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ABSTRACT
RDMA NICs desire a rate limiter that is accurate, scalable, and fast:
to precisely enforce the policies such as congestion control and
traffic isolation, to support a large number of flows, and to sustain
high packet rates. Prior works such as SENIC and PIEO can achieve
accuracy and scalability, but they are not fast enough, thus fail
to fulfill the performance requirement of RNICs, due primarily to
theirmonolithic design and one-packet-per-sorting transmission. We
present Tassel, a hierarchical rate limiter for RDMA NICs that can
deliver high packet rates by enabling multiple-packet-per-sorting
transmission, while preserving accuracy and scalability. At its heart,
Tassel renovates the workflow of the rate limiter hierarchically: by
first applying scalable rate limiting to the flows to be scheduled,
followed by accurate rate limiting to the packets to be transmitted,
while leveraging adaptive batching and packet filtering to improve
the performance of these two steps. We integrate Tassel into the
RNIC architecture by replacing the original QP scheduler module
and implement the prototype of Tassel using FPGA. Experimental
results show that Tassel delivers 125Mpps packet rate, outperform-
ing SENIC and PIEO by 3.6×, while supporting 16K flows with
low resource usage, 7.5% - 25.6% as compared to SENIC and PIEO,
and preserving high accuracy, precisely enforcing rate limits from
100Kbps to 100Gbps.
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1 INTRODUCTION
RDMA NICs (RNICs) desire an accurate, scalable, and fast rate lim-
iter. Specifically, RNICs expect the rate limiter to be accurate and
scalable to precisely execute policies such as congestion control and
traffic isolation, enforcing a specific rate on each flow and injecting
inter-packet gaps for smoother traffic, across tens of thousands
of flows at end hosts [30, 43, 55]. This helps evolving congestion
controls to address the challenges of the bursty and unpredictable
traffic in data centers [13, 14, 30, 32, 55], as well as the network traf-
fic isolation among users to ensure stable application performance
and user experience [22, 23, 26, 29]. In addition, RNICs require the
rate limiter to sustain high packet rate to ensure its integration
into the data path does not degrade the throughput of RNICs. Any
slowdown in the rate limiter can degrade RNIC’s performance.

Prior works SENIC and PIEO [41, 46] can achieve accuracy and
scalability, but they are not fast enough, e.g. only achieving 31.4%
of the desired packet rate for RNICs (§2.3). The root cause of their
performance issue is that they follow a monolithic design, directly
applying rate limiting to the flows to be scheduled, and conse-
quently transmit only one packet after sorting all flows (one-packet-
per-sorting transmission), while sorting a large number of flows
is slow [46, 48, 52]. For instance, sorting 16K flows only achieves
34.5Mpps packet rate, in contrast to RNICs which can achieve
110Mpps [3, 42].

In this paper, we present Tassel, a hierarchical rate limiter for
RDMA NICs that can deliver high packet rate by enabling the
transmission of multiple packets after sorting all flows (multiple-
packet-per-sorting transmission). At its core, Tassel renovates the
workflow of the rate limiter hierarchically: by first applying scalable
rate limiting to the flows to be scheduled, followed by accurate
rate limiting to the packets to be transmitted, while incorporating
customized optimization strategies to improve the performance
of these two steps (§3.2). Specifically, Tassel leverages adaptive
batching (§3.2.1), which fetches multiple packets from scheduled
flows to hide PCIe and sorting latency, to improve the packet rate
for flow-level rate limiting. Meanwhile, it employs packet filtering
(§3.2.2), which reduces the number of packets requiring sorting to
increase the sorting rate, to enhance the performance of packet-level
rate limiting. In this way, Tassel’s hierarchical design can achieve
high performance, scalability, and accuracy simultaneously.

We have integrated Tassel into RNIC architecture, by replac-
ing the original QP scheduler and leveraging a combination of
data structures tailored for Tassel’s two-step sorting (§3.3), and im-
plemented the prototype with FPGA (§4). Experiments show that
Tassel achieves high packet rate while preserving high scalability
and accuracy (§5). Specifically, Tassel can achieve 125Mpps packet
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rate when supporting 16K flows, making it sufficient to transmit
100 B packets at 100Gbps link rate, outperforming SENIC and PIEO
by 3.6× (§5.1). With the increasing flow capacity, Tassel achieves a
high and stable clock frequency, ensuring high performance. Mean-
while, Tassel demonstrates its high scalability with low resource
usage. When supporting 16K flows, the computing and memory
resources consume less than 5% and 1% of our FPGA, respectively,
7.5% to 25.6% as compared to SENIC and PIEO (§5.2). In addition,
Tassel preserves high accuracy as it precisely enforces the rate
limits ranging from 100Kbps to 100Gbps for tens of thousands of
concurrent flows, and proportionally shares bandwidth when the
link is oversubscribed (§5.3).

This paper makes the following contributions:

• We experimentally analyze the performance issues of previous
works and reveal that the root cause stems from their monolithic
design and one-packet-per-sorting transmission (§2.3).

• We design Tassel, a hierarchical rate limiter for RNICs, which
addresses the performance challenge while maintaining accuracy
and scalability (§3.2). We integrate Tassel into RNIC architecture
by replacing the original QP scheduler (§3.3).

• We implement the Tassel prototype with FPGA. Experiments
demonstrate that Tassel achieves our design goal of performance,
scalability, and accuracy (§4 and §5).

This work does not raise any ethical issues.

2 BACKGROUND AND MOTIVATION
In this section, we first motivate the need for rate limiter in RNICs
and summarize its desired properties. Then, we discuss the limita-
tions of existing works and analyze their root causes. Finally, we
present our insight and basic idea.

2.1 The Need for Rate Limiter in RNICs
RNICs can use a rate limiter to 1) enforce a specific rate on each
flow, and 2) inject inter-packet gaps to smooth traffic, a.k.a., pac-
ing [43]. Specifically, RNICs use the rate limiter to execute the
congestion control policies (§2.1.1). These policies precisely allo-
cate bandwidth across massive flows and help mitigate network
congestion in high-speed networks. Additionally, the rate limiter is
used for the network traffic isolation as required by practical cloud
management (§2.1.2).

2.1.1 Congestion Control
RNICs incorporate the congestion control mechanisms to manage
complex environments and address challenges such as high link
rate, low fabric latency, large infrastructure scale, and incast in high-
speed networks [10, 11, 21, 27, 30], ensuring high-performance and
stable network services [11, 32, 36, 55].Within RNIC, the congestion
control module computes the sending rate for potentially tens of
thousands of flows, and then utilizes the rate limiter to execute these
policies, limiting each flow’s rate and pacing the traffic [14, 41].
Evolving congestion control algorithms. Congestion control
has always been a critical area of research, with various developed
algorithms relying on the support of rate limiters:

• Rate-based congestion control [35, 55] requires the rate limiter
to enforce the calculated rate for each flow and pace the traffic
accordingly.

• Window-based congestion control [13, 30, 32] needs the rate
limiter to pace packets especially when setting the congestion
window smaller than one to handle the large-scale incast [30, 33].
The sender translates the fractional congestion window to an
inter-packet delay and uses it to pace packets into the network.
For example, a cwnd of 0.5 results in sending a packet after a
delay of 2 × RTT. Production results show that pacing is crucial
for maintaining low latency and loss at scale. When a large in-
cast occurs, supporting a congestion window of less than 1 can
achieve line-rate throughput with low latency and zero loss. How-
ever, disabling pacing leads to a 29% loss rate and 18× average
RTT [30].

• Centralized congestion control [39], in contrast to the above
decentralized methods, uses a centralized network arbiter to allo-
cate bandwidth for individual senders according to the traffic pat-
tern. Senders then utilize the rate limiter to enforce the allocated
sending rate. Effective traffic planning and pacing help eliminate
network bottlenecks, resulting in a fascinating congestion-free
network.

Programmable congestion control framework. The rate lim-
iter is also a necessary component of programmable congestion
control (PCC) frameworks [8, 14, 38]. As there is no panacea for
congestion control design, PCC is gaining popularity. Its attractive-
ness stems from the flexibility to modify and deploy continuously
evolving algorithms on hardware, addressing various application
scenarios and network characteristics. These PCC frameworks sup-
port diverse congestion control algorithms mentioned above, and
require the rate limiter to execute the congestion control policies.

2.1.2 Network Traffic Isolation
The rate limiter can additionally be used to implement native hard-
ware rate limiting for network traffic isolation. Practical cloud man-
agement requires isolating network traffic among users, VMs, and
applications [22, 23, 26, 29], to ensure stable application perfor-
mance and user experience [15, 26]. In practice, providers use pre-
dictable and scalable bandwidth arbitration systems [22, 26, 29] to
assign rates to VM pairs, which are then enforced at end systems
via the rate limiter. As implementing rate limiting in software can
be CPU-intensive (consuming 30% CPU in some cases [31]) and
contradicts latency-sensitive services’ preference to bypass soft-
ware hypervisor [41], using the rate limiter to implement native
hardware rate limiting can be beneficial [49].

2.2 Desired Properties of Rate Limiter
RNICs desire a rate limiter to be accurate, scalable, and fast:
• Accurate. The rate limiter should precisely enforce the given rate
on each flow1 and inject inter-packet gaps to smooth the traffic,
preventing bursts.

• Scalable. The rate limiter must support rate limiting for tens of
thousands of flows at end hosts.

1We use flows, queues, and queue pairs (QPs) interchangeably in the paper.
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Figure 1: Performance issue with current RNIC’s rate limiter.
The aggregate throughput of the RNIC collapses when the
rate limiting is enabled for more than 1K flows.

• Fast. Upon achieving high accuracy and scalability, the rate lim-
iter should operate fast and achieve a high packet rate, ensuring
its integration into RNIC’s data path does not degrade its high
performance.

Accuracy. Effective congestion control and traffic isolation desire
a highly accurate rate limiter, which calculates the transmission
time for each flow’s packets and transmits them precisely at the
calculated time. Enforced rate limiting often demands nanosecond-
level precision [25, 39, 47], and inaccurate rate limiting can result in
traffic bursts and worsen network congestion [32]. Furthermore, an
accurate rate limiter should support a wide range of rate limits for
each flow, e.g. 100 Kbps to the line rate, and allow for fine-grained
adjustments instead of restricting to several fixed values [14]. For
example, small rate limits like 100Kbps2 [30] are used in conges-
tion control to handle large-scale incast, and large rate limits like
100Gbps link speed are used when congestion control aims to
saturate the network link.
Scalability. RNICs need to apply rate limiting for tens of thousands
of flows. As the memory and computing resources in hardware are
restricted and scarce [51], RNICs desire a scalable rate limiter that
can support rate limiting for such a large number of flows while
meeting the hardware resource constraints.
High-performance (fast). RNICs are known for their high per-
formance. For example, they can execute up to 110Mpps using a
single NIC port, achieving 100G bps with packets of 100 B [3, 42].
RNICs need to integrate the rate limiter into their data path to
deploy it, as the rate limiter is responsible for scheduling and trans-
mitting packets. Consequently, the performance of the rate limiter
directly impacts the performance of RNIC. If the rate limiter is
slow in processing and transmitting packets, it leads to a reduction
in RNIC performance. Therefore, the rate limiter needs to be fast
enough to achieve a high packet rate, e.g. capable of transmitting a
packet every 8 ns. In scenarios with higher bandwidth, such as 400
or 800Gbps, the rate limiter must have a sufficiently high packet
rate to fully utilize the link capacity.

2We calculate the minimal rate based on the minimal window size in Swift. Using
typical values, we calculate𝑚𝑖𝑛_𝑟𝑎𝑡𝑒 =𝑚𝑖𝑛_𝑤𝑖𝑛𝑑𝑜𝑤_𝑠𝑖𝑧𝑒 ∗𝑀𝑇𝑈 /𝑅𝑇𝑇 = 0.001∗
1024𝐵/40𝑢𝑠 = 204.8𝐾𝑏𝑝𝑠 . Hence we choose 100Kbps as the minimal rate and the
adjustment granularity for the rate limiter.
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(a) Workflow. The rate limiter 1) computes the transmission time
for all packets, 2) sorts, and 3) transmits them on time.
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(b) Ideal packet transmission scenario.

Figure 2: Illustration of accurate rate limiting.

In summary, RNICs desire an accurate, scalable, and fast rate
limiter. However, existing solutions fail to achieve this objective, as
will be elaborated next.

2.3 Existing Works & Limitations
2.3.1 Commercial RNICs
Commercial RNICs allow rate limiting for each queue pair (QP)
to support congestion control. Users can configure a rate limit
for each QP via RNICs’ programmable congestion control (PCC)
framework [8]. However, as shown in Figure 1, we observe per-
formance degradation when enabling rate limiting for more than
1K flows in NVIDIA BlueField-3 [7], which integrates ConnectX-
7 [4]. Specifically, we directly connect two BlueField-3 and use
the PCC framework to configure the rate limit for each QP. Each
QP is assigned the same rate limit, calculated by dividing the link
bandwidth by the number of QPs. For example, with 1K QPs, each
QP is limited to 0.2 Gbps, resulting in a total rate limit of 200Gbps.
We then run the standard perftest [5] benchmarks with default set-
tings and measure the aggregate throughput via mlnx_perf [9]. As
shown in Figure 1, the aggregate throughput of BlueField-3 drops
32.4% (from 199.3 to 134.8 Gbps) when the number of QPs increases
from 1 to 16384. In comparison, BlueField-3 can saturate the link
bandwidth when the rate limiting and PCC are disabled.

This performance anomaly indicates potential performance is-
sues with BlueField-3’s rate limiter3. We exclude the possibility of
the PCC framework being the performance bottleneck, as the RNIC
can achieve the line rate when 10K QPs are configured with a large
rate limit, 100Gbps.

3Since commercial RNICs are blackbox, we are not able to analyze their micro-
architecture to identify the root cause of the performance issue. A possible reason
could be the relatively low processing rate of the rate limiter and the related scheduler.
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Figure 3: The throughput of SE-PIEO with 16K flow capacity,
comparing to the desired performance in RNICs.

2.3.2 Recent Studies
WF2Q+ [18] is an accurate and classic time-based rate limiting algo-
rithm, widely adopted in rate limiters to ensure accuracy [41, 46, 54].
As illustrated in Figure 2a, WF2Q+ precisely calculates the transmis-
sion time of the packets among various flows, sorts them according
to the calculated time, and transmits them on time. Figure 2b shows
the simulated ideal packet transmission scenario using WF2Q+.
Two machines are connected directly, and the sender initiates sev-
eral large flows, each configured with different rate limits. As shown
in Figure 2b, WF2Q+ enforces accurate rate limiting for each flow.
Packets within each flow are sent at intervals determined by the rate
limit, ensuring no bursts. In theory, WF2Q+ can limit the per-flow
traffic rate and ensure that the transmission delay for each packet is
bounded. Thus, WF2Q+ is widely considered accurate [18, 41, 46].

Recent studies, SENIC [41] and PIEO [46], implement scalable
and accurate rate limiters for end-host NICs. They implement
WF2Q+ in hardware, thus ensuring accuracy. Additionally, they
improve scalability by saving hardware memory and computing
resources, thereby supporting rate limiting for tens of thousands of
flows. Specifically, SENIC optimizes the memory usage as it stores
just flow metadata in hardware, rather than the packets themselves.
PIEO, on the other hand, saves the computing resources by design-
ing a two-dimensional compare-and-shift architecture to imple-
ment the sorting in WF2Q+. PIEO reduces the consumption of the
computing resources, i.e. flip-flops and comparators, from 𝑂 (𝑁 ) to
𝑂 (

√
𝑁 ), where 𝑁 is the number of flows. Furthermore, a system

that integrates both SENIC and PIEO can be more resource-efficient
and scalable. It inherits SENIC’s architecture design and replaces
the packet scheduler module with PIEO. In the remaining part of
this paper, we refer to this system as SE-PIEO (SENIC with PIEO).

Performance Issue. SE-PIEO can achieve high accuracy and
scalability, however, it is not fast enough and fails to address the
challenging performance requirement of RNICs. We have imple-
mented a prototype of SE-PIEO and evaluated its throughput as well
as the packet rate when transmitting 16 K flows. Figure 3 shows the
throughput it achieved with the varying packet sizes, compared to
the desired performance of RNICs referring to their high packet rate.
Results show that SE-PIEO can only achieve as much as 31.4% and
35.4% throughput compared to RNIC under 64 B and 128 B packet
size, respectively. Such throughput gap indicates the low packet
rate achieved by SE-PIEO than RNIC, i.e., 34.5Mpps for supporting
16 K flows, which is 31.4% of RNIC’s capability. As a result, SE-PIEO

(1) Sort tens of thousands of flows
and schedule a flow

(2) Fetch and transmit a packet 
per scheduling a flow

Flow-level rate limiting

…

(Accurate, Scalable, but Slow)

flows packet

scheduled flow transmitted packet

Figure 4: Throughput model of monolithic rate limiting. The
rate limiter sorts tens of thousands of flows, schedules a flow,
transmits the head packet, updates the transmission time for
that flow, and then sorts again to send the next packet.
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Figure 5: Maximum clock frequency achieved by SE-PIEO
varying the flow number it supports.

will become the critical performance bottleneck if integrated into
RNIC, primarily due to its poor packet rate. The above issue can be
further amplified when RNIC bandwidth reaches 400 or 800Gbps.
Specifically, given a higher MAC capacity, e.g., 400Gbps, SE-PIEO
can only achieve 282.6 Gbps with its 34.5Mpps low packet rate un-
der 1024 B packet size, insufficient to saturate the link bandwidth.

Analysis. Given the above performance results, we systemat-
ically analyze the workflow of SE-PIEO, and reveal that the root
cause is it follows a monolithic design, directly applying rate limit-
ing to the flows to be scheduled, and consequently transmits only
one packet after sorting all flows, while sorting a large number
of flows is slow. Specifically, SE-PIEO computes the transmission
interval for packets within each flow, and sorts the flows based on
the transmission time of each flow’s head packet. Then it identifies
the flow with the nearest transmission time, and sends its head
packet on time. In such a manner, SE-PIEO realizes the rate limiting
at flow level, but must sort all flows to send a packet. We call this
manner as the monolithic flow-level rate limiting, as illustrated in
Figure 4. Consequently, it transmits one packet per sorting, and the
sorting performance determines the rate limiter’s performance.

However, it is inherently challenging to achieve high efficiency
when sorting a large number of elements in hardware. Several
approaches, such as BMW Tree [52], PIEO [46], and PIFO [48] have
been designed to improve the efficiency of sorting, but they have
yet struggled to meet the high demands of RNICs. For instance,
BMW Tree achieves as much as 50Mpps, which is only 45.5% of
the RNIC’s capacity.
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The primary challenge in sorting lies in the fact that the in-
creasing number of flows to be sorted increases the complexity of
combinational circuit, which then naturally decreases the maxi-
mum achievable clock frequency of the sorting circuit [46]. The
sorting rate is determined by 1) the clock frequency of the sorting
circuit, and 2) the number of cycles required for sorting. Thereinto,
the number of cycles required for sorting is determined by the
algorithm design and remains constant, e.g. 4 cycles to enqueue an
element into an ordered list. As a result, decreased clock frequency
degrades the sorting performance. As an evidence, we measure the
maximum clock frequency achieved by SE-PIEO with varying flow
capacity and show the results in Figure 5. When the flow capacity
increases from 1K to 16 K, the achieved clock frequency decreases
from 258MHz to 138MHz, resulting in a 46.5% frequency reduction
and an ultimate 138/4=34.5Mpps packet rate, given that SE-PIEO
consumes the constant 4 cycles for sorting and transmits a packet
afterwards.

Consequently, SE-PIEO’s monolithic flow-level rate limiting is
accurate, scalable, but slow. It supports accurate rate limiting for
tens of thousands of flows, but sorting a large number of flows
degrades the packet transmission rate.

2.4 Insight and Idea
Instead of transmitting only the head packet, we seek to transmit
multiple packets after sorting all flows to improve performance,
while maintaining accuracy and scalability. Our key insight is that
the workflow of monolithic rate limiting consists of two steps, flow-
level scheduling and packet-level transmission, which can inspire
a redesign into a hierarchical approach as follows.

Initially, we inherit the aforementioned flow-level rate limiting
to sort flows and schedule the nearest flow. Once a flow is sched-
uled, we fetch multiple packets. Then, we additionally apply rate
limiting to this batch of fetched packets to ensure accuracy, via
sorting and transmitting them strictly based on their transmission
time. This extra tier of rate limiting ensures the accuracy of packet
transmission and injects inter-packet gaps for smoother traffic, and
we call this packet-level rate limiting. To guarantee the accuracy
and packet rate of this packet-level rate limiting, it is essential to
ensure that the total number of packets, fetched from all flows and
requiring rate limiting, is small.

Fortunately, we observe a chance to reduce this number from
tens of thousands to just a few hundred. Specifically, despite each
flow may fetch several packets, amounting to tens of thousands in
total, RNIC only needs to store and apply rate limiting to a small
number of imminent packets that are near to be sent, typically a
few hundred (3.2.2). The rest of the packets (which are actually
the packet descriptors) can be dropped and retrieved when their
transmission times are near. This filtering mechanism reduces the
packet number and thus relaxes the scalability requirement for
packet-level rate limiting, enabling a fast and accurate packet-level
rate limiter.

Figure 6 illustrates the hierarchical rate limiting, including scal-
able flow-level rate limiting and accurate and fast packet-level rate
limiting. This hierarchical approach improves the performance lim-
its by shifting from sorting tens of thousands of flows to sorting
hundreds of imminent packets.

…

(1) Sort tens of 
thousands of flows

and schedule a flow

(3) Filter 
imminent 

packets

(2) Fetch multiple
packets per

scheduled flow

(4) Sort hundreds of 
imminent packets    

and transmit

…

Flow-level rate limiting Packet-level rate limiting
(Accurate and Fast)(Scalable)

flows packets

scheduled flow transmitted packets

Figure 6: Throughput model of hierarchical rate limiting
(Tassel). Apply scalable flow-level rate limiting, and then
fetch multiple packets per scheduled flow. Simultaneously,
pick imminent packets and apply accurate and fast packet-
level rate limiting for them.

3 TASSEL DESIGN
Based on the above insight, we design Tassel, a fast, scalable, and
accurate rate limiter for RDMA NICs. Tassel’s design consists of
the hierarchical rate limiting algorithm (§3.2) and the architecture
design of the rate limiter in RNIC (§3.3).

3.1 Design Goal and Overview
The design goal of Tassel is to improve the performance of the
rate limiter while maintaining accuracy and scalability. To achieve
this goal, we follow three design guiding principles: (1) enable the
transmission of multiple packets after sorting all flows to improve
packet rate; (2) utilize the time-based rate limiting algorithm to
compute the transmission time and order for all flows’ packets, and
transmit them accordingly to ensure accuracy; and (3) save mem-
ory and computing resources in hardware as much as possible, by
avoiding unnecessary buffering or too complicated data structures,
to improve scalability.

Guided by the above principles, Tassel designs a two-tier hi-
erarchical rate limiting by first applying scalable flow-level rate
limiting (§3.2.1), followed by accurate and fast packet-level rate
limiting (§3.2.2). Such a hierarchical rate limiter can be easily in-
tegrated into the architecture of RNIC by replacing the original
QP scheduler (§3.3.2) and leveraging a combination of data struc-
tures tailored to meet the diverse requirements at different stages
in Tassel (§3.3.3).

3.2 Hierarchical Rate Limiting
As illustrated in Figure 7, Tassel’s hierarchical design consists of
flow-level rate limiting and packet-level rate limiting, and follows
the following workflow:
(1) Sort flows. The flow scheduler first sorts tens of thousands of

flows by their scheduling time, which is the transmission time
of their head packet, respectively, and then identifies the latest
flow.

(2) Monitor and schedule. The flow scheduler monitors current
system time, and schedules the latest flow when the current
time approaches its scheduling time.

(3) Fetch packets. The flow scheduler fetches multiple packets for
the subsequent packet-level rate limiting.



ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia Zilong Wang, et al.

t=0 t=10 t=20 t=30

Flow Scheduler

……

Monitor & schedule

Time Calculator

Packet Filter

2

1 Sort flows

Fetch packets3

Tens of thousands of flows

t0

f1.pkt1 f1.pkt2f2.pkt fn.pkt

Tier-1 Flow-level rate limiting

Tier-2 Packet-level rate limiting

Reschedule

Monitor & transmit

4

5

6

7

Compute time

Filter packets

t=0 t=10

Sort packets

8

4 8 12 16

Hundreds of imminent packets
…

Packet Scheduler

t=20

Figure 7: Tassel’s hierarchical rate limiting design.

(4) Compute transmission time. Upon arriving the fetched packets,
the time calculator computes the packets’ transmission time
based on the WF2Q+ algorithm.

(5) Pick imminent packets. From fetched packets, the packet filter
picks imminent packets whose transmission time is close to the
current system time and are hence imminent to get transmitted
(detailed in §3.2.2). The rest of the packets (which are actually
the packet descriptors) are dropped and retrieved next time.

(6) Reschedule. The rest fetched packets dropped in the packet filter
need to be retrieved. The packet scheduler identifies the packet
with the nearest transmission time among dropped packets and
notifies the flow scheduler to 1) set this packet as the new head
packet for the corresponding flow; 2) use its transmission time
to update the flow’s scheduling time; and 3) reschedule the flow.

(7) Sort packets. The packet scheduler then takes over the transmis-
sion of imminent packets from all flows. It sorts all imminent
packets based on the transmission time and identifies the near-
est packet for transmission. The number of imminent packets
is bounded within a few hundred, as detailed in §3.2.2.

(8) Monitor and transmit. The packet scheduler monitors the cur-
rent system time and transmits the nearest packet on time when
it is permitted to be sent. If multiple packets are eligible to be
sent simultaneously, the packet scheduler prioritizes and trans-
mits the packet which will finish transmitting first.

Consequently, packets across a large number of flows are precisely
transmitted according to the calculated transmission time.

3.2.1 Scalable Flow-level Rate Limiting
Flow-level rate limiting supports scalable flow scheduling and em-
ploys an adaptive batching mechanism to hide the scheduling la-
tency.

Flow scheduling (➀ & ➁). Tassel maintains each flow’s sched-
uling time and sorts the flows accordingly. Simultaneously, Tassel
maintains a global timer that records the current system time. The
timer is easier to implement in hardware compared to software,
requiring just a little parallel logic to increment the counter each
cycle instead of relying on CPU polling. Tassel continuously checks
the timer to determine if it’s time to schedule the closest flow. Upon
reaching the scheduled time, Tassel schedules this flow and fetches
multiple packets. The number of packets fetched is based on the
adaptive batch mechanism, which is described in detail later.
Scheduling latency (➅). Scheduling latency is the time consumed
to execute one scheduling decision, including scheduling a flow
and fetching packets from the host. This usually takes several PCIe
transactions, while the PCIe round-trip latency between RNIC and
host memory is high (around 1us in FPGA-based RNIC). This high
scheduling latency affects the accuracy of rate limiting. To ensure
transmitting packets at the right time, we should schedule the
flow per scheduling latency in advance. Tassel achieves this by
adding a typical scheduling latency to the timer’s system time
before comparing it with the flow’s scheduling time.

Meanwhile, high scheduling latency degrades the packet rate
achieved by rate limiting. Specifically, a flow must wait for its last
scheduling decision to be fully executed before it can be resched-
uled. For example, if trying to reschedule a flow before its previous
scheduling is complete, the flow scheduler doesn’t know how many
packets were sent last time, which packet should be sent next, or
when to reschedule this flow. So, high scheduling latency causes
scheduling a single flow slowly, decreasing this flow’s packet rate
as well as the throughput. Using multiple concurrent flows can
improve the aggregate packet rate but it’s still blocked by the slow
flow scheduling rate. To address this performance challenge in both
single and multiple flow scenarios, we design the adaptive batching
mechanism described below.
Adaptive batching (➂). Adaptive batching fetches multiple pack-
ets from scheduled flow after sorting all flows, which can hide high
scheduling latency and improve the packet rate of flow-level rate
limiting.

The goal of adaptive batching is to keep the link as busy as
possible based on the varying rate limits, avoiding the achieved
throughput falls short of the given rate limit. If too few packets are
fetched, the next-layer packet-level rate limiting transmits them
quickly, causing no packets to be sent until this flow is rescheduled
after the scheduling latency passes. As a result, the throughput of
this flow remains low, potentially failing to reach the configured
rate limit. Conversely, fetching an excessive number of packets at
once can lead to a large transmission duration, potentially blocking
the packet scheduler.

The ideal packet number to fetch is the number that this flow
is allowed to send within the scheduling latency. This number,
denoted as 𝑁 , can be calculated based on the rate limit, the flow’s
typical packet size, and the scheduling latency as follows:

𝑁 =
𝑟𝑎𝑡𝑒_𝑙𝑖𝑚𝑖𝑡

𝑡𝑦𝑝𝑖𝑐𝑎𝑙_𝑝𝑘𝑡_𝑠𝑖𝑧𝑒 ∗ 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑖𝑛𝑔_𝑙𝑎𝑡𝑒𝑛𝑐𝑦

For example, as shown in Figure 8, assuming the rate limit is 25 Gbps,
the typical packet size is 1024 B, and the scheduling latency is 1 us,
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Figure 8: Adaptive batching mechanism. Adaptive batching
hides the scheduling latency and improves flow’s packet rate.

then 𝑁 equals 3. This means that we should fetch 3 packets each
time a flow is scheduled. Without adaptive batching, i.e. 𝑁 = 1, this
flow can only achieve 8.2 Gbps, significantly below the configured
rate limit.

Adaptive batching improves the packet input rate for the packet
scheduler module, enabling a fast and accurate packet-level rate
limiting.

3.2.2 Fast & Accurate Packet-level Rate Limiting
Packet-level rate limiting supports fast and accurate packet trans-
mission and consists of the following parts:
Time computation (➃). Once the fetched packets arrive, we cal-
culate the transmission time for each packet following the WF2Q+
algorithm. The transmission time includes the start (S) and finish
(F) time for each packet given the flow rate limit (R). A packet
is considered eligible (eligibility evaluation) when its start time is
less than the current system time (T). After the calculation, the
algorithm transmits those eligible packets in increasing order of
their finish time (rank sorting) and achieves high accuracy [41].
Eligibility evaluation and rank sorting are realized in the packet
scheduler below.

Tassel maintains each flow’s scheduling time (𝑆𝑓 𝑙𝑜𝑤𝑖
), which is

the expected transmission time of their head packets, as mentioned
earlier. When 𝑓 𝑙𝑜𝑤𝑖 is scheduled, Tassel fetches 𝑛 packets and com-
putes their start transmission time (𝑆𝑝𝑘𝑡 𝑗 ) and finish transmission
time (𝐹𝑝𝑘𝑡 𝑗 ) as follows:

𝑆𝑝𝑘𝑡 𝑗 =

{
𝑆𝑓 𝑙𝑜𝑤𝑖

, 𝑗 = 0
𝐹𝑝𝑘𝑡 𝑗−1 , 𝑗 > 0 , 𝐹𝑝𝑘𝑡 𝑗 = 𝑆𝑝𝑘𝑡 𝑗 +

𝐿𝑝𝑘𝑡 𝑗

𝑅𝑓 𝑙𝑜𝑤𝑖

where 𝐿𝑝𝑘𝑡 𝑗 is the length of 𝑝𝑎𝑐𝑘𝑒𝑡 𝑗 and 𝑅𝑓 𝑙𝑜𝑤𝑖
is the rate limit of

𝑓 𝑙𝑜𝑤𝑖 .
Packet filtering (➄). To bound the packet number for packet-level
rate limiting, Tassel facilitates packet filtering that only filters a
handful of packets that are the latest for transmission and discards
the rest yet numerous packets. Specifically, we define imminent
window as the time period within a scheduling latency from current
system time 𝑇 , and the imminent packets as those whose start
time 𝑆𝑝𝑘𝑡 falls within the imminent window. Figure 9 illustrates an
example of packet filtering.

We observe that the maximum number of imminent packets (𝑊 )
in RNIC is bounded, which is:

𝑊 = 𝑠𝑦𝑠𝑡𝑒𝑚_𝑝𝑎𝑐𝑘𝑒𝑡_𝑟𝑎𝑡𝑒 × 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑖𝑛𝑔_𝑙𝑎𝑡𝑒𝑛𝑐𝑦

1 2 3 4

t0 1us 2us

Imminent Window 
(System Time T + Scheduling Latency)

T

1

Imminent packets (store) Distant packets (drop)

Time Computation

Packet Filtering2
1

Figure 9: An example of packet filtering. After time compu-
tation, the first two packets are identified as imminent, as
their start transmission time falls within the imminent win-
dow. In contrast, the remaining two packets are considered
distant. Tassel then stores these first two imminent packets
and forwards them to the packet scheduler for packet-level
rate limiting, while discarding the distant packets.

In RNIC with a high packet rate of 110Mpps and a scheduling
latency of 1 µs, the total number of imminent packets typically
amounts to a few hundred. It is worth noting that these packets can
belong to different flows. Therefore, both large flows and multiple
small flows can provide a sufficient number of imminent packets,
allowing Tassel to achieve a high packet rate.

Packet filtering effectively reduces the number of packets that
require packet-level rate limiting. After packet filtering, packet-
level rate limiting only needs to manage a few hundred imminent
packets. This allows packet-level rate limiting to be both fast and
accurate.

Besides, packet filtering also reduces memory consumption and
improves scalability. Specifically, Tassel only stores the packet meta-
data for imminent packets, including the transmission time and
packet descriptors, while the remaining distant packets are dropped.
Note that these dropped packets can be retrieved from the host in
time when this flow is scheduled again, ensuring there is no com-
promise to performance and accuracy. Thus they can be dropped
for now to conserve memory resources and improve scalability.
In summary, by designing packet filtering, Tassel avoids storing
unnecessary packets, which makes it memory-efficient and scal-
able. The overhead of this fetch-and-drop policy is low because the
wasted PCIe bandwidth resulting from discarding descriptors of
distant packets constitutes only a small fraction of the bandwidth
used for transmitted packet data (detailed in §3.3.2).

After packet filtering, the packet filter passes the information
required to reschedule this flow to the packet scheduler below. The
information includes the transmission time and data offset of the
dropped packet with the nearest transmission time, e.g. packet3 in
the example of Figure 9. This, in turn, notifies the flow scheduler
to update and reschedule this flow. This scheduling time for this
flow is set to the transmission time of the nearest dropped packet.
There is a special case. When the configured rate limit is very high,
it might happen that all fetched packets are identified as imminent,
and no distant packets to drop. In this case, the scheduling time of
this flow is updated to the current system time, indicating that the
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flow should be scheduled immediately to fetch packets for the next
transmissions.
Packet scheduling (➆ & ➇). The packet scheduler applies fast and
accurate rate limiting for these imminent packets. Similar to the flow
scheduler, the packet scheduler also sorts all imminent packets from
various flows, and monitors the global timer to transmit packets
on time.

Specifically, the packet scheduler maintains two ordered lists,
one for sorting the start times (for eligibility evaluation) and another
for sorting the finish times (for rank sorting). Tassel recognizes the
eligible packets whose start times are smaller than the system time.
Eligible packets then are dequeued from the sorted list of start time
and enqueued into the sorted list of finish time. Whenever the link
is idle, Tassel dequeues and transmits the head packet from the
sorted list of finish time. Note that Tassel only dequeues a packet
from the sorted list of finish time when the link is idle 4. The packet
scheduler deduces the link state by computing the transmission
time of the last transmitted packet 𝑝𝑎𝑐𝑘𝑒𝑡_𝑙𝑒𝑛𝑔𝑡ℎ/𝑙𝑖𝑛𝑘_𝑟𝑎𝑡𝑒 .

Tassel’s packet scheduler supports strict rate limiting with a
fallback to weighted sharing by adjusting the timing rate in the
global timer. When the aggregate flows’ rate limits are lower than
the link rate (i.e. the link is not oversubscribed), each cycle, the
timer increases the system time by one clock time, e.g. 4 ns with a
clock frequency of 250MHz. When the aggregate flows’ rate limits
are larger than the link rate, the link is oversubscribed, and the
timer proportionally slows down the system time. This enables the
packet scheduler to transmit more packets per actual unit of time,
thereby preventing packet accumulation and queuing resulting
from oversubscription. The timer adjusts the timing rate according
to the rate oversubscription factor Φ, which is defined as the sum
of the active flows’ rate limits divided by the link rate. After the
time period 𝛿 , the timer updates the system time as follows:

𝑇 (𝑡 + 𝛿) = 𝑇 (𝑡) + 𝛿 × max(1,Φ)

3.3 Rate Limiter Architecture in RNIC
We then introduce integrating Tassel into RNIC architecture, en-
suring compliance with RNIC’s stringent resource and timing con-
straints (§3.3.2). Tassel’s hierarchical rate limiter simultaneously
achieves high performance, scalability, and accuracy at the sys-
tem level. This is achieved through employing a combination of
appropriate data structures, which meets diverse requirements at
different stages of the workflow(§3.3.3).

3.3.1 Data Flow in RNIC
RNIC consists of tens of thousands of queue pairs (QPs). The user
posts a work queue element (WQE) into a QP to issue a request. Each
WQE corresponds to a message that consists of multiple packets,
and all messages in the same QP are recognized as a flow. WQEs
contain the message size (64 B ∼ 2GB) and the memory address of
the data.

RNIC then processes various QPs’ WQEs and transmits the pack-
ets, and the entire workflow can be divided into three steps:

4Dequeueing a packet too early can result in an incorrect scheduling order [46], as
when dequeued packets are blocked by the busy link, eligible packets with smaller
finish times may appear and should be sent first.
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Figure 10: Tassel architecture in RNIC.

(1) Fetch WQEs. RNIC allocates a contiguous ring buffer in host
memory for each QP to store WQEs. RNIC schedules tens of
thousands of QPs and then fetches WQEs from the host via
PCIe.

(2) Fetch packet data. After WQEs arrive, RNIC parses them, gets
the memory address of the packet data, and then fetches it from
the host via PCIe.

(3) Transmit packets. Packets from various flows are sent to the
wire through a single FIFO after assembling the transport header
and packet data.
Figure 10 illustrates a typical RNIC architecture, consisting of

four parts: QP Scheduler, DMAEngine, Transport, and Basic NIC [51].
QP Scheduler schedules QPs. DMA engine fetches WQEs and data
from host. Transport realizes the RDMA transport functionalities
and assembles the packets when the payload arrives. The basic NIC
sends and receives packets from the network via the MAC interface.

3.3.2 Tassel Architecture
We implement Tassel in RNIC by replacing original QP scheduler
with the hierarchical rate limiter, which then schedules tens of thou-
sands of QPs and hundreds of imminent packets. The architecture
of RNIC with Tassel integrated is illustrated in Figure 10.

Event MUX (EMUX) gathers all scheduling-related events, includ-
ing 1) the host doorbell that signals an active QP with new WQEs
to process, 2) updates on rates and credits from congestion control,
and 3) events that a QP is ready for rescheduling. EMUX passes the
active QPs that have data and credits to send to QP Scheduler for
flow-level rate limiting and scheduling.

The QP scheduler leverages Timeline to sort tens of thousands of
QPs, and monitors Timer to schedule the nearest QP on time. It then
applies adaptive batching and notifiesDMA Engine to fetch multiple
WQEs. We set the number of WQEs to fetch as the batch number of
packets calculated in adaptive batching. We explain this correlation
below. A WQE of a small message contains only one packet, and
a WQE of a large message contains multiple packets. Adaptive
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Figure 11: The hardware design of timeline in Tassel. Tassel
uses the combination of data structures to meet the require-
ments of different stages.

batching calculates the maximum possible number of packets to
be sent. To ensure the RNIC can send enough packets and avoid
situations where packet transmission is allowed but not enough
WQEs are fetched, we assume all WQEs are for small messages and
fetch the corresponding number of WQEs. For large messages, after
sending the imminent packets, some WQEs may remain unused.
We drop these unused WQEs and fetch them next time. The wasted
PCIe bandwidth is limited, and the RNIC can still reach the line
rate (detailed in §3.5).

Fetched WQEs enter Packet Scheduler, which computes the trans-
mission time for the packets in these WQEs. It then applies packet
filtering and picks the imminent packets, stores their WQE inWQE
Buffer, and drops the left. After filtering, the packet scheduler com-
putes the rescheduling time of this flow and notifies EMUX.

Then the packet scheduler leverages Timeline to sort hundreds
of imminent packets. Meanwhile, the packet scheduler queries the
global timer to schedule and transmit the eligible packets with the
smallest finish time.

At last, Tassel dequeues the packet, consumes its WQE in WQE
Buffer, retrieves the packet data from the host via DMA engine,
appends the RDMA header in Transport, and then transmits it to
the network through Basic NIC.

3.3.3 Hardware Design of Timeline
The timeline module is the core of Tassel’s hierarchical rate limiter,
which sorts tens of thousands of QPs and hundreds of imminent
packets, separately.

Sorting tens of thousands of flows requires high scalability but is
less performance-sensitive, while scheduling hundreds of packets
demands high performance and is less scalability-sensitive. Thus,
as depicted in Figure 11, we combine the various data structures,
including the pipelined heap (P-heap) [19], timing wheel [50], and
register array [37], to match the needs of each stage. This allows us
to achieve performance, scalability, and accuracy simultaneously.
In brief, we employ an improved P-heap structure to handle the
scalability requirements of QP scheduling, while utilizing a fast
and high-precision timing wheel and a separate register array to
perform packet eligibility evaluation and rank sorting, respectively.
Pipelined heap (P-heap). We leverage P-heap to store and sort
QP scheduling time, which is less performance-sensitive but more

scalability-sensitive. P-heap maintains a min heap and enables
pipelining of the enqueue and dequeue operations, thereby allowing
these operations to execute in essentially constant time. Specifically,
P-heap can start enqueue or dequeue a packet every four cycles,
i.e. 62.5Mpps if running at 250MHz clock. Also, P-heap’s modular
and pipelined design makes it friendly to the hardware timing. This
allows P-heap to achieve a high clock frequency when supporting
massive flows.
Timing Wheel. The timing wheel is a circular array of slots,
with each slot representing a distinct time interval. Packets are
inserted into corresponding slots based on their transmission time.
The timing wheel supports efficient enqueue/dequeue operations.
When inserting packets, the timing wheel calculates the slot offset
using the packets’ timestamps, allowing insertion in O(1) time. For
dequeuing, the timer consistently checks the current time slot in the
timing wheel; if there are packets, they are dequeued immediately,
also in O(1) time. The resource overhead for the timing wheel is
low. Considering a 4ns time granularity and a 1us time range (a
typical imminent window size in RNIC), only 250 slots are needed.
Register Array. The register array stores and sorts the finish
time of eligible packets, using the classic parallel compare-and-
shift architecture [37]. The sorted register array supports enqueue,
dequeue per two cycles, and can maintain a high clock rate when
handling only a few hundred items, thus achieving a high packet
rate of several hundred Mpps.

3.4 Design Summary

Performance Analysis. Tassel achieves high packet rate via adap-
tive batching and packet filtering that improve the performance
of flow-level rate limiting and packet-level rate limiting, respec-
tively. By design, the register array is currently the bottleneck of
the system. It needs to sort the imminent packets as fast as possible
and hence requires the amount to be small. The amount of immi-
nent packets is determined by the scheduling latency multiplied by
the system’s desired packet rate, which is usually less than a few
hundred. At this point, it can achieve a high packet rate of a few
hundred million packets per second.
Scalability Analysis. Tassel is resource-efficient and achieves
high scalability. It fetches packets only when the right time comes
and stores only the WQEs of the imminent packets in RNIC for
saving memory resources. Quantitatively, Tassel’s memory con-
sumption is negligible compared to 10Mb total memory size or
375 B QPC [28]. It occupies 17 bytes for each QP, which includes 5 B
for the scheduling states, 2 B in the schedule queue, and 10 B in the
timeline module. Besides, Tassel consumes as much as 480 B to store
WQEs, a constant value unrelated to the number of QPs, thanks to
the fetch-and-drop policy and the bounded number of imminent
packets. When supporting 10 K QPs, Tassel consumes theoretically
166.5 KB on-chip SRAM in total. In terms of computing resources,
Tassel employs a combination of practical and scalable data struc-
tures to fulfill algorithm demands, save computing resources, and
reduce circuit complexity. Finally, Tassel adopts shared instead of
dedicated processing logic for QPs, which therefore limits the con-
sumption of computing resources while making the logic irrelative
to the number of QPs.
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ALM (K) Register (K) BRAM
P-Heap 3.7 3.4 41

Timing Wheel 24.1 1.8 0
Register Array 6.2 4.5 0

WQE Buffer 0.2 0.4 5
Total 34.2 10.1 46

Table 1: Resource usage of the Tassel prototype on the Intel
Agilex FPGA. Tassel consumes 4.4% ALMs, 0.65% registers,
and 0.44% BRAMs.

Accuracy Analysis. Tassel ensures accuracy through applying
accurate packet-level rate limiting just before packet transmission,
which adopts the time-basedWF2Q+ and strictly dispatches packets
based on the calculated transmission time.

3.5 Discussion

PFC Handling. When the rate limiter’s downstream processing
logic is blocked, e.g., receiving a PFC frame [24], Tassel will freeze
the system by stopping the timer until the system resumes. This
approach prevents packet accumulation and potential bursts while
ensuring accuracy.
Extra PCIe Overhead. Since adaptive batching accurately regu-
lates the number of packets prefetched, PCIe bandwidth is wasted
only when transmitting large messages. In such cases, the wasted
bandwidth resulting from discardingWQEs constitutes only a small
fraction of the PCIe capacity (e.g. 2.2% extra PCIe overhead consid-
ering the worst case: single flow, 100Gbps rate, 2 GB messages and
1024 B MTU) Hence, RNIC can still saturate the link bandwidth for
large messages with this fetch-and-drop policy while achieving a
high packet rate for small messages.

4 IMPLEMENTATION
We prototyped Tassel on an Intel Agilex FPGA board [6], running
at a clock frequency of 250MHz. Our FPGA board comprises 782 K
ALMs, 1565 K registers, and 10464 BRAMs (26.16MB SRAM), with a
PCIe Gen3x16 interface and a 100Gbps Ethernet port. We use 24-bit
timestamps, i.e. rank and predicate fields.

We realize 16 K QPs in Tassel and the resource consumption is
broken down in Table 1. Tassel’s implementation consumes 34.2 K
ALMs, 10.1 K registers, and 115KB on-chip SRAM in total, which
occupies 4.4%, 0.65%, and 0.44% available resources of our FPGA and
is quite low.Memory resources aremainly consumed by P-Heap and
WQE Buffer for storing QP-related scheduling metadata and packet-
related WQEs. Computing resources are primarily consumed by
Timing Wheel and Register Array to calculate packet transmission
time and implement high-performance sorting.

The resource consumption of Tassel is considerably low, and
it can achieve high clock frequency, thereby making it easy to
get integrated into various architectures. For example, the storage
resources of Tassel account for only 2.6% of RNIC’s [51], while it
can achieve a comparable clock frequency of 250 MHz.
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Figure 12: Performance. Tassel achieves a high packet rate,
which aligns with the performance requirements of RNIC.
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Figure 13: Performance. Tassel can achieve high clock fre-
quency.

5 EVALUATION
In this section, we evaluate Tassel prototype across three metrics:
performance, scalability, and accuracy. To serve as a baseline, we
implement SE-PIEO [1, 2] (§2.3) on top of our FPGA. Our results
reveal that:
• Tassel achieves high performance: it attains 125Mpps high packet
rate when supporting several thousand flows. Consequently, Tas-
sel can transmit a packet every 8 ns, making it sufficient to sched-
ule 100B packets at a 100 Gbps line rate, outperforming SE-PIEO
by 3.6×.

• Tassel achieves high scalability: it supports tens of thousands of
flows with very low resource usage, 7.5% to 25.6% as compared
to SE-PIEO.

• Tassel achieves high accuracy: it precisely enforces rate limits
ranging from 100 Kbps to 100 Gbps for tens of thousands of con-
current flows. Furthermore, it proportionally shares bandwidth
when the link is oversubscribed.

5.1 Performance
We compare Tassel with SE-PIEO in terms of performance. We mea-
sure the aggregate throughput of multiple flows while increasing
the message size from 64 B to 1024 B, as shown in Figure 12. Tassel
can saturate the 100Gbps link bandwidth with a 128 B message size,
achieving 125Mpps high packet rate. In contrast, SE-PIEO achieves
34.5Mpps, 27.6% as compared to Tassel. Tassel meets RNIC’s desired
high performance of 110Mpps, allowing for seamless integration
without performance penalty.



Fast, Scalable, and Accurate Rate Limiter for RDMA NICs ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia

Tassel
BlueField-3

Th
ro

ug
hp

ut
 (%

)

60

70

80

90

100

Number of Flows
1 16 128 1024 16384

Figure 14: Performance. Tassel consistently maintains a high
throughput as the number of flows increases.

We thenmeasure the maximum clock frequency that the rate lim-
iter can achieve varying the number of supported flows. Figure 13
shows that Tassel achieves a high clock frequency and exhibits a
slower decline in frequency as the number of flows increases. In
contrast, SE-PIEO’s clock frequency declines from 257.6MHz to
138MHz, a reduction of 46.4%, when the flow number increases
from 1K to 16 K, due to the complex combinational logic.

We also compare Tassel with NVIDIA BlueField-3 in terms of
the aggregate throughput while increasing the number of QPs from
1 to 16 K. Each QP is assigned the same rate limit, calculated as the
total link bandwidth divided by the number of QPs. We generate the
traffic using the standard perftest with default settings and measure
the aggregate throughput viamlnx_perf. As Figure 14 shows, Tassel
consistently achieves line rate as the number of QPs increases, while
BlueField-3’s throughput decreases significantly when the number
of QPs exceeds 1024.

Tassel’s high performance stems from the algorithm’s low time
complexity and the practical hierarchical design. Tassel’s algorithm
supports enqueuing/dequeuing a packet in constant cycles. And the
hierarchical design enables Tassel to combine the scalable P-heap,
fast timingwheel, and register array to achieve high clock frequency.
On the one hand, P-heap utilizes a modular and pipelined design. It
is friendly to the hardware timing when supporting massive flows
and helps Tassel achieve high clock frequency. On the other hand,
timing wheel and register array enable rapid packet transmission
within two cycles. In contrast, the clock frequency of SE-PIEO
is limited to only 138MHz due to the high circuit complexity of
storing and accessing the ordered list stored in SRAM with one
level of indirection, and it consumes 4 cycles per operation.

We believe Tassel’s design can scale to higher bandwidth scenar-
ios, such as 400 or 800Gbps. On one hand, our prototype achieves
a packet rate of 125Mpps, and given a larger MAC capacity, it can
achieve a throughput of nearly 1.0 Tbps with a 1024 B MTU. On the
other hand, our FPGA prototype can achieve higher packet rates
by upgrading to more advanced FPGA chips or ASIC platforms,
allowing the design to operate at higher clock frequency.

5.2 Scalability
In this section, we evaluate the scalability of Tassel by examining
how the consumption of the computing and memory resources
scales with the number of supported flows.
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Figure 15: Scalability. Percentage of computing resource con-
sumed (out of 782 K ALMs and 1565K registers).
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Figure 16: Scalability. Percentage of memory resource con-
sumed (out of 26.16 MB SRAM).

As shown in Figure 15 and Figure 16, Tassel exhibits very low
resource usage. Even when supporting 16k flows, the computing re-
sources utilized amount to less than 5% of our FPGA, while memory
resources account for less than 1%. Moreover, as the flow number
increases, the growth in the number of ALMs and registers used is
not significant, with only the BRAMs for storing the flows’ sched-
uling states exhibiting a linear increase. In comparison, with 16k
flows, SE-PIEO consumes 4.9× more ALMs, 3.9× more registers,
and 13.4×more BRAMs. Additionally, as the flow number increases,
SE-PIEO’s resource consumption grows at a square root rate due
to the requirement of log(N) comparators.

5.3 Accuracy
We evaluate Tassel’s accuracy by configuring rate limits ranging
from 100Kbps to 100Gbps for different flows and timestamping
transmitted packets with a 4 ns clock resolution to compute the
rate achieved. Figure 17 displays the rate limiting accuracy results
for a single flow. Tassel accurately enforces any given rate limit,
including both small and large rates. These results highlight the
effectiveness of Tassel’s timeline design, which can support large
inter-packet gaps for small rates and high time precision required by
large rates. In comparison, BlueField-3 supports rate limits ranging
from 200Kbps to the line rate with a precision of 200Kbps [8].
However, we observed that the actual minimum rate limit supported
by BlueField-3 is 400 Kbps. When users set the rate limit to 200 Kbps,
we measured an actual throughput of 376.25 Kbps, as shown in
Figure 17. Regarding precision, our measurements confirmed an
actual precision of 200 Kbps, consistent with the datasheet.
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Figure 17: Accuracy. Tassel supports accurate rate limiting
for a single flow, ranging from 100 Kbps to 100 Gbps.

We then demonstrate that Tassel can precisely enforce config-
ured rate limits for tens of thousands of concurrent flows. We divide
several thousand flows into six groups, configuring distinct rate
limits for flows in different groups. The aggregate rate is less than
the link bandwidth, ensuring the link is not oversubscribed. As
shown in Figure 18a, Tassel’s accurate rate limiting enables each
flow to achieve the configured rate limit precisely.

When the aggregate rate exceeds the link rate, resulting in link
oversubscription, Tassel can proportionally adjust the rate across
flows according to the original rate limit and the over-subscription
factor Φ to share the bandwidth proportionally. As shown in Fig-
ure 18b, when Φ equals two, the rate achieved by each flow is
precisely half of the configured rate limits.

Tassel’s high accuracy stems from its adoption of time-based
WF2Q+ algorithm as well as its efficient and comprehensive hard-
ware design.

6 RELATEDWORK

Rate limiting and packet scheduling. Rate limiting has long
been a classic research problem [14, 41, 43] and is used in current
congestion control and bandwidth allocation systems [17, 26, 29,
30, 40, 55]. Software solution Carousel [43] improves the efficiency
and accuracy of rate limiting in software. Hardware solutions like
SENIC [41] offload this task to improve accuracy and reduce the
CPU overhead. Via the hierarchical design, Tassel improves the
packet rate of rate limiter in hardware. In addition, rate limiting is
a specific task of packet scheduling and thus can be supported by
programmable packet schedulers [12, 16, 20, 34, 44, 45, 49, 52–54]
such as PIFO [48] and PIPO [54]. These approaches also follow
the one-packet-per-sorting transmission and our hierarchical idea
could apply to them to improve the performance.
Priority queues in hardware. Research on priority queues [19,
46, 48, 52, 53] can be applied to sort flows and packets. There are
various types of priority queues, each with distinct characteristics:
some offer high performance [48], while others have a very large
capacity [19]. These studies are orthogonal to our work, allowing
us to select suitable data structures from them to meet the diverse
needs of different stages in Tassel’s hierarchical rate limiter. For
instance, we could use the BMW Tree [52], an improved version of
P-heap, to replace the original P-heap for flow-level rate limiting.
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Figure 18: Accuracy. (a) Tassel maintains the accuracy of dif-
ferent configured rate limits with numerous flows. (b) Tassel
supports weighted fair sharing when the link is oversub-
scribed.

7 CONCLUSION
We present the design and implementation of Tassel, a fast, scalable,
and accurate rate limiter for RDMA NICs. Tassel’s hierarchical rate
limiter combines scalable flow-level rate limiting with fast and accu-
rate packet-level rate limiting, thereby achieving high performance,
scalability, and accuracy at the system level. Tassel enables RNICs
to precisely allocate bandwidth resources at end hosts. We hope
this can inspire more innovative protocols in high-speed networks
and domain-specific networks, aiming at a congestion-free data-
center. Specifically, general datacenter networks can divide link
bandwidth into multiple portions, allowing the sender to request
and reserve bandwidth before transmission, thereby avoiding re-
source contention and incast. Furthermore, AI training clusters
can leverage the predictability of the training traffic to assign the
sending rate among GPU pairs and avoid link congestion.
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