the 𝛼𝑖 together with the student, since they

are both differentiable. The training epoch number is early stopped

by the validation loss. lr=5e-5 and betas=(0.9, 0.999) for Adam opti-

mizer, 𝜆 = 1 works fine in most cases, data sampling ratio is usually

0.2 (smaller in some large datasets). The student number is deter-

mined by the validation loss. When conducting student distillation,

we continue to add new students until the validation loss does not

decrease any more. Then we conduct adaptive student pruning and

measure the validation loss to decide the number of students to

maintain. To determine the student model depth, we conduct the

binary search from one layer to 25% layers of the teacher model, to

find the smallest model depth that can reach the target accuracy.

B.3.2 Student Allocation. In the initialization, resource manage-

ment conducts profiling and grid searching to find the optimal

student number sharing the same GPU and the maximum batch

size of each student group (used in § B.3.3). Both hyperparame-

ters are set to maximize the total throughput without increasing

latency due to lacking computation capability. During the infer-

ence, it dynamically adjusts the student number to host different

numbers of student groups according to the workload intensity and

resource usage. It keeps tracking the size of the length-aware buffer

(described in § B.3.3) and the idle group number as indicators of

workload intensity and resource usage. If the buffer size reaches the

threshold (i.e. the total student group number), Student Parallelism

drops one last-trained student models to start more groups so that

the waiting time of buffered samples will not exceed the inference

time. And if the buffer is empty and the total student number of all

idle groups is larger than the occupied group number for a certain

time window (e.g., 2 minutes), it means there are enough free re-

sources to increase the student number by one for all the occupied

student groups. Then Student Parallelism can make better use of

idle computation resources to improve accuracy.

B.3.3 the Length-aware Buffer. Figure 5 shows how the length-

aware buffer efficiently generates small batches of samples in similar

lengths on the fly. We equally split the full-length range (i.e., 0-128)

into 16 bins at every step of 8 tokens. Then we set the bins and

pointer as the key-value pair in the dictionary to quickly index

samples of different length bins. When a new sample arrives, we

check the dictionary to see if any sample belongs to the same length

bin in the buffer. If so and the element size is not the maximum (e.g.,

4, which is also determined by profiling), we can get the element

pointer from the dictionary to merge them as one buffer element.

Otherwise, we append the new sample as the tail element in the

buffer and update its length bin and pointer in the dictionary. When

the first buffer element is dispatched, we delete its key-value pair

in the dictionary. Obviously, all the operators of the length-aware

buffer only has 𝑂 (1) time complexity due to the hash map.
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