
IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 2, APRIL 2019 889

Tagger: Practical PFC Deadlock Prevention
in Data Center Networks

Shuihai Hu , Yibo Zhu, Peng Cheng , Chuanxiong Guo, Kun Tan, Jitendra Padhye, and Kai Chen

Abstract— Remote direct memory access over converged
Ethernet deployments is vulnerable to deadlocks induced by
priority flow control. Prior solutions for deadlock prevention
either require significant changes to routing protocols or require
excessive buffers in the switches. In this paper, we propose Tagger,
a scheme for deadlock prevention. It does not require any changes
to the routing protocol and needs only modest buffers. Tagger is
based on the insight that given a set of expected lossless routes,
a simple tagging scheme can be developed to ensure that no
deadlock will occur under any failure conditions. Packets that
do not travel on these lossless routes may be dropped under
extreme conditions. We design such a scheme, prove that it
prevents deadlock, and implement it efficiently on commodity
hardware.

Index Terms— Data center networks, RDMA, deadlock
prevention, tag.

I. INTRODUCTION

PUBLIC cloud providers like Microsoft and Google are
deploying Remote Direct Memory Access (RDMA) over

Converged Ethernet (RoCE) in their data centers to enable
low latency, high throughput data transfers with minimal
CPU overhead [1], [2]. Systems like Pilaf [3], Farm [4],
TensorFlow [5], and CNTK [6] rely on RDMA/RoCE for
enhanced performance.

RoCE uses Priority Flow Control (PFC) to prevent packet
drops due to buffer overflow at the switches. PFC allows
a switch to temporarily pause its upstream neighbor. While
PFC is effective, it can lead to deadlocks [7]–[9]. Deadlocks
are caused by circular buffer dependency (CBD) [9], i.e., the
occupied buffers are waiting for each other in a loop.

While CBD can be caused by a routing loop, routing loop
is not required – flows that travel on loop-free paths can create

Manuscript received February 28, 2018; revised December 16, 2018;
accepted February 14, 2019; approved by IEEE/ACM TRANSACTIONS ON

NETWORKING Editor M. Chen. Date of publication March 21, 2019; date
of current version April 16, 2019. This work was supported in part by the
China 973 Program under Grants 2014CB340300 and HK GRF-16203715.
(Corresponding author: Shuihai Hu.)

S. Hu was with Microsoft Research Asia, Beijing 100080, China. He is
now with the Department of Computer Science and Engineering, The
Hong Kong University of Science and Technology, Hong Kong (e-mail:
shuaa@cse.ust.hk).

Y. Zhu and C. Guo were with Microsoft, Redmond, WA 98052 USA.
They are now with ByteDance, Beijing 100086, China (e-mail: zhuyibo@
bytedance.com; guochuanxiong@bytedance.com).

P. Cheng is with Microsoft Research Asia, Beijing 100080, China (e-mail:
pengc@microsoft.com).

K. Tan was with Microsoft Research Asia, Beijing 100080, China. He is
now with Huawei, Beijing 100036, China (e-mail: kun.tan@huawei.com).

J. Padhye is with Microsoft, Redmond, WA 98052 USA (e-mail:
padhye@microsoft.com).

K. Chen is with the Department of Computer Science and Engineering,
The Hong Kong University of Science and Technology, Hong Kong (e-mail:
kaichen@cse.ust.hk).

Digital Object Identifier 10.1109/TNET.2019.2902875

Fig. 1. A simple (but contrived) example to illustrate CBD formation without
routing loop.

buffer dependencies that lead to CBD. A simple but contrived
example is shown in Fig. 1. We will discuss more realistic
scenarios (e.g. Fig. 3) later. See [9] for several other examples.

The deadlock problem is not merely theoretical – our
conversations with engineers at large cloud providers confirm
that they have seen the problem in practice and Microsoft
has reported one deadlock incident occurred in its test cluster
publicly [7]. Deadlock is a serious problem because a dead-
lock is not transient – once a deadlock forms, it does not go
away even after the conditions (e.g. a temporary routing loop
due to link failure) that caused its formation have abated [7].
Worse, a small initial deadlock may cause the PFC frames
to propagate and create a global deadlock, and shutdown the
whole network.

Current solutions to the deadlock problem fall in two
categories. The first category consists of solutions that detect
the formation of the deadlock and then use various techniques
to break it [10]. These solutions do not address the root cause
of the problem, and hence cannot guarantee that the deadlock
would not immediately reappear.

The second category of solutions are designed to prevent
deadlocks, by avoiding CBDs in the first place.

In §III, based on the data and experience from a large cloud
provider’s data centers, we show that any practical deadlock
prevention scheme must meet three key challenges. These
include: 1) it should require no changes to existing routing
protocols or switch hardware, 2) it must deal with link failures
and associated route changes, and 3) it must work with limited
buffer available in commodity switches.

Prior proposals for deadlock prevention fail to meet one or
more of these challenges. Most of them [8], [11]–[24], [24]
are focused on designing routing protocols that are signif-
icantly different from what are supported by commodity
Ethernet switches. Many of these schemes also require care-
fully controlling the paths – something that is simply not possi-
ble with decentralized routing in presence of link failures [25].

1063-6692 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-6080-9536
https://orcid.org/0000-0003-4014-4757
https://orcid.org/0000-0003-2587-6028

890 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 2, APRIL 2019

Finally, some schemes [26]–[29], require creation of numerous
priorities and buffer management according to those priorities.
However, modern data center networks, built using commodity
switches, can realistically support only two or three lossless
priorities [7].

In this paper, we present Tagger, which meets all three
challenges described above. Tagger is based on a simple
observation: in a data center, we can ask the operator to
supply a list of paths that must be lossless. Packets that do
not travel on lossless paths may be dropped under extreme
circumstances. We call these expected lossless paths (ELPs).
Enumerating ELPs is straightforward for “structured” topolo-
gies like Clos [30], FatTree [31] or Bcube [32], and not oner-
ous even for randomized topologies like Jellyfish [33].

Using ELPs, we create a system of match-action rules to
“tag” packets. The switches use these tags to enqueue packets
in different lossless queues. The tags carried in packets are
manipulated in a way such that CBD never forms due to
packets traveling on paths in ELP. If packets ever deviate
from paths in ELP (e.g. due to link failures or routing errors)
they are automatically placed in a lossy queue to ensure that
they do not trigger PFC. Operators have full flexibility to add
more redundant paths into ELP, bringing the possibility of
falling in the lossy queue to nearly 0. Once ELP is given,
Tagger guarantees that there will be no deadlock - even under
unforeseen link failures or routing errors, like loops!

Tagger works for any routing protocol because there are
no restrictions on what paths can be included in the ELP,
tagging rules are static, and are specified only in terms of
local information (tag, ingress port and egress port) available
at each switch.

The number of lossless queues and the number of tag
match-action rules required by Tagger are small. Even for a
Jellyfish topology with 2000 switches, Tagger requires just
three lossless queues per switch. In fact, we prove that for
Clos topology, Tagger is optimal in terms of number of
lossless queues required. We also show that using two lossless
queues practically guarantees lossless, and we further show
how to minimize the number of match-action rules required
to implement Tagger.

We have implemented and tested Tagger on commodity
Arista switches with Broadcom chips. The implementation
requires carefully addressing the problem of priority transition
(§VII). Our simulations and experiments show Tagger imposes
negligible performance penalty on RDMA traffic.

II. BACKGROUND

A. RDMA and RoCE

RDMA technology offers high throughput, low latency
and low CPU overhead, by bypassing host networking stack.
It allows Network Interface Cards (NICS) to transfer data
between pre-registered memory buffers at end hosts. In modern
data centers, RDMA is deployed using RDMA over Converged
Ethernet V2 (RoCE) standard [34].

B. PFC

RoCE needs a lossless fabric for optimal performance. This
is accomplished in Ethernet networks using the Priority Flow

Control (PFC) mechanism [35]. Using PFC, a switch can
pause an incoming link when its ingress buffer occupancy
reaches a preset threshold. As long as sufficient “headroom”
is reserved to buffer packets that are in flight during the time
takes for the PAUSE to take effect, no packet will be dropped
due to buffer overflow [1], [36].

The PFC standard defines 8 classes, called priorities.1 Pack-
ets in each priority are buffered separately. PAUSE messages
carry this priority. When a packet arrives at port i of switch
S with priority j, it is enqueued in the ingress queue j of
port i. If the ingress queue length exceeds the PFC threshold,
a pause message is sent to the upstream switch connected to
port i. The message carries priority j. The upstream switch
then stops sending packets with priority j to switch S on port
i until a resume message with priority j is received.

C. Deadlock
PFC can lead to deadlocks when paused queues form

a cycle. Deadlock cannot happen if there is no Circular
Buffer Dependency (CBD). Thus deadlock avoidance schemes,
including this work, focus on avoiding CBD. We now describe
the three key challenges that any practical deadlock avoidance
scheme must meet.

III. CHALLENGES

A. Work With Existing Routing Protocols and Hardware

Data center routing protocols have to satisfy a vari-
ety of complex requirements regarding fault tolerance, and
security [37]. Operators also invest heavily in tools and tech-
nologies to monitor and maintain their networks; and these
tools are tailored for the routing protocols that are already
deployed. Thus, operators are unwilling to deploy brand-new
routing protocols like [13]–[24] or hardware just for deadlock
avoidance – especially when RoCEv2 (encapsulated in stan-
dard UDP packets) itself can be deployed without any changes
to routing.

However, the widely-used routing protocols, like BGP and
OSPF, never attempt to avoid CBD since they are designed
for lossy networks. Moreover, modifying these protocols to
avoid CBD is not trivial. They are inherently asynchronous
distributed systems – there is no guarantee that all routers will
react to network dynamics (§III-B) at the exact same time. This
unavoidably creates transient routing loops or CBDs, enough
for lossless traffic to create deadlocks. In such cases, we cannot
ensure both losslessness and deadlock-freedom.

In this paper, instead of making drastic changes to routing
protocols, we explore a different design tradeoff. Our system,
Tagger, works with any unmodified routing protocols and
guarantees deadlock-freedom by giving up losslessness only
in certain rare cases. We favor this approach because it is more
practical to deploy, and has negligible performance penalty.

B. Data Center Networks Are Dynamic

Given that we aim to work with existing routing infrastruc-
tures, we must address the issue that most routing schemes are

1The word priority is a misnomer. There is no implicit ordering among
priorities – they are really just separate classes.

HU et al.: TAGGER: PRACTICAL PFC DEADLOCK PREVENTION IN DATA CENTER NETWORKS 891

Fig. 2. Clos topology with two up-down flows.

Fig. 3. 1-bounce path creates CBD. The green flow (T3 to T1) bounces at
L2 due to failure of L2-T1. The blue flow (T2 to T4) bounces at L3 due to
failure of L3-T4. Note that the paths are loop-free, and yet there is a CBD.

dynamic – paths change in response to link failures or other
events.

Fig. 2 shows a simplified (and small) version of network
deployed in our data center, with commonly used up-down
routing (also called valley-free [38]) scheme. In up-down
routing, a packet first goes UP from the source server to one of
the common ancestor switches of the source and destination
servers, then it goes DOWN from the common ancestor to
the destination server. In UP-DOWN routing, the following
property holds: when the packet is on its way UP, it should
not go DOWN; when it is on its way DOWN, it should not go
UP. Thus, in normal cases, there can be no CBD and hence
no deadlock.

However, packets can deviate from the UP-DOWN paths
due to many reasons, including link failures, port flaps etc.,
which are quite common in data center networks [25], [39].
When the up-down property is violated, packets “bouncing”
between layers can cause deadlocks [10]. See Fig. 3.

In our data centers, we see hundreds of violations of
up-down routing per day. Such routes can persist for minutes
or even longer. In the next, we present our measurement results
in more than 20 data centers.

Measurements of violations of up-down routing: Our mea-
surement works as follows. We instrument the servers to send
out IP-in-IP packets to the high-layer switches. The outer
source and destination IP addresses are set to the sending
server and one of the high layer switches, and the inner
source and destination IP addresses are set to the switch
and the sending server, respectively. The high-layer switches
are configured to decapsulate those IP-in-IP packets that are
targeting themselves in hardware.

TABLE I

PACKET REROUTE MEASUREMENTS IN MORE THAN 20 DATA CENTERS

After decapsulation, the outer IP header is discarded, and
the packet is then routed using its inner header. We set a TTL
value, 64 in this paper, in the inner IP header. As the packet
is forwarded back to the server, the TTL is decremented per
hop. For a three-layer Clos network, there are three hops from
the highest layer switches to the server. Hence normally the
TTL value of the received packets should be 61. If, however,
the TTL value of a received packet is smaller than 61, say 59,
we know the received packet was not taking the shortest path,
and the packet must have taken a reroute path.

For every measurement, a server sends out n = 100 IP-
in-IP probing packets, if the received TTL values are not
equal, we know packet reroute happened for this measurement.
We then calculate the reroute probability of the measure-
ments as M

N , where M is the number of measurements that
experienced packet reroute, and N is the total number of
measurements. The measurement results are shown in Table I.

The most important conclusion we can draw from Table I
is that packet reroute does happen in data center networks.
The reroute probability is around 10−5. Though 10−5 is not a
big number, given the large traffic volume and the large scale
data center networks, the deadlocks due to packet reroute as
discussed in [7], [9], and [10] do not just exist in paper designs.
They are real!

C. Limited Number of Lossless Queues

One idea to solve deadlock is to assign dynamic priority
to packets. The priority of a packet increases as the packet
approaches its destination [29]. Such a design requires as
many priorities as the largest path length in the network.
However, there are two practical problems. First, given the
network dynamics, the largest path length may not be all
that small (§III-B). Second, the PFC standard supports only
8 priorities. Worse yet, commodity switches can realistically
support only two or three lossless priorities [7]. The problem is
that to guarantee losslessness, a switch needs to reserve certain
amount of headroom for absorbing the packets in flight during
the time it takes for the PAUSE message to take effect.

The switch buffers are made of extremely fast and hence
extremely expensive memory, so their size is not expected to
increase rapidly even as link speeds and port counts go up.
Some of this buffer must also be set aside to serve lossy traffic
(i.e. normal TCP traffic), which still constitutes a majority of
traffic in data centers. At the same time, the PFC response
time is subject to physical limits and cannot be arbitrarily
reduced. Thus, even newest switching ASICs are not expected
to support more than four lossless queues. Hence the solutions
that require a large number of lossless queues are not practical.

892 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 2, APRIL 2019

IV. TAGGER FOR CLOS TOPOLOGY

While Tagger works for any topology, we first describe the
core ideas using the popular Clos network topology.

A. Definitions

1) Expected Lossless Paths (ELP): This is a set of paths
that the network operator requires to be lossless. For example,
in a Clos network, the operator may want that all up-down
paths or all shortest paths to be lossless. Any loop-free route
can be included in ELP.

2) Lossless Class: A lossless class is a service that the
network provides for applications. The network guarantees that
packets in a lossless class will not be dropped due to buffer
overflow as long as they traverse paths in ELP.

3) Tag: Tag is a small integer assigned / associated with a
packet. The tag is embedded in a packet. A packet belonging
to one lossless class may change its tag value, which means
that a lossless class may have multiple tag values.

4) Switch Model: For ease of discussion, we use a simpli-
fied switch model in this section. A switch has multiple ports.
Each port has up to n lossless queues (typically n ≤ 8), and
at least one lossy queue.2 The queue number corresponds to
the PFC priority. Switch classifies arriving packets into ingress
queues based on tags. Each tag maps to a single priority value.
If a tag does not match any priority value, the packet is added
to a lossy queue. Before forwarding a packet, the switch can
rewrite the tag according to user-specified, match-action rules
based on the InPort (ingress port number), OutPort (egress
port number) and the original tag value.

We now describe the core idea behind Tagger.

B. Tagging on Bounce

We start with a simple scenario. Consider Fig. 2. Let’s
assume that the operator defines ELP simply - just shortest
up-down paths as they exist in this network. Both the green
and blue flows follow such paths and there is no deadlock.

Now, let’s assume that as shown in Fig. 3, two links fail,
which forces both flows to travel on paths that are not in the
ELP. We call these paths 1-bounce paths, as the path violates
the up-down rule once (L2 to S1 for green flow, L3 to S2 for
blue flow). As shown, this can lead to CBD, and hence may
cause deadlock.

One way to avoid such CBD is to put any packets that have
deviated from the ELP in a lossy queue. Being assigned to
lossy queue means that such packets will not trigger PFC.
Since the paths in ELP are shortest up-down paths they are
deadlock free, and the bounced packets won’t trigger PFC,
the network will stay deadlock free even if packets bounce.

Being assigned to lossy queue does not mean that the
packets are immediately (or ever) dropped – they are dropped
only if they arrive at a queue that is full. We only need to
ensure that these wayward packets do not trigger PFC.

Thus, if each switch can detect that an arriving packet has
traveled (sometime in past) on a “bouncy” path, it can put that
packet in lossy queue, and there will be no deadlock.

2All queues share a single memory pool.

How can a switch determine whether the packet has
bounced, using just local information, in presence of dynamic
routing?

Consider the green flow in Fig. 3. We want switch S1, the
first switch after bounce, to detect the bounce and put the
packet in a lossy queue.

One way for S1 (and any switches afterwards) to recognize
a bounced packet is by TTL. Since the ELP consists of shortest
paths, a bounced packet will have “lower than expected” TTL.
However, TTL values are set by end hosts (more in §VII), so a
more controllable way is for L2 to provide this information
via a special tag (e.g. DSCP) in the packet.

Note that for any shortest, up-down path, L2 would have
never forward any packet that arrived from S2 to S1. So, if L2
“tags” packets that have arrived from S2 that it is forwarding
to S1, then S1, and all other switches along the path after
S1 know that the packet has traveled on a non-ELP path.

Note that L2 needs only local information to do the tagging.
We can initially assign a NoBounce tag to every packet.
L2 then simply needs to check ingress and egress port for
each packet: it changes the tag from NoBounce to Bounced
if a packet arriving from ingress port connected to S2 exits on
egress port connected to S1. It is easy to see that these rules
can be pre-computed since we know the topology, and the set
of paths that we want to be “lossless”.

While this scenario is quite simple, we chose it because
it clearly illustrates the core idea behind Tagger – given a
topology and an ELP we can create a system of tags and
static rules that manipulate these tags to ensure that there will
not be CBD, even when the underlying routing system packets
on paths that are not in the ELP.

Of course, this basic idea is not enough. First of all, packets
may bounce not just from the Leaf layer, but at any layer.
Second, recall from §III-B that “bounces” are a fact of life in
data center networks. The operator may not want to put packets
that have suffered just a single bounce into a lossy queue – we
may want to wait until the packet has bounced more than once
before assigning it to a lossy queue. This means that ELP will
consist of more than shortest up-down paths, and the paths in
ELP may be prone to CBD! Third, we must ensure that we
don’t end up using more lossless queues than the switch can
support. To this end, we show how to combine tags.

C. Reducing the Number of Lossless Queues

Consider again the network in Fig. 2. Let’s say the operator
wants to make sure that in face of link failures, packets are not
immediately put into a lossy queue. The operator is willing to
tolerate up to k bounces. So, the ELP consists of all shortest
paths, and all paths with up to k bounces. Do we need to
assign a distinct tag and a corresponding priority queue for
each bouncing point?

To answer this question, we leverage our knowledge of
Clos topology. Consider a packet that bounces twice. The path
between the first bounce and the second bounce is a normal
up-down path. Therefore, these path segments do not have
CBD even if we combine them into a single priority queue.
We can use a single tag to represent these segments altogether,
and map the tag to a globally unique priority queue.

HU et al.: TAGGER: PRACTICAL PFC DEADLOCK PREVENTION IN DATA CENTER NETWORKS 893

Fig. 4. Illustration of Tagger for ELP of all shortest up-down paths, and all
1-bounce paths. For clarity, only lossless queues are shown.

This completes the design of Tagger for Clos topology.
Packets start with tag of 1. We configure all ToR and Leaf
switches such that every time they see a packet coming down
and then going up (therefore, bouncing) for any reasons, they
increase the tag by one. Spine switches do not need to change
tags since packets never go up from there.

All switches put packets with tag i to ith lossless queues.
Since ELP includes paths with up to k bounces, the switches
need to have k + 1 lossless queues. If a packet bounces more
than k times (e.g. due to numerous link failures, or loop),
it will carry a tag larger than k+1. All switches will put such
packets into a lossy queue.

Some may dislike the fact that we may eventually push a
wayward packet into a lossy queue. We stress that we do this
only as a last resort, and it does not mean that the packets are
automatically or immediately dropped.

Fig. 4 illustrates the tagging algorithm in action, for ELP
consisting of all shortest up-down paths, plus all 1-bounce
paths. Packets, when traveling on path segments before bounce
carry a tag value of 1, and the tag is set to 2 after the bounce.
This ensures that the packets are queued in separate lossless
queues, and thus there is no CBD. In other words, we show
a system for k = 2. The lossy queue for packets that bounce
more than once is omitted for clarity.

This design satisfies all three challenges described in §III.
We do not change the routing protocol. We work with existing
hardware. We deal with dynamic changes, and we do not
exceed the number of available lossless queues for reasonable
ELP sets.3

D. Deadlock Freedom and Optimality

We now provide brief proof sketches to prove that the above
algorithm is deadlock free, and optimal in terms of number of
lossless priorities used.

1) Tagger is Deadlock-Free for Clos Networks: Tagger has
two important properties. First, for any given tag and its
corresponding priority queue, there is no CBD because each
tag only has a set of “up-down” routing paths. Second, every
time the tag changes, it changes monotonically. This means
that the packet is going unidirectionally in a DAG of priority
queues. This is important because otherwise CBD may still
happen across different priorities. We conclude that no CBD
can form either within a tag or across different tags. The
network is deadlock-free since CBD is a necessary condition

3In §VIII-D, we will demonstrate that, for Clos topology, using two lossless
queues practically achieves lossless.

TABLE II

NOTATIONS IN THE FORMALIZED DESCRIPTION

for deadlock. A formal proof, which applies to any topology,
is given in §V.

2) Tagger is Optimal in Terms of Lossless Priorities Used:
We show that to make all k bounces paths lossless and
deadlock-free, at least k + 1 lossless priorities are required.
We use contradiction. Assume there exists a system that can
make k bounces paths lossless and deadlock-free with only
k lossless priorities. Consider a flow that loops between two
directly connected switches T 1 and L1 for k+1 times, which
means it bounces k times at T 1. With Pigeonhole principle,
we know that at least two times during the looping, the packet
must have the same lossless priority. This means there exists a
CBD, and deadlock can happen when having sufficient traffic
demand [9]. Contradiction.

Much of the discussion in this section used the specific
properties of Clos topologies, and the specific ELP set. How-
ever, there are some none Clos topologies like Helios [40],
Flyways [41] or Projector [42], which usually adopt more
complicated ELP set. We now show how to generalize Tagger
for any topology and any ELP set.

V. GENERALIZING TAGGER

We begin by formalizing the description of the tagging
system using notations in Table II.

Let Ai represent a unique ingress port in the network, i.e.,
switch A’s ith ingress port. We use a tagged graph G(V, E) to
uniquely represent a tagging scheme. Given a tagging scheme,
the tagged graph G(V, E) is defined as:

1) G contains a node, (Ai, x), iff. port Ai may receive
packets with tag x, and these packets must be lossless.
V is the set of all such nodes.

2) G contains an edge (Ai, x)→ (Bj , y) iff. switch A and
B are connected, and switch A may change a packet’s
tag from x to y before sending to B (the case x = y
also counts). E is the set of all such edges.

Given a tag k, we also define {Gk}, with vertices V (Gk)
and edges E(Gk):

V (Gk) = {(Ai, k)|∀A, i}
E(Gk) = {v0 → v1|∀v0, v1 ∈ V (Gk), v0 → v1 ∈ E(G)}

Each tag k is mapped to a unique lossless priority.
Each node has a rule to match on a tag on an ingress

port, and assign the packet to corresponding lossless queue.
In addition, each edge corresponds to a switch action of setting
the tag for the next hop.

If a packet arrives at Ai with tag x, and is destined for
port Bj , and there is no corresponding edge in G(V, E),

894 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 2, APRIL 2019

it means that the packet has traversed on a path that is not in
ELP. Such packets are assigned a special tag, and all switches
assign this tag to lossy priority.4

In the rest of the section, we will describe how to generate
the tagging graph – i.e. the tagging rules. But first, we prove
that the tagging scheme described by such a graph is deadlock
free, as long as the graph meets two requirements.

1) Any Gk for G must not have a cycle. This is because
each edge in Gk is essentially a buffer dependency –
whether Ai can dequeue packets depends on whether
Bj has paused it. A cycle in Gk means cyclic buffer
dependency.

2) There must be no link going from Gx to Gy if x > y.
This means we enforce the order of Gx and Gy .

These requirements are essentially generalization of the prop-
erties discussed in §IV-D.

Theorem 1: Any tag system, defined by G(V, E), that sat-
isfies the above two requirements is deadlock-free.

Proof: We prove by contradiction. Suppose there exists
a tag system, whose tagged graph G(V, E) satisfies the
above two requirements, but is not deadlock-free. This means
G(V, E) has a cycle v0 → v1 → ... → v0. If traffic traverses
all hops in the cycle, the cycle leads into a CBD and can form
deadlock.

Case 1: All the nodes in the cycle have the same tag t.
According to the first requirement, Gt does not have a cycle.
Contradicted.

Case 2: The nodes in the cycle have at least two different
tags, t0 and t1. Without loss of generality, we assume t0 < t1,
and vi has tag t0, vj has tag t1. Because vi and vj belongs
to a cycle, there must exist a path going from vj to vi. Since
t0 < t1, along the path there must exist a hop where the tag
decreases. However, according to the second requirement, such
a hop cannot exist. Contradicted.

Case 1 and Case 2 cover all possible scenarios. Thus,
we conclude that there does not exist a G(V, E) that satisfies
the two requirements but is not deadlock-free.

A. Generating G(V, E)

In the next, we describe our algorithm to generate a
deadlock-free G(V, E) for any given topology, and the ELP
set.

For general graph without structure information, a straight-
forward tagging system [29] is to monotonically increase
the tag (thus, the priority) at every hop, as described in
Algorithm 1.

It is easy to verify that the graph generated by this algorithm
meets the two requirements specified earlier, and thus it
guarantees deadlock freedom. Figure 5 shows a small example,
including the topology, the ELP set and the generated graph.
Table III shows the corresponding rule lists for each node
under Algorithm 1.

Of course, with just this basic algorithm, we may end up
with too many tags (i.e. lossless priorities) – in fact, as many as
the longest path length in lossless routes. This is why we need

4This rule is always the last one in the TCAM rule list, acting as a safeguard
to avoid unexpected buffer dependency. See §VII.

Algorithm 1 A Brute-Force Tagging System That
Decreases the Tag by One on Every Hop

Input: Topology and ELP
Output: A tagged graph G(V, E)
V ← Set();
E ← Set();
for each path r in ELP do

tag ← 1;
for each hop h in r do

V ← V ∪ {(h, tag)};
E ← E ∪ {lastHop→ (h, tag)};
tag ← tag + 1;

return G(V, E);

three lossless priorities for the simple example in Fig. 5(b). In a
three-layer Clos network, the longest up-down path has 5 hops,
so Algorithm 1 will use 5 priorities just to support up-down
routing. We now show how to combine tags to reduce the
number of lossless queues needed.

B. Reducing the Number of Lossless Queues

Algorithm 2 uses a greedy heuristic to combine the tags
generated by Algorithm 1 to reduce the number of lossless
queues required. It greedily combines as many nodes in
G(V, E) as possible into each path segment under CBD-free
constraint. To ensure the monotonic property, we start from
combining the nodes with smallest tag, 1 and proceed linearly
to consider all tags up to T , which is the largest tag number
used in G(V, E).

The new tag t′ also starts from 1. In every iteration,
we check all nodes with the same tag value t. Vtmp and Etmp

is the “sandbox”. For every node, we add it to Vtmp and Etmp

and check whether adding it to G′
t′ will lead to a cycle within

G′
t′ . If not, we re-tag the node to be t′. Otherwise, we re-tag

the node to be t′+1. Re-tagging the node to be t′+1 does not
cause a cycle in G′

t′+1, because all nodes in G′
t′+1 so far have

the same old tag of t, which means there is no edge between
them. At the end of each iteration, if there are nodes being
re-tagged as t′+1, we move on to add nodes into G′

t′+1 in the
next iteration. This ensures that the monotonic property will
still hold after combination.

In Fig. 5(c) we see Algorithm 2 in action to minimize the
G(V, E) from Fig. 5. We see that the number of tags is reduced
to two.

C. Analysis
1) Algorithm Runtime: Algorithm 2 is efficient. Recall that

T is the largest value of tag in G(V, E). Let S, L and P be
the number of switches, the number of links and the number
of ports a switch has in the original topology, respectively.
Then, G(V, E) can have at most L × T nodes. Each node
will be examined exactly once for checking whether Gtmp

is acyclic. Checking whether Gtmp is acyclic with a newly
added node requires a Breadth-First Search, with runtime
complexity of O(|Vtmp|+ |Etmp|). |Vtmp| is bounded by the

HU et al.: TAGGER: PRACTICAL PFC DEADLOCK PREVENTION IN DATA CENTER NETWORKS 895

Fig. 5. Walk-through example of the algorithms. Each rectange in (b) and (c) is a (port,tag) pair. (a)Topology and ELP set. (b) Output tagged graph by
Algorithm 1. (c) Output tagged graph by Algorithm 2.

TABLE III

TAG REWRITING RULES UNDER ALGORITHM 1. TAG “4” WILL ONLY APPEAR ON DESTINATION SERVERS. (a) RULES
INSTALLED IN A. (b) RULES INSTALLED IN B. (c) RULES INSTALLED IN C

number of links L, and |Etmp| is bounded by the number
of pairs of incident links L × P , in the network. Thus, the
total runtime complexity is O(L × T × (L + L × P)). Note
that T itself is bounded by the length of the longest path
in ELP .

2) Number of Tags: Algorithm 2 is not optimal, but
works well in practice. For example, it gives optimal results
for BCube topology without requiring any BCube-specific
changes – a k-level BCube with default routing only needs
k tags to prevent deadlock. The results are promising even
for unstructured topology like Jellyfish. Using Algorithm 2,
a 2000-node Jellyfish topology with shortest-path routing
requires only 3 tags to be deadlock-free (§VIII).

3) Number of Rules: From the conceptual switch model,
a switch needs InPort (ingress port number), OutPort (egress
port number), and the current Tag to decide the next Tag.
Hence it seems the number of rules needed per switch is
n(n−1)×m(m−1)

2 , where n is the number of switch ports and
m = |G′

k| is the number of Tags. We will show in §VII that the
number of rules can be compressed to n× m(m−1)

2 , by taking
advantage of the bit masking technique supported in commod-
ity ASICs. Table IV shows the rules before compression.

4) Optimality: Algorithm 2 may not return the optimal solu-
tion. Consider the example shown in Fig. 6. If ELP set consists
of shortest and “1-bounce” paths, we know the optimal tagging
system only requires two lossless queues. However, the greedy
algorithm will output a tagging system that requires three
lossless queues. The reason is that Algorithm 2 does not
combine bounces that happen when the packet is going up
and when the packet is coming down.

For example, as shown in Fig. 6, the bounce of green flow
will force Algorithm 2 to create a new tag for the first two
hops, since the third hop, which is a bouncing hop, may lead
to CBD. However, the blue flow bounces at the last two hops
and will force Algorithm 2 to create another new tag. Thus,
Algorithm 2 generates three tags, requiring three lossless
queues.

The fundamental reason for this is that generic algorithm
does not fully utilize the inherent characteristics of structured
topology like Clos. We have not been able to find an optimal
solution to this problem (nor have we been able to prove that
the problem is NP-hard) – although we can create topology-
specific solutions, as seen in §IV.

However, we do note that the number of tags in the solution
generated by Algorithm 2 is an upper bound on the optimal
solution. Without any assumptions, the worst case is the same
as using the brute-force solution, which requires as many tags
as the length of longest lossless route, T . However, if we
know that the smallest cycle in lossless routes is longer than l,
the output number of tags is bounded by �T/l	. We omit the
proof.

VI. DISCUSSION

A. Multiple Application Classes

Sometimes, system administrators need to use multiple loss-
less priorities to keep different traffic classes from impacting
each other. For example, in [1] congestion notification packets
were assigned a separate lossless class to ensure that these
packets would not be held up by data traffic.

896 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 2, APRIL 2019

TABLE IV

TAG REWRITING RULES GENERATED BY ALGORITHM 2 (WITHOUT COMPRESSION). (a) RULES INSTALLED IN A.
(b) RULES INSTALLED IN B. (c) RULES INSTALLED IN C

Algorithm 2 Greedily Minimizing the Number of Tags by
Merging Brute-Force Tags

Input: The Brute-force tagged graph G(V, E) with
largest tag T

Output: A new tagged graph G′(V ′, E′) that has small
|{G′

k}|
Initialize V ′, E′, Vtmp, Etmp as empty Set();
t′ ← 1;
for t← 1 to T do

for each (Ai, t) in V whose tag is t do
Vtmp ← Vtmp ∪ {(Ai, t

′)};
Etmp ← Etmp ∪ {edges of (Ai, t), change t to t′};
if Gtmp(Vtmp, Etmp) is acyclic then

V ′ ← V ′ ∪ {(Ai, t
′)};

E′ ← E′ ∪ {edges of (Ai, t), change t to t′};
else

V ′ ← V ′ ∪ {(Ai, t
′ + 1)};

E′ ← E′ ∪ {edges of (Ai, t), change t to
t′ + 1};
Vtmp ← Vtmp\{(Ai, t

′)};
Etmp ← Etmp\{edges of (Ai, t

′)};
if V ′ contains nodes of tag t′ + 1 then

Vtmp ← {nodes in V ′ with tag t′ + 1};
Etmp ← {edges in V ′, both ends have tag t′ + 1};
t′ ← t′ + 1;

return G′(V ′, E′);

A näive way to use Tagger in such cases is to treat each
application (or traffic class) separately. For example, in §IV-C,
we showed that for the Clos network, if ELP contained paths
with no more than M bounces lossless, we need M + 1
priorities. If there are N applications, the näive approach
would use N ∗ (M + 1) priorities.

However, we can use fewer priorities by trading off some
isolation. The first application class starts with tag 1, and uses
tags up to M +1. The second class starts with tag 2, and also
increases tags by 1 at each bounce. Thus, the second class
uses tags 2 . . .M + 2. Thus, N application classes need just
M +N−1 tags. This can be further reduced by making some
application classes to tolerate fewer bounces than others.

Note that there is still no deadlock after such mix. First,
there is still no deadlock within each tag, because each tag is

Fig. 6. Algorithm 2 does not output optimal result for Clos with 1-bounce
paths.

still a set of “up-down” routing. Second, the update of tags is
still monotonic. We omit formal proof for brevity.

The reduced isolation may be acceptable, since only a
small fraction of packets experience one-bounce and may mix
with traffic in the next lossless class. This technique can be
generalized for the output of Algorithm 2.

B. Specifying ELP:

The need to specify expected lossless paths is not a problem
in practice. For Clos networks, it is easy to enumerate paths
with any given limit on bouncing. In general, as long as
routing is traffic agnostic, it is usually easy to determine what
routes the routing algorithm will compute – e.g. BGP will
find shortest AS path etc. If an SDN controller is used, the
controller algorithm can be used to generate the paths under a
variety of simulated conditions. ECMP is handled by including
all possible paths.

We stress again that there are no restrictions on routes
included in ELP, apart from the common-sense requirement
that each route is loop-free. Once ELP is specified, we can
handle any subsequent abnormalities.

C. Topology Changes

Tagger has to generate a new set of tags if ELP is updated.
ELP is typically updated when switches or links are added
to the network. If a FatTree-like topology is expanded by
adding new “pods” under existing spines (i.e. by using up
empty ports on spine switches), none of the older switches

HU et al.: TAGGER: PRACTICAL PFC DEADLOCK PREVENTION IN DATA CENTER NETWORKS 897

Fig. 7. Tagger match-action rules.

need any rule changes. Jellyfish-like random topologies may
need more extensive changes.

Note that switch and link failures are common in data center
networks [25], and we have shown (Fig. 3) that Tagger handles
them fine.

D. PFC Alternatives

One might argue that PFC is not worth the trouble it
causes; and we should focus on getting rid of PFC altogether.
We are sympathetic to this view, and are actively investigating
numerous schemes, including minimizing PFC generation (e.g.
DCQCN [1] or Timely [2]), better retransmission in the NIC,
as well as other novel schemes.

Our goal in this paper, however, is to ensure safe deploy-
ment of RoCE using PFC and existing RDMA transport.
Tagger fixes a missing piece of the current RoCE design:
the deadlock issue caused by existing routing protocols which
were designed for lossy networks. Besides the research value
of providing a deadlock free network, Tagger protects the
substantial investments which we and many others already
made in production data centers.

VII. IMPLEMENTATION

Tagger can be implemented by basic match-action function-
ality available on most modern commodity switches. However,
correct implementation requires a key insight into the way PFC
PAUSE frames are handled.

A. Match-Action Rules

Tagger needs to perform two operations at every hop,
i.e., tag-based priority queueing and tag rewriting. These
two operations are implemented using a 3-step match-action
pipeline (Fig. 7). First, Tagger matches the value of tags and
classifies packets into ingress queues based. Second, Tagger
matches (tag, InPort, OutPort) and rewrites the value of tag.
The third step, wherein the packet is placed in an egress queue
based on the new tag value, is needed to ensure correct PFC
operation, as described below.

B. Handling Priority Transition

By default, a switch will enqueue a departing packet in
the egress queue of the same priority class as its ingress
queue, as shown in Fig. 8(a). In this example, Switch B is
configured to perform priority transition for packets received

Fig. 8. Decoupling ingress priority from egress priority at switch B
is necessary for lossless priority transition. (a) Ingress priority = egress
priority → packet drop. (b) Ingress priority = 1, egress priority = 2 →
no drop.

Fig. 9. Rule compression with bit masking. Port numbers are bitmaps. The
first bit from right represents port 0. The second bit represents port 1, and so
on.

from switch A and destined for switch C. Packets exit egress
queue 1 at switch B, but with priority 2. When ingress
queue 2 of switch C becomes congested, the PFC PAUSE from
switch C to switch B carries priority 2, and cannot pause the
egress queue 1 of switch B. This default behavior can lead to
packet loss.

Therefore, we must map the packet to the egress queue
based on its new priority [Fig. 8(b)]. This avoids packet loss,
since the PFC from switch C correctly pauses the queue on
which the packet with the new tag would be exiting.

C. Rule Compression

The match-action rules of Tagger are implemented with
TCAM. TCAM entries consist of Pattern, Mask, and Result.
They refer to the pattern to be matched, the mask bits associ-
ated with the pattern and the action that occurs when a lookup
hits the pattern, respectively. One TCAM entry can have
several Pattern-Mask pairs to match multiple packet header
fields simultaneously, e.g., an entry like (Pattern-1, Mask-1,
Pattern-2, Mask-2, Result) matches two fields simultaneously
and fires only if both matches succeed.

Rules with the same Result can be compressed into one
TCAM entry, if their Patterns can be aggregated using bit

898 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 2, APRIL 2019

masking. Consider the three rules in Fig. 9. These rules are
identical except the InPort field in Pattern.

On commodity ASICs, port numbers in TCAM are bitmaps,
not binary values. To match a single port, we can simply set
the corresponding bit in the pattern to 1, and set the mask to
all 1’s. However, we may match multiple ports with one rule.
We set the pattern to all 0’s, and set the corresponding bits in
the mask to 0. As shown in Fig. 9, to match InPorts 0, 1 and
3, we set Pattern-2 to “0000” and Mask-2 to “0100”. In this
case, only the packet received from InPorts 0, 1 or 3 will
match Pattern-2 after doing bit masking with Mask-2. Thus,
the three rules are compressed into a single TCAM entry.

Recall from §V that without any compression, we need
n(n − 1)m(m − 1)/2 rules per switch. The number of rules
can be compressed to nm(m − 1)/2 by aggregating InPorts.
The result can be further improved by doing joint aggregation
on tag, InPort and OutPort.

D. Broadcom Implementation

We implemented Tagger on commodity switches based on
Broadcom ASICs. We use DSCP field in IP header as the tag.5

The DSCP-based ingress priority queuing (step 1), ingress
ACL and DSCP rewriting (step 2), and ACL-based egress
priority queuing (step 3) are well supported by the commodity
ASICs and do not require any ASIC changes. Everything is
implemented using available and documented functionality.

We considered using TTL instead of DSCP to tag packets,
but TTL is automatically decremented by the forwarding
pipeline, which complicates the rule structure.

E. Deployment of Tagger

To deploy Tagger in production data centers, we only need
to install some Tagger rules at the switches. As explained,
Tagger rules can be implemented with basic match-action rules
available on most modern commodity switches.

The generation of Tagger rules only needs network topology
and ELP set as the input. As a result, Tagger rules are relatively
static, and no frequent rule update is needed during runtime.

Tagger is also scalable. As will be shown in §VIII, even
for a random Jellyfish topology with 2,000 switches, Tagger
requires only four priority classes, and at most 135 match-
action rules per switch.

VIII. EVALUATION

We evaluate Tagger using testbed experiments, numerical
analysis and NS-3 simulations. We consider three questions:
(i) Can Tagger prevent deadlock? (ii) Is Tagger scalable for
large data center networks?, and (iii) Does Tagger have a
performance penalty?

A. Testbed

Our testbed (Fig. 2) consists of a Clos network with
10 Arista 7060 (32x40Gb) switches and 16 servers with
Mellanox 40Gb ConnectX-3 Pro NICs.

5We note that DSCP field has 64 available values in total. Tagger requires
no more than 8 DSCP values per application class, and thus can leave the
remaining DSCP values for other purposes.

Fig. 10. Clos deadlock due to 1-bounce paths. (a) Without Tagger (b) With
Tagger.

Fig. 11. Deadlock due to routing loop. (a) Scenario. (b) Rate of flow 2.

B. Deadlock Prevention

We have already proved that Tagger prevents deadlock.
Thus, experiments in this section are primarily illustrative.
We have also done extensive simulations, which we omit for
brevity.

Deadlock due to one bounce: We recreate the scenario
shown in Fig. 3, where 1-bounce paths lead to CBD. In this
experiment, we start the blue flow at time 0, and the green
flow at time 20. Fig. 10 shows the rate of the two flows with
and without Tagger. Without Tagger, deadlock occurs and rate
of both flows are reduced to 0. With Tagger, and ELP set to
include shortest paths and 1-bounce paths, there is no deadlock
and flows are not paused.

Deadlock due to routing loop: As shown in Fig. 11(a),
we generate 2 flows across different ToRs, i.e., F1 from H1 to
H15 and F2 from H2 to H16. At time = 20s, we install a bad
route at L1 to force F1 enter a routing loop between T1 and
L1. The path taken by F2 also traverses link T1-L1. ELP is
set to include the shortest paths and 1-bounce paths.

Fig. 11(b) shows the rate of F2 with and without Tagger.
Without Tagger, deadlock occurs and F2 is paused due to
propagation of PFC PAUSE. With Tagger, there is no deadlock
and F2 is not paused (but rate is affected by the routing loop).
Note that throughput of F1 is zero, as packets are dropped due
to TTL expiration. The key takeaway here is that Tagger was
able to successfully deal with a routing loop.

PAUSE propagation due to deadlock: Once deadlock occurs,
PFC PAUSE will propagate and may finally pause all the flow
running in the datacenter network. In this experiment, we run
a many-to-one data shuffle from H9, H10, H13 and H14 to
H1, and a one-to-many data shuffle from H5 to H11, H12,
H15 and H16 simultaneously. We then manually change the
routing tables so that the flow from H9 to H1 and the flow
from H5 to H15 take 1-bounce paths. This creates CBD as
discussed earlier.

In Fig. 12, we plot the throughput of all 8 flows with and
without Tagger. Without Tagger, all flows get paused due to
PFC PAUSE propagation and throughput is reduced to zero.
With Tagger, flows are not affected by link failures.

HU et al.: TAGGER: PRACTICAL PFC DEADLOCK PREVENTION IN DATA CENTER NETWORKS 899

Fig. 12. PFC PAUSE propagation due to deadlock. (a) 4-to-1 shuffle with
Tagger. (b) 4-to-1 shuffle without Tagger. (c) 1-to-4 shuffle with Tagger
(d) 1-to-4 shuffle without Tagger.

TABLE V

RULES AND PRIORITIES REQUIRED FOR JELLYFISH. HALF THE PORTS

ON EACH SWITCH ARE CONNECTED TO SERVERS. ELP IS

SHORTEST PATHS FOR FIRST FOUR ENTRIES. ELP FOR
LAST ENTRY INCLUDES ADDITIONAL

20,000 RANDOM PATHS

C. Scalability

Can Tagger work on large-scale networks, while commodity
switches can support only a limited number of lossless queues
(§III)? We have already shown that on an arbitrarily large Clos
topology, Tagger requires k + 1 lossless priorities to support
paths with up to k bounces. We now consider other topologies.

Jellyfish topology is an r-regular random graph, charac-
terized by the number of switches, the number of ports a
switch has (n) and the number of ports used to connect
with other switches (r). In our experiment, we let r = n/2.
Remaining ports are connected to servers. We construct ELP
by building destination-rooted shortest-path spanning trees at
all the servers. Table V shows the results.

Tagger requires only four classes for a network with
2,000 switches, even when 20,000 random routes are used in
addition to the shortest paths, and at most6 135 match-action
rules per switch. Modern commodity switches can support
1-4K rules, so this is not an issue.

We also considered smaller (100 switches, 32 ports)
Jellyfish topologies with up to 16-shortest paths between every
switch pair. We need only 2 lossless priorities, and no more
than 47 rules per switch.

BCube [32] is server-centric topology, constructed from
servers with n ports, nk switches with k+1 ports. BCube(8, 3)
with ELP of 4 shortest paths requires 4 lossless priorities, and
41 rules per switch. F10 [39] is a fault-tolerant FatTree-like

6Different switches require different number of rules due to the random
nature of the topology.

Fig. 13. Runtime of Algorithm 2.

topology. With three-level network of 64 port switches, and
ELP of all shortest and 1-bounce paths, we need just 2 lossless
priorities and 164 rules per switch.

To conclude, in terms of number of lossless classes and
ACLs, Tagger scales well for modern data center topology.

Generating tagging rules is a one-time activity. Still, runtime
of Algorithm 2 is of possible interest. Fig. 13 shows the
runtime for Jellyfish topologies of different sizes. Even with
10000 switches, Algorithm 2 takes just 19.6 hours on a
commodity desktop machine.

D. Impact on Performance

Operators may have the following two concerns when
deploying Tagger in production data centers. First, the use
of lossy queue as a last resort may cause RoCE to suffer
from severe packet loss. Second, making every packet traverse
the Tagger rules installed at switches may delay the packet
processing and downgrade throughput. In the next, we evaluate
the performance impact of Tagger regarding the above two
aspects.

Impact of using lossy queue as a last resort: In Fig. 14,
we measured the percentage of bounced flows under varying
link failure rate with flow-level simulations. In our simulator,
we model a datacenter network with FatTree topology (with
switch port number k = 8, 16, 32 and 64). Every flow is
initially routed over a random shortest path. At the switches,
we pre-install a set of candidate next-hops for each desti-
nation.7 If a link fails, for every affected flow, the direct
connected switch will locally reroute the flow to a random
candidate next-hop.

In our simulations, we generate 1 million flows with random
source and destination. We count the number of flows bounced
once, twice and more than twice under varying link failure
rate.

Fig. 14(a), (b) and (c) show the percentage of flows bounced
once, twice and more than twice, respectively. There are
two takeaways. First, when links fail, the behavior of local
rerouting has a good chance to cause DOWN-UP bounce for
tree-based networks. Second, even under high link failure rate,
a flow is rarely bounced twice or more.

We also evaluate the packet loss rate of the lossy queue
under stressful traffic using NS-3 simulations. We choose
the setting of FatTree(k=8) with 20% link failure rate .8

We establish many-to-one traffic scenarios by letting servers

7In the simulator, we aggregate the destinations to reduce the number of
sets needed.

8In practice, it is unlikely to have such a high link failure rate. We choose
this setting as a stress test for Tagger.

900 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 2, APRIL 2019

Fig. 14. The percentage of bounced flows under varying link failure rate. (a) Flows bounced once.(b) Flows bounced twice. (c) Flows bounced more than
2 times.

TABLE VI

PACKET LOSS RATE UNDER WEB SEARCH WORKLOAD

Fig. 15. Tagger rules have no impact on throughput and latency. (a) Through-
put (b) Latency.

under different ToRs send traffic to a common destination
server. The flows are generated according to web search [43]
and data mining [44] workload with 0.99 average load on
bottleneck link. At switches, we configure WRR scheduling
among lossless and lossy queues with equal weight.

The result under web search workload is shown in Table
VI. We omit the similar result under data mining workload.
In our simulations, we only consider the congestion loss in the
lossy queue. We didn’t include the packet loss caused by link
failures before rerouting takes effect, as it is not our focus.

We use “RoCE without PFC” as the baseline, where all
the flows are in the lossy priority class. Compared with the
baseline, Tagger with 1 lossless queue has a much lower
packet loss rate (only 10−7-10−6). This is mainly because
only ∼ 16% of flows are bounced once and enter the lossy
priority class. For Tagger with 2 lossless queues, we don’t
observe any packet loss as only ∼ 3% of flows are bounced
more than once. The takeaway is as follows: The use of lossy
queue as a last resort will not cause severe packet loss, because
only a small part of flows will be bounced into the lossy
priority class under failures. In practice, making two-bounce
paths lossless is good enough to achieve losslessness.

Impact of Tagger rules: On datapath, packets have to
traverse the rules installed by Tagger. These rules installed in
TCAM, and hence have no discernible impact on throughput
and latency. We installed different number of Tagger rules
on T1, and measured average throughput and latency between
H1 and H2 over several runs. Fig. 15 confirms that throughput
and latency are not affected by the number of rules.

IX. RELATED WORK

A. Deadlock-Free Routing

Many Deadlock-free routing designs have been proposed.
See [13]–[24], [45] for representative schemes. Generally,
these designs prevent deadlock by imposing restrictions on
the routing paths or enforcing certain packet rerouting policies.
We classify them into two categories.

The first category is deterministic routing based approach,
in which the routing path is not affected by the traffic status,
and there is no CBD. For example, the solution proposed by
Dally and Seitz [13] split each physical channel into a group
of ordered virtual channels,9 and constructed CBD-free routing
by restricting packets over decreasing order of virtual chan-
nels. TCP-Bolt [8] and DF-EDST [24] are two recent works
under this category. They both built edge-disjoint spanning
trees (EDSTs) to construct CBD-free routing paths. DF-EDST
further built a deadlock-free tree transition acyclic graph, such
that the transition among some EDSTs can be allowed. These
designs either work only for specific topologies [13] or are
not compatible with existing routing protocols including OSPF
and BGP [8], [24].

The second category is adaptive routing based approach.
The key idea is to pre-install “escape” paths at the switches
to cover all possible destinations. The switches can reroute
packets to the “escape” paths in the presence of congestion
so that deadlock can be avoided. However, no commodity
switching ASICs so far support the dynamic rerouting based
on traffic / queue status required by the adaptive routing
designs. Furthermore, a certain amount of buffer needs to be
reserved at the switches for the use of pre-installed “escape”
paths.

B. Intel Omni-Path

Intel Omni-Path architecture [46] uses the concept of Ser-
vice Channels (SC) for routing deadlock avoidance. Unlike
Tagger, Ommi-path uses a centralized fabric manager to man-
age the network [46], including setting up SCs. This is not
feasible at data center scale.

C. Buffer Management for Deadlock Prevention

It has been shown that by increasing the packet priority hop-
by-hop, and putting packets of different priority into different
buffers, deadlock can be avoided [26]–[29]. These designs,
however, need a large number of lossless queues, which is the
longest path length in the network.

9A virtual channel is equivalent to a priority queue in PFC in the store-and-
forward setting.

HU et al.: TAGGER: PRACTICAL PFC DEADLOCK PREVENTION IN DATA CENTER NETWORKS 901

D. Deadlock Detection and Recovery

The solutions under this category [10], [47]–[50] mainly
include two steps. First, employing a heuristic mechanism to
detect suspected deadlocks, e.g., monitoring the throughput
and queue occupancy of each switch port. Second, recovering
deadlock by dropping or temporarily rerouting some of the
packets involved in the deadlock. The main problem with these
solutions is that they do not resolve the root cause of the
detected deadlock, and hence cannot prevent the reappearing
of the same deadlock. For example, deadlock can easily
reappear when a routing loop is misconfigured.

E. Deadlock-Free Routing Reconfiguration

Several schemes [51]–[54] have been proposed for ensuring
deadlock-free during routing reconfiguration. Tagger can be
used to help any routing protocol to be deadlock-free, as Tag-
ger is decoupled from the routing protocols.

F. Summary

Tagger is different from prior work. Tagger’s innovations are
its ELP concept, and the algorithms that pre-generate the static
tagging rules and minimize the number of priority classes.
As a result, Tagger works with any routing protocol, and with
existing hardware.

X. CONCLUSION

We have presented Tagger for deadlock prevention in data
center networks. By carrying tags in the packets and installing
pre-generated match-action rules in the switches for tag manip-
ulation and buffer management, Tagger guarantees deadlock-
freedom. Tagger decouples itself from routing protocols by
introducing the expected lossless path (ELP) concept, hence
it works well with any existing routing protocol, distributed
or centralized. Tagger works for general network topologies.
We further showed that Tagger achieves optimality for the
well-known Clos/FatTree topology, in terms of the number of
lossless queues and the number of match-action rules. Tag-
ger can be implemented using existing commodity switching
ASICs and is readily deployable.

ACKNOWLEDGEMENTS

The authors would like to thank their shepherd C. Raiciu
and the anonymous CoNEXT and TON reviewers for their
helpful feedback and suggestions.

REFERENCES

[1] Y. Zhu et al., “Congestion control for large-scale RDMA deployments,”
ACM SIGCOMM Comput. Commun. Rev., vol. 45, no. 4, pp. 523–536,
2015.

[2] R. Mittal et al., “TIMELY: RTT-based congestion control for the
datacenter,” ACM SIGCOMM Comput. Commun. Rev., vol. 45, no. 4,
pp. 537–550, 2015.

[3] C. Mitchell, Y. Geng, and J. Li, “Using one-sided RDMA reads to build
a fast, CPU-Effcient key-value store,” in Proc. USENIX Annu. Tech.
Conf., 2013, pp. 103–114.

[4] A. Dragojevic, D. Narayanan, O. Hodson, and M. Castro, “FARM:
Fast remote memory,” in Proc. 11th USENIX Conf. Netw. Syst. Design
Implement., 2014, pp. 401–414.

[5] M. Abadi et al., “TensorFlow: A system for large-scale machine learn-
ing,” in Proc. OSDI, 2016, pp. 265–283.

[6] (2017). The Microsoft Cognitive Toolkit. [Online]. Available:
https://github.com/Microsoft/CNTK/wiki

[7] C. Guo et al., “Rdma over commodity ethernet at scale,” in Proc.
SIGCOMM, 2016, pp. 202–215.

[8] B. Stephens et al., “Practical DCB for improved data center networks,”
in Proc. IEEE INFOCOM Conf. Comput. Commun., Apr./May 2014,
pp. 1824–1832.

[9] S. Hu et al., “Deadlocks in datacenter networks: Why do they form, and
how to avoid them,” in Proc. 15th ACM Workshop Hot Topics Netw.,
2016, pp. 92–98.

[10] A. Shpiner, E. Zahavi, V. Zdornov, T. Anker, and M. Kadosh, “Unlocking
credit loop deadlocks,” in Proc. 15th ACM Workshop Hot Topics Netw.,
2016, pp. 85–91.

[11] InfiniBandcntk. (2001). InfiniBand Trade Association, InfiniBand Archi-
tecture, Specification. [Online]. Available: http://www.infinibandta.com

[12] J. Blazewicz, D. P. Bovet, J. Brzezinski, G. Gambosi, and M.
Talamo, “Optimal centralized algorithms for store-and-forward deadlock
avoidance,” IEEE Trans. Comput., vol. 43, no. 11, pp. 1333–1338,
Nov. 1994.

[13] W. J. Dally and C. L. Seitz, “Deadlock-free message routing in multi-
processor interconnection networks,” IEEE Trans. Comput., vol. C-36,
no. 5, pp. 547–553, May 1987.

[14] J. Duato, “A new theory of deadlock-free adaptive routing in worm-
hole networks,” IEEE Trans. Parallel Distrib. Syst., vol. 4, no. 12,
pp. 1320–1331, Dec. 1993.

[15] W. J. Dally and H. Aoki, “Deadlock-free adaptive routing in multicom-
puter networks using virtual channels,” IEEE Trans. Parallel Distrib.
Syst., vol. 4, no. 4, pp. 466–475, Apr. 1993.

[16] J. C. Sancho, A. Robles, and J. Duato, “An effective methodology to
improve the performance of the up*/down* routing algorithm,” IEEE
Trans. Parallel Distrib. Syst., vol. 15, no. 8 pp. 740–754, Aug. 2004.

[17] J. Flich et al., “A survey and evaluation of topology-agnostic determin-
istic routing algorithms,” IEEE Trans. Parallel Distrib. Syst., vol. 23,
no. 3, pp. 405–425, Mar. 2012.

[18] I. Theiss, T. Skeie, and O. Lysne, “Layered shortest path (LASH) routing
in irregular system area networks,” in Prof. IPDPS, 2012, p. 0162.

[19] J. Wu, “A fault-tolerant and deadlock-free routing protocol in 2D meshes
based on odd-even turn model,” IEEE Trans. Comput., vol. 52, no. 9,
pp. 1154–1169, Sep. 2003.

[20] C. J. Glass and L. M. Ni, “The turn model for adaptive routing,” ACM
SIGARCH Comput. Archit. News, vol. 20, no. 2, pp. 278–287, 1992.

[21] J. Duato and T. M. Pinkston, “A general theory for deadlock-free
adaptive routing using a mixed set of resources,” IEEE Trans. Parallel
Distrib. Syst., vol. 12, no. 12, pp. 1219–1235, Dec. 2001.

[22] J. Domke, T. Hoefler, and W. E. Nagel, “Deadlock-free oblivi-
ous routing for arbitrary topologies,” in Proc. IPDPS, May 2011,
pp. 616–627.

[23] V. Puente et al., “Adaptive bubble router: A design to improve perfor-
mance in torus networks,” in Proc. ICPP, Sep. 1999, pp. 58–67.

[24] B. Stephens and A. L. Cox, “Deadlock-free local fast failover for
arbitrary data center networks,” in Proc. IEEE INFOCOM, Apr. 2016,
pp. 1–9.

[25] X. Wu et al., “NetPilot: Automating datacenter network failure mitiga-
tion,” in Proc. SIGCOMM, 2012, pp. 419–430.

[26] E. Raubold and J. D. Haenle, “A method of deadlock-free resource
allocation and flow control in packet networks,” in Proc. ICCC,
Aug. 1976, pp. 483–487.

[27] M. Gerla and L. Kleinrock, “Flow control: A comparative survey,” IEEE
Trans. Commun., vol. COM-28, no. 4, pp. 553–574, Apr. 1980.

[28] D. P. Bertsekas and R. Gallager, Data Networks. Upper Saddle River,
NJ, USA: Prentice-Hall, 1992.

[29] M. Karol, S. J. Golestani, and D. Lee, “Prevention of deadlocks and
livelocks in lossless, backpressured packet networks,” IEEE/ACM Trans.
Netw., vol. 11, no. 6, pp. 923–934, Dec. 2003.

[30] C. Clos, “A study of non-blocking switching networks,” Bell Labs
Tech. J., vol. 32, no. 2, pp. 406–424, 1953.

[31] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data
center network architecture,” ACM SIGCOMM Comput. Commun. Rev.,
vol. 38, no. 4, pp. 63–74, 2008.

[32] C. Guo et al., “BCube: A high performance, server-centric network
architecture for modular data centers,” in Proc. SIGCOMM, 2009,
pp. 63–74.

[33] A. Singla, C.-Y. Hong, L. Popa, and P. B. Godfrey, “Jellyfish: Network-
ing data centers randomly,” in Proc. NSDI, 2012, pp. 225–238.

[34] Supplement to InfiniBand Architecture Specification Volume 1 Release
1.2.2 ANNEX A17: ROCEV2 (IPROUTABLE ROCE)), Infiniband Trade
Association, Beaverton, OR, USA, 2014.

[35] Priority Based Flow Control, IEEE Standard 802.11qbb, 2011.

902 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 2, APRIL 2019

[36] Cisco. Priority Flow Control: Build Reliable Layer 2
Infrastructure. Accessed: Sep. 2015. [Online]. Available:
http://www.cisco.com/c/en/us/products/collateral/switches/nexus-7000-
series-switches/white_paper_c11-542809.pdf

[37] R. Beckett, R. Mahajan, T. Millstein, J. Padhye, and D. Walker,
“Don’t mind the gap: Bridging network-wide objectives and device-level
configurations,” in Proc. SIGCOMM, 2016, pp. 328–341.

[38] S. Y. Qiu, P. D. McDaniel, and F. Monrose, “Toward valley-free
inter-domain routing,” in Proc. IEEE Int. Conf. Commun., Jun. 2007,
pp. 2009–2016.

[39] V. Liu, D. Halperin, A. Krishnamurthy, and T. Anderson, “F10: A fault-
tolerant engineered network,” in Proc. NSDI, 2013, pp. 399–412.

[40] N. Farrington et al., “Helios: A hybrid electrical/optical switch archi-
tecture for modular data centers,” ACM SIGCOMM Comput. Commun.
Rev., vol. 40, no. 4, pp. 339–350, 2010.

[41] D. Halperin, S. Kandula, J. Padhye, P. Bahl, and D. Wetherall, “Aug-
menting data center networks with multi-gigabit wireless links,” ACM
SIGCOMM Comput. Commun. Rev., vol. 41, no. 1, pp. 38–49, 2011.

[42] M. Ghobadi et al., “Projector: Agile reconfigurable data center intercon-
nect,” in Proc. ACM SIGCOMM Conf., 2016, pp. 216–229.

[43] M. Alizadeh et al., “Data center TCP (DCTCP),” ACM SIGCOMM
Comput. Commun. Rev., vol. 41, no. 4, pp. 63–74, 2011.

[44] A. Greenberg et al., “VL2: A scalable and flexible data center network,”
ACM SIGCOMM Comput. Commun. Rev., vol. 39, no. 4, pp. 51–62,
2009.

[45] D. Gelernter, “A DAG-based algorithm for prevention of store-and-
forward deadlock in packet networks,” IEEE Trans. Comput., vol. C-30,
no. 10, pp. 709–715, Oct. 1981.

[46] M. S. Birrittella et al., “Intel Omni-path architecture: Enabling scalable,
high performance fabrics,” in Proc. IEEE 23rd Annu. Symp. High-
Perform. Interconnects, Aug. 2015, pp. 1–9.

[47] K. V. Anjan and T. M. Pinkston, “An efficient, fully adaptive deadlock
recovery scheme: DISHA,” in Proc. ISCA, 1995, pp. 201–210.

[48] K. V. Anjan, T. M. Pinkston, and J. Duato, “Generalized theory
for deadlock-free adaptive wormhole routing and its application to
Disha Concurrent,” in Proc. Int. Conf. Parallel Process., Apr. 1996,
pp. 815–821.

[49] J. M. Martínez, P. Lopez, J. Duato, and T. M. Pinkston, “Software-based
deadlock recovery technique for true fully adaptive routing in wormhole
networks,” in Proc. Int. Conf. Parallel Process., Aug. 1997, pp. 182–189.

[50] P. López and J. Duato, “A very efficient distributed deadlock detection
mechanism for wormhole networks,” in Proc. 4th Int. Symp. High-
Perform. Comput. Archit., Feb. 1998, pp. 57–66.

[51] T. L. Rodeheffer and M. D. Schroeder, “Automatic reconfiguration in
Autonet,” in Proc. 13th ACM Symp. Oper. Syst. Principles (SOSP), New
York, NY, USA, 1991, pp. 183–197.

[52] O. Lysne, T. M. Pinkston, and J. Duato, “A methodology for developing
deadlock-free dynamic network reconfiguration processes. Part II,” IEEE
Trans. Parallel Distrib. Syst., vol. 16, no. 5, pp. 428–443, May 2005.

[53] T. M. Pinkston, R. Pang, and J. Duato, “Deadlock-free dynamic recon-
figuration schemes for increased network dependability,” IEEE Trans.
Parallel Distrib. Syst., vol. 14, no. 8, pp. 780–794, Aug. 2003.

[54] A. Gara et al., “Overview of the Blue Gene/L system architecture,”
IBM J. Res. Develop., vol. 49, no. 2.3, pp. 195–212, Mar. 2005.

Shuihai Hu received the B.S. degree in computer
science from the University of Science and Technol-
ogy of China, Hefei, China, in 2013. He is currently
pursuing the Ph.D. degree with the Department of
Computer Science and Engineering, The Hong Kong
University of Science and Technology, Hong Kong.
His current research interests are in the area of data
center networks.

Yibo Zhu received the bachelor’s degree from
Tsinghua University and the Ph.D. degree from the
Department of Computer Science, UCSB. He was a
Researcher with Microsoft Research, Redmond, WA,
USA. He is currently a Senior Research Scientist
with the AI Lab, ByteDance. His research interests
are datacenter networks and distributed AI systems.

Peng Cheng received the B.E. degree in soft-
ware engineering from Beihang University, China,
in 2010, and the Ph.D. degree in computer science
and technology from Tsinghua University, China,
in 2015. He is currently a Researcher with Microsoft
Research Asia. His research interests are computer
networks and networked systems.

Chuanxiong Guo received the Ph.D. degree
from the Institute of Communications Engineering,
Nanjing, China. He was a Senior Researcher with
Microsoft Research Asia. He was the Principal Soft-
ware Engineering Manager with Microsoft Azure,
for several years. He was a Principal Researcher
with Microsoft Research, Redmond. He is cur-
rently the Director of the AI Lab, Bytedance
Inc. His areas of interests include networked
systems at large scale, data center networking,
machine learning system, systems availability and

troubleshooting, and cloud computing.

Kun Tan received the B.E., M.E., and Ph.D. degrees
in computer science and engineering from Tsinghua
University, Beijing, China, in 1997, 1999, and 2002,
respectively. He was the Senior Researcher/Research
Manager with Microsoft Research Asia. He is cur-
rently the Director and the Chief Architect of the
Cloud Networking Lab, and a Vice President of
the Central Software Institute, Huawei Technologies.
He has a broad interest in computer networking.
He was involved in many aspects on wireless and
data center networks. He has served regularly in the

TPCs for top international conferences, such as ACM SIGCOMM, Mobicom,
and NSDI. He is an Associate Editor of the IEEE TRANSACTIONS ON

MOBILE COMPUTING.

Jitendra Padhye received the Ph.D. degree in
computer science from the University of Massa-
chusetts Amherst in 2000. He is currently a Principal
Researcher with Microsoft Research. He has pub-
lished numerous research papers in top conferences.
He holds over 25 U.S. patents. He is interested in
all aspects of computer networking and networked
systems. His recent research has focused on data
center networks and mobile computing. He was a
recipient of the ACM SIGCOMM’s Test of Time
Award.

Kai Chen received the Ph.D. degree in computer
science from Northwestern University, Evanston, IL,
USA, in 2012. He is currently an Associate Profes-
sor with the Department of Computer Science and
Engineering, The Hong Kong University of Science
and Technology, Hong Kong. His research interests
include networked systems design and implementa-
tion, data center networks, and cloud computing.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

