
Enabling Packet Spraying over Commodity RNICs with
In-Network Support

Xiangzhou Liu
Hong Kong University of Science and

Technology
Hong Kong, China

xliugg@connect.ust.hk

Wenxue Li
Hong Kong University of Science and

Technology
Hong Kong, China

wlicv@connect.ust.hk

Kai Chen
Hong Kong University of Science and

Technology
Hong Kong, China
kaichen@cse.ust.hk

Abstract
AI training workloads exhibit unique traffic patterns that mismatch
the ECMP load balancing of RDMA networks, leading to severe
throughput degradation. While packet-level load balancing (e.g.,
random packet spraying, adaptive routing, etc.) offers a promising
alternative to ECMP by providing fine-grained traffic distribution,
it introduces out-of-order (OOO) packet arrivals. Although current
commodity RNICs support OOO reception, their reliable transport
mechanisms misinterpret these arrivals as packet loss, causing
spurious retransmissions and unnecessary slow starts.

We propose Themis, a lightweight middleware deployed on
programmable switches, enabling packet spraying for commod-
ity RNICs without requiring any modifications to them. Themis
applies a PSN-based packet spraying at the source ToR switch,
providing an opportunity to infer whether the OOO packet and
expected packet traverse the same path based on their packet se-
quence numbers (PSNs). Building on this opportunity, Themis at
the destination ToR analyzes NACKs triggered by OOO arrivals
to determine whether they result from actual packet loss. It then
blocks invalid NACKs while allowing valid ones to pass through.
Experiments demonstrate that Themis reduces the communica-
tion completion time of Allreduce and Alltoall by 15.6%∼75.3% and
11.5%∼40.7%, respectively, compared to the direct combination of
commodity RNICs and adaptive routing.

CCS Concepts
• Networks→ Transport protocols; In-network processing.

Keywords
Datacenter Networks, Per-hop Flow Control

ACM Reference Format:
Xiangzhou Liu, Wenxue Li, and Kai Chen. 2025. Enabling Packet Spraying
over Commodity RNICs with In-Network Support. In 9th Asia-Pacific Work-
shop on Networking (APNET 2025), August 07–08, 2025, Shang Hai, China.
ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/3735358.3735374

This work is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivs International 4.0 License.

APNET 2025, Shang Hai, China
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1401-6/25/08
https://doi.org/10.1145/3735358.3735374

1 Introduction
With the rapid advancement of Artificial Intelligence (AI) [12, 30],
AI training jobs have become a significant workload in modern
datacenters [11, 15, 19, 21, 31]. To meet the rigorous communica-
tion demands of these AI jobs, inter-machine scale-out networks
leverage the high-bandwidth and low-latency RDMA technologies.
AI workloads exhibit traffic patterns that differ significantly from
traditional datacenter workloads [15, 26, 31]. They are mainly com-
posed of a small number of elephant flows with synchronization
characteristics, resulting in a low entropy in the traffic pattern [15].
The de-facto RDMA network employs Equal-Cost Multiple-Path
(ECMP) [18] for flow-level load balancing. However, this approach
severely mismatches the low-entropy traffic patterns of AI work-
loads: ECMP fails to evenly distribute the small number of elephant
flows across all equivalent paths [31]. Consequently, ECMP hash
collisions severely degrade the throughput of AI jobs [15, 21, 31].

Packet-level load balancing (e.g., random packet spraying, adap-
tive routing, etc.) offers a promising alternative to ECMP by avoid-
ing collisions and achieving fine-grained traffic distribution across
the network core. However, it introduces out-of-order packet ar-
rivals [13, 20, 35], which are incompatible with the reliable transport
of commodity RDMA NICs (RNICs). Previous-generation RNICs
(e.g., Mellanox CX-4 and CX-5 [4, 5]) rely on a Go-Back-N (GBN)
retransmission mechanism [16], where out-of-order packets are
dropped by the receiver, leading to excessive packet loss and per-
formance degradation when packet spraying is employed [35].

Current-generation comodity RNICs (e.g., Mellanox CX-6 [6]
and CX-7 [1]) and SmartNICs (e.g., Mellanox BF3 [3]) mitigate this
limitation by supporting out-of-order packet reception and using
Selective Repeat (i.e., NIC-SR) as the retransmission mechanism [7].
However, NIC-SR is primarily designed for single-path transmission
and assumes that all out-of-order arrivals are caused by packet loss.
As a result, when packet spraying is used, the receiver blindly gen-
erates NACKs for out-of-order packets even when no actual losses
occur and out-of-order arrivals are soley due to packet spraying.
This behavior introduces two major issues, resulting in bandwidth
waste and significant performance degradation:
• Excessive spurious retransmissions: Upon receiving a NACK,
the sender retransmits the packet indicated by the expected se-
quence number (ePSN) carried by the NACK, leading to excessive
spurious retransmissions.

• Unnecessary slow starts: Receiving a NACK also triggers the
sender’s slow start mechanism [35], reducing its transmission
rate unnecessarily.
Previous studies have failed to enable commodity RNICs for

packet-level load balancing. Conweave [35] applies flow re-routing

https://orcid.org/0009-0000-2156-9683
https://orcid.org/0000-0002-8228-2552
https://orcid.org/0000-0003-2587-6028
https://doi.org/10.1145/3735358.3735374
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1145/3735358.3735374

APNET 2025, August 07–08, 2025, Shang Hai, China X.et al.

and ensures in-order packet arrival at RNICs by in-network reorder-
ing at Top-of-Rack (ToR) switches. However, it does not support
packet-level load balancing. Flowlet-based approaches [10, 23, 36],
which trade off load balancing granularity to preserve packet
order, are poorly suited to RNICs’ hardware-based rate pacing.
MPRDMA [28] proposes a new transport design for packet-level
load balancing, but no off-the-shelf RNICs currently support it.

Motivated by the issues caused by out-of-order packet arrivals
and the limitations of previous works, we pose the following ques-
tion: Can we design a fine-grained load balancing solution for AI
jobs using off-the-shelf, current-generation commodity RNICs and
programmable switches that satisfies the following requirements?
• Packet-level load balancing: Achieve the finest (i.e., packet
level) granularity of load balancing by fully utilizing all available
network paths.

• Compatibility with commodity RNICs: Ensure that the so-
lution is directly applicable to current-generation commodity
RNICs, requiring no modifications.

• Minimal deployment overhead: Minimize the scope of de-
ployment for programmable switches and reduce the state over-
head of each switch as much as possible.
We propose Themis, a lightweight middleware deployed only

on ToR switches to enable packet-level load balancing for current-
generation commodity RNICs1. We classify NACKs triggered by
OOO arrivals into two categories: valid NACKs, caused by actual
packet loss, and invalid NACKs, caused by multi-path delay varia-
tion. By enabling destination-side ToR to identify and block invalid
NACKs, Themis bridges the gap between packet-level load balanc-
ing and NIC-SR.

The core of Themis is a PSN-based packet spraying policy, which
distributes packets across all available paths by deterministically as-
signing each packet to a path based on its packet sequence number
(PSN) modulo the number of available paths. The unique opportu-
nity offered by this policy is that it enables inference of whether
two packets traverse the same path using only their PSNs. Build-
ing on this opportunity, Themis consists of two core components:
Themis-Source (Themis-S) and Themis-Destination (Themis-D),
both deployed on ToR switches. Themis-S enforces the PSN-based
packet spraying by modifying packet headers at source-side ToRs.
Themis-D, at the destination-side ToRs, identifies whether a NACK
is valid by analyzing the PSN of OOO packets (tPSN, for short)
that triggered the NACK and the ePSN. To achieve this, Themis-D
caches each flow’s in-flight PSNs at the last hop in a PSN queue,
and identifies the tPSN for each NACK by scanning the queue.

Our preliminary NS-3 simulation results show that by blocking
invalid NACKs, Themis effectively reduces spurious retransmis-
sions and avoids unnecessary slow starts. Under various DCQCN
configurations, Themis reduces the communication completion
time by 15.6%∼75.3% for Allreduce and 11.5%∼40.7% for Alltoall,
compared to the direct combination of adaptive routing with com-
modity RNICs.

1Hereafter, "commodity RNIC" and "RNIC" in this paper refer to current-generation
RNICs that optionally support out-of-order packet reception and utilize NIC-SR as
their reliable transport protocol [1, 3, 6].

2 Background and Motivation
2.1 ECMP’s Dilemma in AI Workloads
Datacenters often utilize Clos networks [9, 34] as their underly-
ing fabric, which provides multiple equal-cost paths between any
source and destination. To distribute traffic across these paths,
Equal-Cost Multi-Path (ECMP) [18] is the most widely used load
balancing (LB) mechanism [16], which determines the path of a flow
by hashing the 5-tuple in the packet header. ECMP works well for
traditional workloads, where there are millions of flows that ensure
a relatively even distribution of traffic. However, unlike traditional
datacenter workloads, AI training workloads exhibit traffic patterns
that are fundamentally mismatched with ECMP’s design: (1) Small
number of flows: In AI training job, each node establishes very few
connections, as communication is only required with a limited set
of peers. (2) Large flow sizes: The flow sizes typically range from
several MBs to hundreds of MBs. (3) Bursty traffic: AI training is
an inherently synchronized process, where most nodes enter the
communication phase almost simultaneously. This synchronization
results in a bursty traffic pattern, with large volumes of data being
exchanged in a short period of time.

These flow characteristics (i.e., few in number, large in size) result
in a high ECMP collision rate, as the small number of flows can-
not be evenly distributed across available paths, leading to severe
performance degradation in AI training workloads [15, 21, 31].

2.2 Incompatibility between Packet-Level LB
and Commodity RNICs

Out-of-Order Arrival. Packet-level load balancing (LB) (e.g., ran-
dom packet spraying [13], adaptive routing, etc.) is a promising
solution to address the limitations of ECMP. Packet-level routing
evenly distributes traffic across multiple paths, even with few flows.
However, it causes out-of-order (OOO) packet arrivals [13, 20], mak-
ing it incompatible with reliable transport on commodity RNICs
and challenging to deploy in datacenters.
RNICs’ Reliable Transmission Mechanism. The latest genera-
tion of commodity RNICs [1, 3, 6] supports Selective Repeat (i.e.,
NIC-SR) as their built-in reliable transmissionmechanism [7].While
some SmartNICs [3] enable programmability of congestion control
(CC) logic [2], their reliable transports remain fixed and cannot
be programmed. These NICs also support optionally leverage NIC-
SR for handling out-of-order packet reception. NIC-SR handles
out-of-order (OOO) data packets and retransmissions as follows:
• The RNIC maintains an expected packet sequence number
(ePSN), which indicates the PSN of the next expected packet in
sequence. All packets with PSNs smaller than the ePSN have
been successfully received. For OOO packets with PSNs larger
than the ePSN, the RNIC maintains a bitmap to track their PSNs.

• Upon receiving a packet, the RNIC checks whether its PSN
matches the ePSN. If so, the ePSN is updated based on the bitmap:
it advances to the smallest PSN for which the corresponding
packet has not yet been received.

• If a packet’s PSN is larger than the ePSN (i.e., an OOO packet),
the RNIC assumes that the packet with the ePSN was lost and
generates a Negative Acknowledgment (NACK) to request re-
transmission of the lost packet. Notably, each ePSN triggers at

Enabling Packet Spraying over Commodity RNICs with In-Network Support APNET 2025, August 07–08, 2025, Shang Hai, China

flows in 1st group
flows in 2nd group

0 1 2 3 4 5 6 7

(a) Topo of the motivation simulation.

0 2000 4000 6000 8000 10000 12000
Time (us)

0.05

0.10

0.15

0.20

0.25

Re
tra

ns
m

iss
io

n
Ra

tio

Retransmission Ratio over Time
Retransmission Ratio
Average Ratio: 0.16

(b) Retransmission ratio.

200 400 600 800 1000 1200 1400
Time (us)

50

60

70

80

90

100

Ra
te

 (G
bp

s)

Rate over Time

Actual Rate
100Gbps Line Rate
Average Rate: 86Gbps

(c) Sending rate.

NIC-SR Ideal
Reliable transport

0

20

40

60

80

100

Th
ro

ug
hp

ut
 (G

bp
s) 68.09

95.43
Average Throughput

(d) Throughput.

Figure 1: Performance impact of directly combining packet spraying and commodity RNICs.

most one NACK, even if multiple OOO packets arrive.
• The triggered NACK only carry the ePSN of the receiver, rather
than including the PSN of the OOO packet. This design choice
does not introduce new packet types, thus maintaining consis-
tency with the Go-Back-N protocol and reduceing hardware
implementation complexity.
NIC-SR performs well in ECMP routing scenarios, where OOO

arrivals are caused by packet loss. However, it struggles to handle
packet-level LB scenarios effectively. Specifically, when the RNIC
receives a packet with PSN > ePSN, it cannot determine whether
the packet indicated by the ePSN is actually lost. However, the com-
modity RNIC blindly assumes the packet is lost and accordingly
generates a NACK. Therefore, many of these NACKs are unneces-
sary and should not reach the sender, as they can cause spurious
retransmissions and unnecessary slow starts.

To validate this, we conduct an experiment using NS3 with a
typical leaf-spine topology, where all links have a bandwidth of
100Gbps. The topology consists of eight nodes, as shown in Fig-
ure 1a. Nodes {0, 2, 4, 6} form one group, and nodes {1, 3, 5, 7} form
another group. Each node sends 100MB of data to the next node
within the same group. This creates a ring traffic pattern for each
group, which is common in collective communications. Random
packet spraying is used as the load-balancing method.
Excessive Spurious Retransmissions. When the sender RNIC
receives a NACK, it retransmits only the packet indicated by the
ePSN. However, in scenarios where OOO arrivals are caused by
multi-path delay variations rather than packet loss, these retrans-
missions are unnecessary and spurious, wasting network resources.
In our experiment, we observe that no packet loss occurs. However,
as shown in Figure 1b, the retransmission ratio of a chosen flow
(from node 0 to 2) remains high throughout the transmission. By
the end, the average spurious retransmissions ratio is 16% for all
flows, meaning only 84% of the traffic are useful.
Unnecessary Slow Starts. In addition to triggering retransmis-
sions, NACKs also cause the sender to reduce its transmission
rate [35], as they are treated as signals of congestion. However, this
assumption is incorrect in the context of packet-level LB, where
OOO arrivals can occur without any congestion. This unnecessary
rate reduction further degrades performance. In our experiment, no
congestion occurs. However, the RNIC’s congestion control mod-
ule (DCQCN [41]) reacts to NACKs by reducing the sending rate,
causing unnecessary slow starts. Figure 1c illustrates this behavior
by showing the sending rate of a chosen flow, where all rate drops
are triggered by NACKs. As a result, the average sending rate is
reduced to 86% of the line rate.

Figure 1d shows the end-to-end impact: the average through-
put of all flows is only 71% of the ideal case (with no spurious
retransmissions or slow starts). This degradation results from the
combined effects of an 86% average sending rate and an 84% useful
transmission ratio (71% = 86% × 84%).

2.3 Limitations of Existing Solutions
In-network reordering. Conweave [35] allows packets from a
single flow to traverse up to two distinct paths simultaneously
during rerouting phase and relies on the ToR switch to perform
in-network reordering of packets from these paths. However, the
in-network reordering approach cannot support packet-level LB,
as reordering packets from multiple paths exceeds the resource
capacity of ToR switches.
Flowlet-based LB. Flowlet-based LB [10, 23, 36] preserves packet
order by trading off the granularity of load balancing. It relies on
hosts creating time gaps within flows to form flowlets. However,
RNICs, which use hardware-based rate pacing, cannot produce
sufficiently large time gaps, rendering flowlet-based approaches
incompatible with RNICs.
Multi-path RDMA Transport. Other works [25, 28, 29, 33] pro-
pose new transport protocols to enable packet-level LB. However,
while cloud providers can develop custom ASICs incorporating
these protocols, such specialized hardware is predominantly de-
ployed for internal infrastructure rather than offered as general-
purpose commodities. Although FPGA-based SmartNICs have seen
adoption in some cloud environments [14], integrating and val-
idating new transport protocols on these devices requires hard-
ware developers with domain expertise. Most AI training clusters
continue to utilize commodity RNICs [15, 19, 21, 31, 39] due to
their proven performance stability and commercial availability. Yet,
these widely deployed commodity RNICs and SmartNICs lack the
full transport-layer programmability to implement these protocols
without hardware modifications (e.g., NVIDIA BF3 only allows pro-
gramming of the CC portion of RDMA transport [2]), making these
transport protocols difficult to integrate into existing clusters.

3 Design
3.1 Key Idea and Design Overview
When using packet-level LB with commodity RNICs, as mentioned
in Section 2.2, some NACKs are unnecessary and should not reach
the sender. This raises the question: how to determine whether a
NACK is "necessary"?

We classify NACKs into two categories based on the OOO packet

APNET 2025, August 07–08, 2025, Shang Hai, China X.et al.

Switch Switch

Switch Switch......

......

Src ToR Dst ToR
Themis-S

apply PSN-PS Policy
Themis-D

Block/generate NACK

Src RNIC Dst RNIC

0

2

3

1

Data packet with PSN = x ACK/NACK packet x

Figure 2: Overview of Themis.

that triggers NACKs and the expected packet:
• Valid NACKs: If the OOO packet travels along the same path
as the expected packet, it confirms that the expected packet
is indeed lost. Therefore, the NACK triggered by it should be
forwarded to the sender to trigger the retransmission of the
ePSN packet. for example, if the receiver’s ePSN in Figure 2 is 0,
and the packet with PSN = 2 arrives, the NACK triggered by this
packet is valid because the packet with PSN = 2 travels along
the same path as the expected packet with PSN = 0.

• Invalid NACKs: If the OOO packet travels along a different
path than the expected packet, it cannot confirm the loss of the
expected packet. Thus, the corresponding NACK is invalid and
should not reach the sender. For example, if the receiver’s ePSN
in Figure 2 is 0, and the packet with PSN = 1 arrives, the NACK
it triggers is invalid because the packet with PSN = 1 travels
along a different path than the expected packet with PSN = 0.

Key Idea. Our key idea is to use a deterministic packet spraying
policy for each flow. This policy allows the receiver-side ToR switch
to determine whether the OOO packet and the expected packet
travel along the same path. Based on this information, the ToR
switch can classify NACKs as valid or invalid and block invalid
NACKs accordingly.
Design Overview. Based on this key idea, we propose an
in-network middleware, Themis, which consists of Themis-Src
(Themis-S) and Themis-Dst (Themis-D). Figure 2 illustrates its
overview, with both components deployed on the ToR switch and
work together to identify and block invalid NACKs.

We adopt a PSN-based packet spraying policy (Section 3.2). The
Themis-S on the sender-side ToR modifies the packet header to
apply this policy. This spraying policy enables the Themis-D on
the receiver-side ToR to determine whether a NACK, based on the
tPSN (PSN of the OOO packet that triggered the NACK) and ePSN
(expected PSN when the NACK is generated), should be blocked.

One challenge is that NACKs generated by commodity RNICs
only contain the ePSN and do not include the tPSN to maintain
protocol compatibility (Section 2.2). To address this limitation, we
design a ring-based PSN queue structure deployed on the receiver-
side ToR switch. The Themis-D leverages this queue to cache the
PSNs of all in-flight packets on the ToR-to-NIC hop and identifies
the tPSN for each NACK by scanning the queue (Section 3.3).

Another challenge arises when an invalid NACK is blocked for
an ePSN while subsequent packets confirm that the ePSN packet
is indeed lost. In this case, a valid NACK needs to be triggered
and forwarded to the sender. However, as the RNIC can generate

△path △UDP sport
0

... 6...34 ...
PSNUDP src port

path 0 path 1 path 2 path 3

PathMap

Src Dst

1
2
3

0
4

32
36

Themis-S

PSNUDP src sport

③ UDP sport △UDP sport

... 6...2 ...

① 6 mod 4 = 2
②

=⊕

Figure 3: Illustration of PSN-based packet spraying.

only one NACK for an ePSN, it cannot generate this valid NACK
(Section 2.2). To address this, we design a NACK compensation
mechanism (Section 3.4) that allows the Themis-D to generate and
send the necessary NACK on behalf of the RNIC when the RNIC is
unable to do so.

3.2 PSN-based Packet Spraying
To achieve packet-level LB and enable NACK validation, we propose
a PSN-based packet spraying policy. Specifically, assume there are
𝑁 equal-cost paths between a source (src) and a destination (dst),
indexed as 0, 1, . . . , 𝑁 −1. For a given flow, ECMP hashing algorithm
determines its base path index 𝑃base ∈ {0, 1, . . . , 𝑁 − 1} . Under our
policy, any 𝑝𝑎𝑐𝑘𝑒𝑡𝑖 of this flowwith PSN = 𝑃𝑆𝑁𝑖 is deterministically
assigned to the path:

𝑃𝑎𝑡ℎ𝑖 = (𝑃𝑆𝑁𝑖 mod 𝑁 + 𝑃base) mod 𝑁 (1)

This policy ensures deterministic and uniform distribution of pack-
ets across all 𝑁 paths. Based on it, we can determine the traveled
path of the OOO packet that triggers the NACK (with 𝑡𝑃𝑆𝑁) and
the expected packet (with 𝑒𝑃𝑆𝑁) below:

𝑃𝑎𝑡ℎ𝑜𝑜𝑜 = (𝑡𝑃𝑆𝑁 mod 𝑁 + 𝑃base) mod 𝑁,

𝑃𝑎𝑡ℎ𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 = (𝑒𝑃𝑆𝑁 mod 𝑁 + 𝑃base) mod 𝑁
(2)

The NACK is valid if 𝑃𝑎𝑡ℎ𝑜𝑜𝑜 = 𝑃𝑎𝑡ℎ𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 . This condition sim-
plifies to:

𝑡𝑃𝑆𝑁 mod 𝑁 = 𝑒𝑃𝑆𝑁 mod 𝑁 (3)
Thus, for any NACK, if Eq. 3 holds, the NACK is valid; otherwise,
it is invalid.
Implementation limited to the ToR switch. Tominimize the de-
ployment scope of programmable switches, we limit the necessary
modifications to the Top-of-Rack (ToR) switch.

In a 2-tier Clos network, where path selection is entirely de-
termined by the ToR (leaf) switch, this mechanism can be fully
implemented by allowing the ToR switch to select the egress port
for each packet based on its PSN, without involving spine switches.

In 3-tier or multi-tier Clos networks, the method proposed in
prior work [37], which has already been deployed in production AI
training clusters [31], can be applied. This method leverages the lin-
earity of ECMP hashing to construct a deterministic PathMap offline.
As illustrated in Figure 3, when a packet arrives at the ToR switch,
the ToR calculates its relative path change by 𝑃𝑆𝑁 mod 𝑁 (1○).
The ToR then uses the PathMap to determine the corresponding
header modification (2○) and applies the modification accordingly
(3○). This method requires programmability only at the ToR switch.

3.3 Identifying tPSN for NACK Validation
To enable the ToR switch to identify valid NACKs using Eq. 3, it must
determine the PSN of OOO packet that triggered the NACK, referred

Enabling Packet Spraying over Commodity RNICs with In-Network Support APNET 2025, August 07–08, 2025, Shang Hai, China

0 Receiver
4

6

1

35

7

 2

QP ID queue idx head tail NACKed ePSN valid

QP 0

QP m

...

0 0 5

1 4k

10 True

0 False

Themis-D
FlowTable

Ring-based PSN Queues

queue 0 queue k

... ...1
2

34
5
6

7 0
head

tail

1
2

34
5
6

7 0 head

tail

Receiver-side
ToR

for tPSN identifying (Section 3.3) for NACK compensation (Section 3.4)

Sender-side
ToRSender

(a) Themis-D design.

ToR RNIC

0 1 2 3 4 5 6 7

PSN Queue Bitmap0
0

01
1

0 1 2 3 4 5 6 701
3

3

0 1 2 3 4 5 6 7
2

0132

0132

3 mod 2 ≠ 2 mod 2
Find tPSN = 3

Block NACK

2
0 1 2 3 4 5 6 7

6
26

26
4

4 Find tPSN = 3

Forward NACK
6 mod 2 = 4 mod 2

0 1 2 3 4 5 6 7

(b) Identify tPSN and block invalid NACK.

ToR RNIC

0 1 2 3 4 5 6 7

Blocked ePSN & Valid Bitmap0

1

0 1 2 3 4 5 6 7
3

0 1 2 3 4 5 6 7

3 mod 2 ≠ 2 mod 2
Find tPSN = 3

Block NACK 2

4

2
0 1 2 3 4 5 6 7

/ F
BePSN V

/ F
BePSN V

/ F
BePSN V

2 T
ePSN VBePSN

Generate NACK

(Valid = True &&
4 mod 2 = 2 mod 2)

2 F
VBePSN

Set Valid to False

(c) Example of NACK compensation.

Figure 4: Themis-D design and corresponding examples.

to as tPSN. However, NACKs generated by commodity RNICs do not
include the tPSN (Section 2.2). To address this limitation without
modifying the RNIC, we leverage two key observations:
• The time between when an OOO packet leaves the ToR switch
and when the corresponding NACK arrives back at the ToR
switch can be roughly bounded by the RTTlast-hop.

• The tPSN of a NACK is the first PSN larger than the ePSN that
arrived at the RNIC. This results from the fact that the RNIC
generates at most one NACK per ePSN (Section 2.2).
Based on first observation, we propose a per-QP ring-based PSN

queue at the ToR to store the PSNs of recently sent packets for
tPSN identification. Each queue entry corresponds to a PSN. Dur-
ing connection setup, the ToR intercepts RNIC handshakes and
prepares a ring-based PSN queue for each QP, which operated in
FIFO manner, ToR stores relevant context (queue index, head/tail
pointers) in the Flow Table, as illustrated in Figure 4a. Queue capac-
ity, determined by the bandwidth-delay product (BDP) of the last
hop and the network’s MTU, is configured to be slightly larger than
BDPlast-hop/MTU to accommodate fluctuations in RTTlast-hop.

Based on the second observation, when a NACK arrives at the
ToR switch, the switch dequeues entries from the PSN queue until it
finds the first PSN larger than the ePSN. This PSN is identified as the
tPSN, as the dequeuing order of the PSN queue matches the arrival
order of the packets. The ToR switch then validates the NACK using
Eq. 3 and either forwards or blocks the NACK accordingly.
Example. Assume there are two paths, as shown in Figure 4a, and
a packet arrival order, as illustrated in Figure 4b. PSNs of packets
(e.g., 0, 1, 3, 2) are enqueued into the PSN queue before they leave
the ToR switch. When a NACK with ePSN = 2 arrives at the ToR
switch, the switch dequeues PSNs from the queue until it finds
the first PSN larger than 2. This PSN, which is 3, is identified as
the tPSN. The NACK is determined to be invalid based on Eq. 3
and is therefore blocked. Similarly, when a NACK with ePSN = 4
arrives, the switch dequeues until it finds tPSN = 6. The NACK is
determined to be valid and is forwarded to the sender.

3.4 NACK Compensation
Blocking invalid NACKs prevents unnecessary retransmissions but
introduces a new challenge: if subsequent packets confirm the ePSN

packet is indeed lost, the RNIC cannot regenerate a NACK for the
same ePSN (Section 2.2). Consequently, the lost packet is only re-
transmitted after a timeout, causing performance degradation. To
address this, we design a NACK compensation mechanism that
enables the ToR to compensate for blocked NACKs. The ToR main-
tains Blocked ePSN (BePSN) and Valid fields in the flow table for
each flow, as shown in Figure 4a. These fields guide the switch in
deciding whether to compensate for a blocked NACK when new
packets arrive. The mechanism works as follows:
• When a NACK is blocked, the BePSN is set to the ePSN of the
blocked NACK, and the Valid field is set to True, indicating
that a NACK associated with BePSN may require compensation
in the future.

• If Valid is True and a packet with a PSN larger than BePSN
arrives such that 𝑃𝑆𝑁 mod 𝑁 = 𝐵𝑒𝑃𝑆𝑁 mod 𝑁 , the ToR deter-
mines the BePSN packet is lost and generates a NACK for the
BePSN. The Valid field is set to False to prevent generating
multiple NACKs for the same BePSN.

• If Valid is True and a packet with a PSN equal to BePSN arrives,
the switch determines that the packet with BePSN was not lost,
and no compensation for the blocked NACK is needed. The
Valid field is then set to False, ensuring no further NACKs are
generated for BePSN.

Example. As shown in Figure 4c, when a NACK with ePSN = 2
is blocked, the BePSN is set to 2 and Valid is set to True. When
a subsequent packet with PSN = 4 arrives, the switch checks the
BePSN field because Valid is True. Since 4 mod 2 = 2 mod 2, the
switch determines that the packet with BePSN is lost and generates
a NACK for ePSN = 2.

4 Memory Overhead Estimation
Themis-S. Thememory consumption of Themis-S primarily comes
from storing the PathMap. The PathMap consists of 𝑁paths entries,
and each entry requires 16 bits to store the Δ(UDP source port).
Thus, the memory consumption of the PathMap is:

𝑀PathMap = 𝑁paths × 2 bytes.

Themis-D. Themis-D only operates on cross-rack QPs between
RNICs connected to different ToR switches. The per-QP memory

APNET 2025, August 07–08, 2025, Shang Hai, China X.et al.

Table 1: Symbols and reference values used in the analysis.
Symbol Description Ref Value
𝑁paths Number of equal-cost paths 256
𝐵𝑊 Last-hop bandwidth 400 Gbps
𝑅𝑇𝑇last Last-hop RTT 2 𝜇s
𝑁NIC NICs per ToR switch 16
𝑁QP Cross-rack QPs per RNIC 100
𝑀𝑇𝑈 MTU size 1500 B
𝐹 Queue capacity expansion factor 1.5

overhead includes the flow table entry and the PSN queue.
Each flow table entry requires 20 bytes, consisting of 13 bytes for

the QP ID, 3 bytes for the blocked ePSN, 1 byte for the Valid flag,
and 3 bytes for queue metadata (queue index, head/tail pointers).

For each PSN queue, the number of entries is determined by:

𝑁entries =

⌈
𝐵𝑊 × 𝑅𝑇𝑇last × 𝐹

MTU

⌉
,

where 𝐹 > 1 is the queue capacity expansion factor for potential
RTT fluctuations. Each queue entry requires 1 byte to store the
truncated PSN. Therefore, the memory overhead per QP is:

𝑀QP = 20 bytes + 𝑁entries × 1 byte

The total memory overhead for a ToR switch connected to 𝑁NIC
RNICs, each hosting 𝑁QP cross-rack QPs, is given by:

𝑀total = 𝑀PathMap +𝑀QP × 𝑁QP × 𝑁NIC (4)

Example. We assume a fat-tree topology [9] with switches with
port number 𝑘 = 32. A 3-layer fat-tree with 1:1 subscription consists
of 𝑘2

2 = 512 ToR (leaf) switches, 𝑘2

2 = 512 spine switches, and
𝑘2

4 = 256 core switches, supporting up to 𝑘3/4 = 8192 GPUs (NICs).
In this topology, at most 256 equal-cost paths exist between any
source-destination pair, setting 𝑁paths = 256. And in this topology,
each ToR connects 𝑁NIC = 𝑘/2 = 16 RNICs.

In AI training workloads, the number of QPs per GPU is usually
limited. A recent study [15] shows that the average number of QPs
per GPU for operations such as AllReduce, AllGather, ReduceScatter,
and AlltoAll is 4, 4, 4, and 10, respectively. Therefore, we estimate
the cross-rack QP count per RNIC to be 𝑁QP = 100.

Using these values in Eq. 4 yields 𝑀total ≈ 193KB, consuming
just 0.6% of the 64 MB SRAM in current Tofino switches[8].

5 Evaluation
Simulation Setup. We use NS-3 simulations to evaluate Themis
in a 16 × 16 leaf-spine topology with 1:1 subscription, where all
links are 400 Gbps with 1 𝜇s delay and each switch is equipped
with a 64 MB buffer [8]. Each of the 16 ToR switches connects to
16 NICs, and this topology connects a total of 256 NICs (also repre-
senting 256 GPUs). NICs use NIC-SR for reliable transmission and
DCQCN for congestion control. The 256 NICs are divided into 16
communication groups, each containing 16 NICs, with each NIC in
a group connected to a different ToR switch. In the experiments,
all 16 groups start the same collective communication simultane-
ously. We conduct separate experiments for Allreduce (300MB)
and Alltoall (300MB), using the slowest group’s completion time as
the metric which reflects the training job’s communication bottle-
neck. Themis is compared with ECMP and Adaptive Routing under

(90
0,

4)

(30
0,

4)
(10

, 4
)

(10
, 5

0)

(10
, 2

00
)

DCQCN configuration (TI, TD)

0

10

20

30

40

50

Co
m

pl
et

io
n

Ti
m

e
(m

s) Allreduce Tail Completion Time
ECMP
Adaptive Routing
Themis

(a) Allreduce

(90
0,

4)

(30
0,

4)
(10

, 4
)

(10
, 5

0)

(10
, 2

00
)

DCQCN configuration (TI, TD)

0
2
4
6
8

10
12

Co
m

pl
et

io
n

Ti
m

e
(m

s) Alltoall Tail Completion Time
ECMP
Adaptive Routing
Themis

(b) Alltoall

Figure 5: Collective communication performance under dif-
ferent DCQCN parameters.

various DCQCN configurations.
Results and Analysis. Figures 5a and 5b show that Themis consis-
tently outperforms ECMP and Adaptive Routing (AR). Compared to
AR, Themis achieves 15.6%∼75.3% and 11.5%∼40.7% lower commu-
nication completion time for Allreduce and Alltoall, respectively,
across different DCQCN configurations. In DCQCN, the rate de-
crease interval (𝑇𝐷) controls the frequency of rate reductions, while
the rate increase timer (𝑇𝐼) sets the interval for recovering the send-
ing rate. With the recommended parameters [27] (𝑇𝐼 = 900 𝜇s,
𝑇𝐷 = 4 𝜇s), AR performs poorly due to frequent rate reductions and
slow recovery. Adjusting 𝑇𝐼 and 𝑇𝐷 improves AR, as smaller 𝑇𝐼 and
larger 𝑇𝐷 mitigate the slow start effect. However, extreme values,
such as overly small 𝑇𝐼 or overly large 𝑇𝐷 , may delay responses
to congestion, causing prolonged congestion and degraded perfor-
mance. This also indicates that using NIC-SR with packet-level LB
introduces new challenges for CC parameter tuning.

6 Discussion and Future Work
Link Failure Tolerance. When link failures occur, Themis’s PSN-
based packet spraying may fail to maintain load balancing across
network cores. Upon detecting failures via monitoring tools [17, 37],
ToR switches disable Themis and revert to ECMP mode. Future
work will explore restricting flows to path subsets and dynamically
adjusting pathsets when failures occur.
Implementation on Tofino Switch. Themis needs merely 0.2MB
SRAM (Section 4), well within Tofino switch capacity [8]. Studies
show that Tofino switches can efficiently support a diverse range
of offloading tasks [22, 24, 32, 38, 40]. With its lightweight design,
Themis suits Tofino hardware implementation. Future work will
implement Themis on real Tofino switches.

7 Conclusion
Themis is a lightweight middleware deployed on ToR switches that
applies PSN-based packet spraying at the source ToR switch while
identifying and blocking invalid NACKs at the destination ToR
switch. By preventing spurious retransmissions and unnecessary
slow starts, Themis enables effective packet spraying with com-
modity RNICs. Evaluations demonstrate its superior performance.

Acknowledgments
We thank the anonymous reviewers for their insightful comments.
This work is supported in part by the Hong Kong RGC TRS T41-
603/20R, the GRF 16213621, and the ITC ACCESS. Kai Chen is the
corresponding author.

Enabling Packet Spraying over Commodity RNICs with In-Network Support APNET 2025, August 07–08, 2025, Shang Hai, China

References
[1] 2021. Mellanox ConnectX-7 Product Brief. (2021). https://www.nvidia.c

om/content/dam/en-zz/Solutions/networking/ethernet-adapters/connectx-7-
datasheet-Final.pdf

[2] 2025. DOCAPCC. (2025). https://docs.nvidia.com/doca/sdk/doca+pcc/index.html
[3] 2025. Mellanox BlueField-3 Product Brief. (2025). https://www.nvidia.com/en-

us/networking/products/data-processing-unit/
[4] 2025. Mellanox ConnectX-4 Product Brief. (2025). https://www.nvidia.com/en-

in/networking/ethernet/connectx-4-lx/
[5] 2025. Mellanox ConnectX-5 Product Brief. (2025). https://www.nvidia.com/en-

sg/networking/ethernet/connectx-5/
[6] 2025. Mellanox ConnectX-6 Product Brief. (2025). https://www.nvidia.com/en-

sg/networking/ethernet/connectx-6/
[7] 2025. Zero touch RoCE enables RoCE to operate on fabrics where no PFC nor

ECN are configured. (2025). https://docs.nvidia.com/networking/display/winof
2v25150020/ethernet+network#src-3576232145_EthernetNetwork-RoLN

[8] Anurag Agrawal and Changhoon Kim. 2020. Intel Tofino2 – A 12.9Tbps P4-
Programmable Ethernet Switch. In 2020 IEEE Hot Chips 32 Symposium (HCS).
1–32. https://doi.org/10.1109/HCS49909.2020.9220636

[9] Mohammad Al-Fares, Alexander Loukissas, and Amin Vahdat. 2008. A scalable,
commodity data center network architecture. In Proceedings of the ACM SIG-
COMM 2008 Conference on Data Communication (SIGCOMM ’08). Association
for Computing Machinery, New York, NY, USA, 63–74. https://doi.org/10.1145/
1402958.1402967

[10] Mohammad Alizadeh, Tom Edsall, Sarang Dharmapurikar, Ramanan
Vaidyanathan, Kevin Chu, Andy Fingerhut, Vinh The Lam, Francis Matus,
Rong Pan, Navindra Yadav, et al. 2014. CONGA: Distributed congestion-aware
load balancing for datacenters. In Proceedings of the 2014 ACM conference on
SIGCOMM. 503–514.

[11] Jiamin Cao, Yu Guan, Kun Qian, Jiaqi Gao, Wencong Xiao, Jianbo Dong, Binzhang
Fu, Dennis Cai, and Ennan Zhai. 2024. Crux: GPU-Efficient Communication
Scheduling for Deep Learning Training. In Proceedings of the ACM SIGCOMM
2024 Conference (ACM SIGCOMM ’24). Association for Computing Machinery,
New York, NY, USA, 1–15. https://doi.org/10.1145/3651890.3672239

[12] DeepSeek-AI and Aixin Liu et al. 2024. DeepSeek-V3 Technical Report. (2024).
arXiv:cs.CL/2412.19437 https://arxiv.org/abs/2412.19437

[13] Advait Dixit, Pawan Prakash, Y. Charlie Hu, and Ramana Rao Kompella. 2013.
On the impact of packet spraying in data center networks. In 2013 Proceedings
IEEE INFOCOM. 2130–2138. https://doi.org/10.1109/INFCOM.2013.6567015

[14] Daniel Firestone and Andrew Putnam et al. 2018. Azure Accelerated Networking:
SmartNICs in the Public Cloud. In 15th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 18). USENIX Association, Renton, WA, 51–66.
https://www.usenix.org/conference/nsdi18/presentation/firestone

[15] Adithya Gangidi, Rui Miao, Shengbao Zheng, Sai Jayesh Bondu, Guilherme Goes,
Hany Morsy, Rohit Puri, Mohammad Riftadi, Ashmitha Jeevaraj Shetty, Jingyi
Yang, Shuqiang Zhang, Mikel Jimenez Fernandez, Shashidhar Gandham, and
Hongyi Zeng. 2024. RDMA over Ethernet for Distributed Training at Meta
Scale. In Proceedings of the ACM SIGCOMM 2024 Conference (ACM SIGCOMM
’24). Association for Computing Machinery, New York, NY, USA, 57–70. https:
//doi.org/10.1145/3651890.3672233

[16] Chuanxiong Guo, Haitao Wu, Zhong Deng, Gaurav Soni, Jianxi Ye, Jitu Padhye,
and Marina Lipshteyn. 2016. RDMA over Commodity Ethernet at Scale. In
Proceedings of the 2016 ACM SIGCOMM Conference (SIGCOMM ’16). Association
for Computing Machinery, New York, NY, USA, 202–215. https://doi.org/10.
1145/2934872.2934908

[17] Chuanxiong Guo, Lihua Yuan, Dong Xiang, Yingnong Dang, Ray Huang, Dave
Maltz, Zhaoyi Liu, Vin Wang, Bin Pang, Hua Chen, Zhi-Wei Lin, and Varugis
Kurien. 2015. Pingmesh: A Large-Scale System for Data Center Network
Latency Measurement and Analysis. In Proceedings of the 2015 ACM Confer-
ence on Special Interest Group on Data Communication (SIGCOMM ’15). As-
sociation for Computing Machinery, New York, NY, USA, 139–152. https:
//doi.org/10.1145/2785956.2787496

[18] C. Hopps. 2000. RFC2992: Analysis of an Equal-Cost Multi-Path Algorithm.
(2000).

[19] Qinghao Hu, Zhisheng Ye, Zerui Wang, Guoteng Wang, Meng Zhang, Qiaoling
Chen, Peng Sun, Dahua Lin, Xiaolin Wang, Yingwei Luo, Yonggang Wen, and
Tianwei Zhang. 2024. Characterization of Large Language Model Development
in the Datacenter. In 21st USENIX Symposium on Networked Systems Design and
Implementation (NSDI 24). USENIX Association, Santa Clara, CA, 709–729.
https://www.usenix.org/conference/nsdi24/presentation/hu

[20] Jiawei Huang, Wenjun Lv, Weihe Li, Jianxin Wang, and Tian He. 2018. QDAPS:
Queueing Delay Aware Packet Spraying for Load Balancing in Data Center. In
2018 IEEE 26th International Conference on Network Protocols (ICNP). 66–76.
https://doi.org/10.1109/ICNP.2018.00017

[21] Ziheng Jiang, Haibin Lin, Yinmin Zhong, Qi Huang, Yangrui Chen, Zhi Zhang,
Yanghua Peng, Xiang Li, Cong Xie, Shibiao Nong, Yulu Jia, Sun He, Hongmin
Chen, Zhihao Bai, Qi Hou, Shipeng Yan, Ding Zhou, Yiyao Sheng, Zhuo Jiang,

Haohan Xu, Haoran Wei, Zhang Zhang, Pengfei Nie, Leqi Zou, Sida Zhao, Liang
Xiang, Zherui Liu, Zhe Li, Xiaoying Jia, Jianxi Ye, Xin Jin, and Xin Liu. 2024.
MegaScale: Scaling Large Language Model Training to More Than 10,000 GPUs.
In 21st USENIX Symposium on Networked Systems Design and Implementation
(NSDI 24). USENIX Association, Santa Clara, CA, 745–760. https://www.usenix
.org/conference/nsdi24/presentation/jiang-ziheng

[22] Xin Jin, Xiaozhou Li, Haoyu Zhang, Robert Soulé, Jeongkeun Lee, Nate Foster,
Changhoon Kim, and Ion Stoica. 2017. NetCache: Balancing Key-Value Stores
with Fast In-Network Caching. In Proceedings of the 26th Symposium on Operating
Systems Principles (SOSP ’17). Association for Computing Machinery, New York,
NY, USA, 121–136. https://doi.org/10.1145/3132747.3132764

[23] Naga Katta, Mukesh Hira, Changhoon Kim, Anirudh Sivaraman, and Jennifer
Rexford. 2016. Hula: Scalable load balancing using programmable data planes. In
Proceedings of the Symposium on SDN Research. 1–12.

[24] ChonLam Lao, Yanfang Le, Kshiteej Mahajan, Yixi Chen, Wenfei Wu, Aditya
Akella, and Michael Swift. 2021. ATP: In-network Aggregation for Multi-tenant
Learning. In 18th USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI 21). USENIX Association, 741–761. https://www.usenix.org/c
onference/nsdi21/presentation/lao

[25] Yanfang Le, Rong Pan, Peter Newman, Jeremias Blendin, Abdul Kabbani, Vipin
Jain, Raghava Sivaramu, and Francis Matus. 2024. STrack: A Reliable Multipath
Transport for AI/ML Clusters. (2024). arXiv:cs.NI/2407.15266 https://arxiv.org/
abs/2407.15266

[26] Wenxue Li, Xiangzhou Liu, Yuxuan Li, Yilun Jin, Han Tian, Zhizhen Zhong,
Guyue Liu, Ying Zhang, and Kai Chen. 2024. Understanding Communication
Characteristics of Distributed Training. In Proceedings of the 8th Asia-Pacific
Workshop on Networking (APNet ’24). Association for Computing Machinery,
New York, NY, USA, 1–8. https://doi.org/10.1145/3663408.3663409

[27] Yuliang Li, Rui Miao, Hongqiang Harry Liu, Yan Zhuang, Fei Feng, Lingbo Tang,
Zheng Cao, Ming Zhang, Frank Kelly, Mohammad Alizadeh, and Minlan Yu.
2019. HPCC: high precision congestion control. In Proceedings of the ACM
Special Interest Group on Data Communication (SIGCOMM ’19). Association for
Computing Machinery, New York, NY, USA, 44–58. https://doi.org/10.1145/
3341302.3342085

[28] Yuanwei Lu, Guo Chen, Bojie Li, Kun Tan, Yongqiang Xiong, Peng Cheng, Jian-
song Zhang, Enhong Chen, and Thomas Moscibroda. 2018. Multi-Path Transport
for RDMA in Datacenters. In 15th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 18). USENIX Association, Renton, WA, 357–371.
https://www.usenix.org/conference/nsdi18/presentation/lu

[29] Rui Miao, Lingjun Zhu, Shu Ma, Kun Qian, Shujun Zhuang, Bo Li, Shuguang
Cheng, Jiaqi Gao, Yan Zhuang, Pengcheng Zhang, Rong Liu, Chao Shi, Binzhang
Fu, Jiaji Zhu, Jiesheng Wu, Dennis Cai, and Hongqiang Harry Liu. 2022. From
luna to solar: the evolutions of the compute-to-storage networks in Alibaba
cloud. In Proceedings of the ACM SIGCOMM 2022 Conference (SIGCOMM ’22).
Association for Computing Machinery, New York, NY, USA, 753–766. https:
//doi.org/10.1145/3544216.3544238

[30] OpenAI and Josh Achiam et al. 2024. GPT-4 Technical Report. (2024).
arXiv:cs.CL/2303.08774 https://arxiv.org/abs/2303.08774

[31] Kun Qian, Yongqing Xi, Jiamin Cao, Jiaqi Gao, Yichi Xu, Yu Guan, Binzhang
Fu, Xuemei Shi, Fangbo Zhu, Rui Miao, Chao Wang, Peng Wang, Pengcheng
Zhang, Xianlong Zeng, Eddie Ruan, Zhiping Yao, Ennan Zhai, and Dennis Cai.
2024. Alibaba HPN: A Data Center Network for Large Language Model Training.
In Proceedings of the ACM SIGCOMM 2024 Conference (ACM SIGCOMM ’24).
Association for Computing Machinery, New York, NY, USA, 691–706. https:
//doi.org/10.1145/3651890.3672265

[32] Amedeo Sapio, Marco Canini, Chen-Yu Ho, Jacob Nelson, Panos Kalnis,
Changhoon Kim, Arvind Krishnamurthy, Masoud Moshref, Dan Ports, and Peter
Richtarik. 2021. Scaling Distributed Machine Learning with In-Network Aggrega-
tion. In 18th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 21). USENIX Association, 785–808. https://www.usenix.org/conference/
nsdi21/presentation/sapio

[33] Leah Shalev, Hani Ayoub, Nafea Bshara, and Erez Sabbag. 2020. A cloud-optimized
transport protocol for elastic and scalable hpc. IEEE micro 40, 6 (2020), 67–73.

[34] Arjun Singh and Joon et al. Ong. 2015. Jupiter Rising: A Decade of Clos Topologies
and Centralized Control in Google’s Datacenter Network. In Proceedings of the
2015 ACMConference on Special Interest Group onData Communication (SIGCOMM
’15). Association for Computing Machinery, New York, NY, USA, 183–197.
https://doi.org/10.1145/2785956.2787508

[35] Cha Hwan Song, Xin Zhe Khooi, Raj Joshi, Inho Choi, Jialin Li, and Mun Choon
Chan. 2023. Network Load Balancing with In-network Reordering Support for
RDMA. In Proceedings of the ACM SIGCOMM 2023 Conference (ACM SIGCOMM
’23). Association for Computing Machinery, New York, NY, USA, 816–831.
https://doi.org/10.1145/3603269.3604849

[36] Erico Vanini, Rong Pan, Mohammad Alizadeh, Parvin Taheri, and Tom Edsall.
2017. Let it flow: Resilient asymmetric load balancing with flowlet switching. In
14th USENIX Symposium on Networked Systems Design and Implementation (NSDI
17). 407–420.

[37] Zhehui Zhang, Haiyang Zheng, Jiayao Hu, Xiangning Yu, Chenchen Qi, Xuemei

https://www.nvidia.com/content/dam/en-zz/Solutions/networking/ethernet-adapters/connectx-7-datasheet-Final.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/networking/ethernet-adapters/connectx-7-datasheet-Final.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/networking/ethernet-adapters/connectx-7-datasheet-Final.pdf
https://docs.nvidia.com/doca/sdk/doca+pcc/index.html
https://www.nvidia.com/en-us/networking/products/data-processing-unit/
https://www.nvidia.com/en-us/networking/products/data-processing-unit/
https://www.nvidia.com/en-in/networking/ethernet/connectx-4-lx/
https://www.nvidia.com/en-in/networking/ethernet/connectx-4-lx/
https://www.nvidia.com/en-sg/networking/ethernet/connectx-5/
https://www.nvidia.com/en-sg/networking/ethernet/connectx-5/
https://www.nvidia.com/en-sg/networking/ethernet/connectx-6/
https://www.nvidia.com/en-sg/networking/ethernet/connectx-6/
https://docs.nvidia.com/networking/display/winof2v25150020/ethernet+network#src-3576232145_EthernetNetwork-RoLN
https://docs.nvidia.com/networking/display/winof2v25150020/ethernet+network#src-3576232145_EthernetNetwork-RoLN
https://doi.org/10.1109/HCS49909.2020.9220636
https://doi.org/10.1145/1402958.1402967
https://doi.org/10.1145/1402958.1402967
https://doi.org/10.1145/3651890.3672239
https://arxiv.org/abs/cs.CL/2412.19437
https://arxiv.org/abs/2412.19437
https://doi.org/10.1109/INFCOM.2013.6567015
https://www.usenix.org/conference/nsdi18/presentation/firestone
https://www.usenix.org/conference/nsdi18/presentation/firestone
https://doi.org/10.1145/3651890.3672233
https://doi.org/10.1145/3651890.3672233
https://doi.org/10.1145/2934872.2934908
https://doi.org/10.1145/2934872.2934908
https://doi.org/10.1145/2785956.2787496
https://doi.org/10.1145/2785956.2787496
https://www.usenix.org/conference/nsdi24/presentation/hu
https://www.usenix.org/conference/nsdi24/presentation/hu
https://doi.org/10.1109/ICNP.2018.00017
https://doi.org/10.1109/ICNP.2018.00017
https://www.usenix.org/conference/nsdi24/presentation/jiang-ziheng
https://www.usenix.org/conference/nsdi24/presentation/jiang-ziheng
https://doi.org/10.1145/3132747.3132764
https://www.usenix.org/conference/nsdi21/presentation/lao
https://www.usenix.org/conference/nsdi21/presentation/lao
https://arxiv.org/abs/cs.NI/2407.15266
https://arxiv.org/abs/2407.15266
https://arxiv.org/abs/2407.15266
https://doi.org/10.1145/3663408.3663409
https://doi.org/10.1145/3341302.3342085
https://doi.org/10.1145/3341302.3342085
https://www.usenix.org/conference/nsdi18/presentation/lu
https://doi.org/10.1145/3544216.3544238
https://doi.org/10.1145/3544216.3544238
https://arxiv.org/abs/cs.CL/2303.08774
https://arxiv.org/abs/2303.08774
https://doi.org/10.1145/3651890.3672265
https://doi.org/10.1145/3651890.3672265
https://www.usenix.org/conference/nsdi21/presentation/sapio
https://www.usenix.org/conference/nsdi21/presentation/sapio
https://doi.org/10.1145/2785956.2787508
https://doi.org/10.1145/2785956.2787508
https://doi.org/10.1145/3603269.3604849
https://doi.org/10.1145/3603269.3604849

APNET 2025, August 07–08, 2025, Shang Hai, China X.et al.

Shi, and Guohui Wang. 2021. Hashing Linearity Enables Relative Path Control
in Data Centers. In 2021 USENIX Annual Technical Conference (USENIX ATC 21).
USENIX Association, 855–862. https://www.usenix.org/conference/atc21/pres
entation/zhang-zhehui

[38] Bohan Zhao, Wenfei Wu, and Wei Xu. 2023. NetRPC: Enabling In-Network Com-
putation in Remote Procedure Calls. In 20th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 23). USENIX Association, Boston, MA,
199–217. https://www.usenix.org/conference/nsdi23/presentation/zhao-bohan

[39] Chenggang Zhao, Chengqi Deng, Chong Ruan, Damai Dai, Huazuo Gao, Jiashi Li,
Liyue Zhang, Panpan Huang, Shangyan Zhou, Shirong Ma, Wenfeng Liang, Ying
He, Yuqing Wang, Yuxuan Liu, and Y. X. Wei. 2025. Insights into DeepSeek-V3:
Scaling Challenges and Reflections on Hardware for AI Architectures. (2025).

arXiv:cs.DC/2505.09343 https://arxiv.org/abs/2505.09343
[40] Hang Zhu, Kostis Kaffes, Zixu Chen, Zhenming Liu, Christos Kozyrakis, Ion

Stoica, and Xin Jin. 2020. RackSched: A Microsecond-Scale Scheduler for Rack-
Scale Computers. In 14th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 20). USENIX Association, 1225–1240. https://www.usenix
.org/conference/osdi20/presentation/zhu

[41] Yibo Zhu, Haggai Eran, Daniel Firestone, Chuanxiong Guo, Marina Lipshteyn,
Yehonatan Liron, Jitendra Padhye, Shachar Raindel, Mohamad Haj Yahia, and
Ming Zhang. 2015. Congestion Control for Large-Scale RDMA Deployments.
In Proceedings of the 2015 ACM Conference on Special Interest Group on Data
Communication (SIGCOMM ’15). Association for Computing Machinery, New
York, NY, USA, 523–536. https://doi.org/10.1145/2785956.2787484

https://www.usenix.org/conference/atc21/presentation/zhang-zhehui
https://www.usenix.org/conference/atc21/presentation/zhang-zhehui
https://www.usenix.org/conference/nsdi23/presentation/zhao-bohan
https://arxiv.org/abs/cs.DC/2505.09343
https://arxiv.org/abs/2505.09343
https://www.usenix.org/conference/osdi20/presentation/zhu
https://www.usenix.org/conference/osdi20/presentation/zhu
https://doi.org/10.1145/2785956.2787484

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 ECMP's Dilemma in AI Workloads
	2.2 Incompatibility between Packet-Level LB and Commodity RNICs
	2.3 Limitations of Existing Solutions

	3 Design
	3.1 Key Idea and Design Overview
	3.2 PSN-based Packet Spraying
	3.3 Identifying tPSN for NACK Validation
	3.4 NACK Compensation

	4 Memory Overhead Estimation
	5 Evaluation
	6 Discussion and Future Work
	7 Conclusion
	Acknowledgments
	References

