Improving Availability of Vertical Federated Learning:
Relaxing Inference on Non-overlapping Data

ZHENGHANG REN, LIU YANG, and KAl CHEN, Hong Kong University of Science
and Technology, China

Vertical Federated Learning (VFL) enables multiple parties to collaboratively train a machine learning model
over vertically distributed datasets without data privacy leakage. However, there is a limitation of the current
VEL solutions: current VFL models fail to conduct inference on non-overlapping samples during inference.
This limitation seriously damages the VFL model’s availability because, in practice, overlapping samples may
only take up a small portion of the whole data at each party which means a large part of inference tasks will
fail. In this article, we propose a novel VFL framework which enables federated inference on non-overlapping
data. Our framework regards the distributed features as privileged information which is available in the
training period but disappears during inference. We distill the knowledge of such privileged features and
transfer them to the parties’ local model which only processes local features. Furthermore, we adopt Oblivious
Transfer (OT) to preserve data ID privacy during training and inference. Empirically, we evaluate the model
on the real-world dataset collected from Criteo and Taobao. Besides, we also provide a security analysis of
the proposed framework.

CCS Concepts: » Security and privacy — Privacy-preserving protocols; « Computing methodologies
— Learning paradigms;

Additional Key Words and Phrases: Availability, privacy, vertical federated learning

ACM Reference format:

Zhenghang Ren, Liu Yang, and Kai Chen. 2022. Improving Availability of Vertical Federated Learning: Relax-
ing Inference on Non-overlapping Data. ACM Trans. Intell. Syst. Technol. 13, 4, Article 58 (June 2022), 20 pages.
https://doi.org/10.1145/3501817

1 INTRODUCTION

In Vertical Federated Learning (VFL) [7, 15, 20, 37], the model is trained across multiple parties
on vertically partitioned dataset without exposing the training data to other parties. Introduced
by [37] in 2019, with the increasing concerns about privacy and new legislation for privacy protec-
tion [34], VFL has drawn great attention both in academic and industry, especially for collaborative
training between companies. For example, one company may wish to improve the machine learn-
ing model’s accuracy with the help of the dataset from another company that has some other

This work is supported in part by the Key-Area Research and Development Program of Guangdong Province
(2021B0101400001) and the Hong Kong RGC TRS T41-603/20-R, GRF 16213621, GRF 16215119, and the Turing AI Com-
puting Cloud (TACC) [38].

Authors’ address: Z. Ren, L. Yang, and K. Chen, Hong Kong University of Science and Technology, China; emails:
zrenak@cse.ust.hk, lyangau@cse.ust.hk, kaichen@cse.ust.hk.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2022 Association for Computing Machinery.

2157-6904/2022/06-ART58 $15.00

https://doi.org/10.1145/3501817

ACM Transactions on Intelligent Systems and Technology, Vol. 13, No. 4, Article 58. Publication date: June 2022.

58

https://orcid.org/0000-0002-8779-4768
https://orcid.org/0000-0002-4393-1791
https://orcid.org/0000-0003-2587-6028
https://doi.org/10.1145/3501817
mailto:permissions@acm.org
https://doi.org/10.1145/3501817

58:2 Z.Ren et al.

3

features id features

N(WIN |-
A
ad (N[

Query

g - 0

[+—— [

4 4
W= o M

Output
Party A's Model Party B's Model

Fig. 1. Inference in VFL model. During inference, party A and party B find the features of the same instance
with id = 2. Then the features are entered into models for inference. The results are then aggregated together
as the final result.

features. In this case, the two companies need to train a machine learning model that processes
both features from its dataset and the other company’s dataset.

Training a machine learning model with outsourced features without privacy leakage is chal-
lenging both in theory and practice. Existing solutions mainly use cryptographic tools including
homomorphic encryption (HE) [6, 20, 27] and secure multi-party computation (MPL)[9].
After training is finished, the parties will publish their part of VFL models for online serving, and
the inference is conducted by multiple parties aggregating their inferences of the same sample. See
Figure 1 for a simple example.

However, the aggregation of the local model’s output during inference leads to two main prob-
lems: availability and data ID privacy [17].

— Availability: in the online-serving stage, the inference task may fail because the data sample
with the same ID may be absent in one of the parties and this problem is unique in VFL since
VFL involves collaboration during inference. See Figure 2 for an example.

— Data ID privacy: the inference task will expose the data ID to all parties, which may violate
some party’s privacy restrictions. The root of these problems is the heterogeneity of different
datasets that distribute among multiple parties.

To solve these problems, one of the naive solutions to ensure the success of inference is to
centralize all datasets to one server for online serving, but that will undoubtedly violate the privacy
restrictions. We may also adapt Federated Transfer Learning (FTL) [11, 21, 22, 37] to transfer
the knowledge from the passive party’s model to the active party’s model. However, the source
domain of FTL is limited to one party and thus are not feasible when we want to train a model
that combines both datasets from two parties.

To preserve privacy during inference, we may apply Oblivious Transfer (OT) [16] to send
all inference results without the sender knowing the data ID, which leads to tremendous cost in
computation and network. All these challenges can be summarized as follows:

— The balance between availability and privacy: centralizing all datasets for training and infer-
ence will ensure inference success but violate privacy, while decentralized private solutions
will not guarantee inference success.

ACM Transactions on Intelligent Systems and Technology, Vol. 13, No. 4, Article 58. Publication date: June 2022.

Improving Availability of Vertical Federated Learning 58:3

3
z

features features

alw|n|e
SIES N

Query

0

Id=3 Not Found

;
24 2

Party A’'s Model Party B’s Model

Fig. 2. VFL inference failure. The failure happens because the query for id in B’s database is failed.

— The balance between efficiency and privacy: the centralized solution is efficient for both
training and inference yet violates privacy. In contrast, decentralized private solutions in the
online-serving stage, which involves OT will greatly harm the efficiency during inference.

1.1 Motivation

The key observation to solve these problems is that the VFL model can supervise the “student
model” which only requires a local dataset for inference. However, the VFL model is still preferred
during inference because it is trained on a larger dataset across multiple parties. So the desired
solution will be conducting inference on the student model after the inference on the VFL model
has failed.

Based on the observation, we propose a VFL solution with high availability and data ID privacy.
First, we ensure inference success by training a student model with the party’s local data and soft
labels marked by the federated learning model. Second, we address the inference stage’s privacy
issue by constructing an oblivious inference protocol across all parties so that the sender remains
oblivious about the data ID. Moreover, we strike a balance between privacy and efficiency in obliv-
ious inference by constructing hash tables in all parties and moving the preparation of ciphertexts
to the offline stage so that the computation and transmission of ciphertexts are greatly reduced.
We tested the solution based on the VFL method proposed by [37], but our solution can also be
applied to other VFL solutions such as SecureML [25], which is based on secret sharing.

1.2 Contribution

Our contributions can be summarized as follow:

— We propose the training of the student model in VFL that ensures the success of inference by
conducting knowledge distillation from the VFL model to the party’s local model. When the
VFL model fails because of the absence of a data ID, the local model can still give inference.

— We propose a privacy-preserving inference protocol which preserves the privacy of data ID
when conducting inference task.

— The efficiency in online inference is improved by constructing a hash table and moving
encryption operations to the preparation stage.

ACM Transactions on Intelligent Systems and Technology, Vol. 13, No. 4, Article 58. Publication date: June 2022.

58:4 Z.Ren et al.

We tested our construction of the student model in federated learning algorithms in real-world
datasets. It shows that the student model’s performance has increased with the supervision of the
VFL model. Also, we analyzed the cost for oblivious inference in online serving. Compared to the
naive application of OT, our solution has a much lower cost during inference.

2 BACKGROUND

Federated learning was first proposed by Google in 2016 mainly to address the privacy concern
during the training of machine learning models in mobile devices such as cell phones [14, 23]. Since
then, many other scenarios have been added to federated learning, including federated learning
over large datasets owned by companies. In this case, each party has a relatively large dataset
and features compared to model devices. Usually, these features are different between parties, and
they are not allowed to exchange data because of privacy restrictions. So VFL is proposed to train
a model with outsourced features across multiple parties.

2.1 Vertical Federated Learning

Our work is suitable for all VFL algorithms, including [24, 25, 37]. To simplify the narration, we
build our algorithm based on Paillier homomorphic encryption [27]. VFL with HE classifies all
parties into three classes: passive party who has datasets that contain only features, active party
who has datasets that contain labels, and coordinator played by the federated learning platform
which is responsible for orchestrating the learning process and generating Paillier key pairs. Note
that there may be multiple passive parties in the training but only one active party. This article
assumes that there is only one passive party, and it’s easy to extend to multiple passive parties’
scenario. The training is conducted by multiple parties with the following steps:

— First, the datasets in active party and passive party are aligned to find the overlapping sam-
ples to construct the training set. The overlapping samples will be the training set in later
steps. See Figure 3 for an example.

— The federated learning platform (coordinator) generates a pair of Paillier keys and sends the
public key to the active party and passive party.

— The active party and the passive party start training. In every iteration, the passive party
loads a batch of data, calculates the output of its local model, encrypts the output, and sends
it to the active party.

— The active party gets the ciphertext of the passive party’s output and adds its own model’s
output on the same batch of data to get the encrypted output of the VFL model.

— The active and the passive party jointly calculate the encrypted loss and gradient and de-
crypted by the coordinator. Their local models are then updated with the gradients.

As we see in federated learning with HE in Figure 4, the local models only process local features.

2.2 Tussle of Privacy and Efficiency

In this section, we give a detailed explanation of the problems and challenges during the inference
of the VFL model.

Due to the distributed features and privacy restrictions in VFL, the VFL models are also vertically
distributed across multiple parties, so the inference task must be conducted by a series of queries
to the parties and aggregate the inference results. In practice, the parties may not want to expose
the data ID that is non-overlapping to other parties. Naturally, some parties (companies) have a
secret dataset that is not allowed to be exposed to other parties due to privacy restrictions. So the
problems in VFL can be summarized as the failure of inference and privacy leakage.

ACM Transactions on Intelligent Systems and Technology, Vol. 13, No. 4, Article 58. Publication date: June 2022.

Improving Availability of Vertical Federated Learning 58:5

Passive Party’s Active Party’s
dataset dataset
Overlapping
samples
Non-
overlapping
samples

Fig. 3. Data distribution in VFL assumption. The subset marked with orange and blue have overlapping data
IDs.

Same Local
batch Model Encryption
Passive = M = @wm
Party \ Encrypted
Encrypted _ l
L > Gradient
Addition Decent
Aive o] = M| = @
Party [[Data]
Fublic ' grad Gradient
Coordinator secret % Decryption

Fig. 4. Vertical federated learning based on homomorphic encrytion.

One of the naive solutions to improve the availability of the VFL model during inference is to
centralize all datasets from different parties to one server. When a new entry is created in the
dataset, all features from parties are also filled. In this case, no query failure will happen, and it is
equal to a model deployed in a single party. This solution requires a fully trusted and honest party,
but it is impossible to achieve this goal in the real world.

Besides the concerns about the inference success, the privacy of data ID in the inference should
also be considered. In practice, one party may not want other parties to know the data ID in its
dataset, especially for non-overlapping data. A trivial solution to this problem is to perform OT
when requesting inference results from other parties. However, the efficiency is harmed because
of computation and communication costs in OT, especially when the dataset grows very large.

3 PRELIMINARIES

In this section, we introduce several techniques that help to understand our solution, including
partially homomorphic encryption (PHE) and OT.

3.1 Partially Homomorphic Encryption

HE specifies a series of cryptosystems that support computing over encrypted data [1, 12, 13]. PHE
supports part of the operations on ciphertext. In this article, we use Paillier Homomorphic Encryp-
tion [27, 28], which supports add operation over ciphertexts. Although only part of operations is
supported, the training function can still be carried out because unsupported operations can be
done in plaintext locally and transmitted after encryption. In this article, we use the following
operations to construct our solution.

ACM Transactions on Intelligent Systems and Technology, Vol. 13, No. 4, Article 58. Publication date: June 2022.

58:6 Z.Ren et al.

— Key generation: (pk, sk) = Gen(keylength) which generates public key pk and private (se-
cret) key sk with specified key length.

— Encryption of plaintext x: Enc(x, pk) returns the encrypted plaintext x with public key pk.

— Decryption of ciphertext: Dec(c, sk) returns the decrypted ciphertext ¢ with private key sk.

In the rest of this article, we denote the encrypted text x as [[x]]. There are also some evaluations
supported by Paillier, which are listed below:

— Addition of ciphertext: Add([[x]], [[y]]) which gives the addition of two ciphertext [[x + y]]
and it is implemented by multiplying two ciphertexts.

— Multiplication of ciphertext and plaintext: Mul(x, [[y]]) which gives encrypted multiplica-
tion [[xy]] and this operation is implemented by the modular power [[y]]*.

With the above operations, we can conduct collaborative training with encrypted loss functions
and gradients. Take the vertical linear regression model for an example, with parameter 6, the loss
and gradient are calculated by a batch of samples:

A
Loss =)" (ypred)" + 500" M
batch
gradiocar = o * (Z xlocal(ypred -y)+ A@) . (2)
batch
In the above equations, y,,.q is encrypted, and even if the direct calculation of ylzjre 4 is not

supported, we can still let one party who has y,,cq in plaintext to calculate and encrypt it. And
the solution remains the same when calculating the local model’s gradient.

3.2 Oblivious Transfer

OT [16] is an important cryptographic primitive to construct the secure MPL programs and can
be applied in collaborative training. In OT protocol, we define a sender S and receiver R. At the
beginning of OT, the sender S has two messages mg, m; and the receiver has a choice bit r € 0, 1.
At the end of this protocol, the sender S learns nothing about r, and the receiver gets m, but learns
nothing about m;_,.

OT protocols have been extended into the choice from a set of elements [18]. That is, the basic
1-out-of-2 OT is extended to 1-out-of-n OT. In extended OT, the sender S has a set X with n ele-
ments while the receiver has a m-bit string t with m = [logn]. After OT completes, the receiver
gets the element indicated by its bit string as an index X[¢] but learns nothing about the other
elements. At the same time, the sender remains oblivious about the choice of the receiver. The
main operations of OT are denoted as:

— Sending operation Send(X, n) which send elements to the receiver with specified size n.
— Receiving operation Recv(choice, n) which get the element in the set indicated by choice.

A naive extension from basic 1-out-of-2 OT to 1-out-of-n OT is to conduct [logn] OT operations.
But some optimized protocols have been proposed to reduce the cost. Reference [2] has proposed
an OT protocol that performs only k basic OTs for 1-out-of-2 OT. Here, k is the secure parameters
that often take 128 or 256. Reference [18] has given the solution to perform m 1-out-of-n OTs
effectively for short secrets.

In the extended OT, the transfer is divided into two stages. During the first stage, the sender and
receiver conduct a backward OT to share information for later OT operations. In the second stage,
the two parties conduct real transfers, and the receiver gets the desired message. See Figure 5 for
illustration.

ACM Transactions on Intelligent Systems and Technology, Vol. 13, No. 4, Article 58. Publication date: June 2022.

Improving Availability of Vertical Federated Learning 58:7

Sender Receiver

X1
X2
X3 | 1-out-of-n

1 o [x]

Xn—-1
Xn

Fig. 5. 1-out-of-n OT. The sender has dataset X = x1,x2 . ..x, while the receiver holds choice index t. At the
end of protocol, the receiver gets x; and the sender learns nothing about t.

Fig. 6. Distribution of 2 parties’ datasets. D® = D9 U D is the training set for VFL model.

Table 1. List of Notations used in Training Section

Notation Description
A The weight for soft label from VFL model
L, Ly Loss function from real labels and soft labels
s fr Output of student model and teacher model
X3 Overlapping data in the active party
X° Overlapping data across two parties
Ws, W; Parameters for the teacher model and student model

In our solution, we use 1-out-of-n OT as a basic tool to protect data ID during inference so that
the choice (data ID) remains oblivious to the dataset owners. Moreover, we have made further opti-
mizations by moving the ciphertext generation to the preparation phase without privacy leakage.

4 METHODOLOGY

Before dividing into our solution, we first formalize the notations used in the training. Table 1
shows the notations used throughout training.

The training is divided into two stages. In the first stage, the VFL model is trained with the VFL
method. Then the VFL model will give encrypted soft labels on its training data to supervise the
student model in the second stage. In the second stage, the student model is trained with the loss
from both the real labels and soft labels marked by the VFL model in stage one. The training of
the VFL model remains the same as in Section 2.1.

Besides training the VFL model, we adapt knowledge distillation to transfer the federated
model’s knowledge to the party’s local model. Assume that we have a passive party and an active
party with dataset D4 and Dp, respectively. D° denotes the overlapping samples. D_Z =Dy —-D°

and D_% = Dp — D°. See Figure 6 for detail.

ACM Transactions on Intelligent Systems and Technology, Vol. 13, No. 4, Article 58. Publication date: June 2022.

58:8 Z.Ren et al.

In previous studies of machine learning, knowledge distillation is used to transform the
knowledge from a large model to a smaller one so that the inference is accelerated without loss
of accuracy. Two models are trained during knowledge distillation: a student model and a teacher
model. Typically the training is divided into two stages. The teacher model is trained in the first
stage. While in the second stage, the student model is trained supervised by the teacher model’s
output (called soft labels) as well as the labels of training data. While in VFL, we transfer the knowl-
edge from the VFL model to the active party’s student model, which processes the active party’s
local features. Since these two models process different features, the objective function is revised as
follow:

min(1 = 4) * L (y, s (X, W) + A% La(fe(X°, W), f5 (X, W5)).- ®3)

In the above function, the output of the student model is calculated with X%, which means that
the student model only processes the active party’s local features. On the other hand, the VFL
model’s output is calculated with X, which consists of both parties’ features.

4.1 VFL Model Training

Here in stage one, we regard the training of the VFL model as a black box, and the detail of the
VFL model training will not affect our solution. The parties train a VFL model collaboratively with
the protocol they have chosen. Here comes the first step of our solution: unlike previous VFL
solutions that end here, the VFL model is used to predict each data sample in the training set, and
the predictions are encrypted with the same public key during training. We call the predictions
soft labels and denote them as .

4.2 Student Model Training

The loss of student model is from real labels and the supervision of the VFL model. The soft labels
are produced by the VFL model using D°, so they may contain private information of the passive
party’s data. So, in addition to the knowledge transfer, we also need to preserve privacy during
training which is solved by applying PHE to the soft labels.

Similar to stage one, the training of the student model also involves three parties: passive party,
active party, and coordinator. On the one hand, at the beginning of training a student model, the
passive party first generates encrypted soft labels with the public key and sends them to the active
party. Then in each iteration of training, the active party calculates the encrypted loss and gradient,
adds some noise (mask) to the gradient, and sends them to the coordinator, who will decrypt the
loss and gradient and send the gradient back to the active party. Finally, the active party eliminates
(unmask) the noise from the gradient and updates the student model. The detailed algorithm of
the active party is shown in Algorithm 2.

In Algorithm 2, the active party mainly calculates encrypted loss and gradients and sends them
to the coordinator in every iteration. Note that the gradient is applied with a random mask so that
no private information leakage will happen at the coordinator. Also, all parties are expected to be
honest but curious, which means they stick to the protocol.

On the other hand, in every iteration, the coordinator decrypts Loss and mask_grad and checks
if the model has converged. The coordinator’s algorithm is shown in Algorithm 1.

In the Algorithm 1, the coordinator decrypts all losses and gradients sent by the active party
and sends them back for model updates. At the same time, the coordinator judges if the model has
converged and sends signals to all parties. Note that the gradients are masked after decrypted. So
the coordinator will not get any information from the decrypted gradient.

ACM Transactions on Intelligent Systems and Technology, Vol. 13, No. 4, Article 58. Publication date: June 2022.

alg:student-model-training
alg:student-model-training
alg:training_coordinator
alg:training_coordinator

Improving Availability of Vertical Federated Learning

58:9

ALGORITHM 1: Student Model Training in the Coordinator

Result: Student model W
Input: max iterations t, converge threshold c;
Initialize student model parameter Ws;
i=0, pred_loss = 0;
while i <t do
Recv [[Loss]] from active party;
Loss = Decrypt([[Loss]]);
Recv [[mask_grad]] from active party;
mask_grad = Decrypt([[Loss]]);
send mask_grad to active party;
if abs(Loss - pred_loss) < ¢ then
converged = true;
send converged to active party;
else
converged = false;
send converged to active party;
i=i+1;
end

end

ALGORITHM 2: Student Model Training in Active Party

Result: Student model W

Input: VFL model f; with parameter W;, hard label y, encrypted soft label [[§]], soft label squares

[[gz]], Xg, max iterations t, balance factor A;
Initialize student model parameter Ws;

i=0;

while i <t do

send [[Loss]] to Coordinator;
[[grad]] = Zess;
generate rand_mask;
[[mask_grad]] = [[mask_grad]] + rand_mask;
send [[mask_grad]] to Coordinator;
Recv mask_grad from Coordinator;
grad = mask_grad — rand_mask;
W = Wy — a * grad,
Recv converged from Coordinator;
if converged then

‘ Return Wg;
else

| i=i+1

end

end

[[Loss]] = A Ly (y. fs (Ws, XB) + (1 = 2) * Lg([[9]]. fs(Ws, X}));

ACM Transactions on Intelligent Systems and Technology, Vol. 13, No. 4, Article 58

. Publication date: June 2022.

58:10 Z. Ren et al.

Table 2. List of Notations in During Inference

Notation Description
(1) -or 1-out-of-n OT
N Bucket size
m Inference result or an indicator for failure
key Encryption/Decryption key
Enc(x, key) Encryption with plaintext x and key
Dec(c, key) Decryption with ciphertext ¢ and key
My ={my,mq,...,mn_1} Inference result in bucket k
l Size of ciphertext

4.3 ID Oblivious Inference

In this section, we describe our solution to protect the data ID during inference. We construct the
protocol based on the 1-out-of-n OT protocol. With carefully designed precomputations, we divide
our protocol into two phases: OT preparation phase and online phase. The preparation phase can
be conducted before all inference tasks, and the online phase is conducted in every inference. First,
we give an overview of our solution.

— We map all parties’ data samples into several buckets with size bucket size N and a predefined
hash function and give a unique address (bucket_id, of fset) to all data ID.

— The passive party performs inference on its data samples and puts the inference results into
the same location in the hash table as the data samples.

— When the active party needs to perform an inference task, it first calculates the bucket_id
and of fset, and then the active party gives the bucket id to the passive party, who will then
perform a 1-out-of-n OT with the active party. The active party plays as the receiver with
of fset, and the passive party plays as the sender with the inference results in the bucket.

At the end of the protocol, the active party gets the inference result given by the passive party,
and the passive party only knows the bucket that may contain the id. Note that the inference result
could be a message indicating failure because the passive party does not have the matching ID. In
that case, the active party has to conduct inference with the student model on the local dataset.

4.4 Security Definition and Notation

In this article, we use the semi-honest adversary model, also called passive adversary model. In this
assumption, the parties all stick to the protocol and will not compromise with each other. How-
ever, the parties will try to extract more information from the messages during protocol execution.
Compared to the stronger malicious adversary model, this assumption is weaker but highly effi-
cient. Besides, the passive adversary model is helpful for the cooperation between companies and
organizations.

Next, we give the notation we use in our description. Table 2 lists the notations used in our
article.

4.5 OT Preparation

The OT preparation of Oblivious Inference is composed of two operations: the construction of a
hash table and ciphertext generation.

Building the hash table. The two parties calculate the hash values of their data IDs. Here, we
choose a simple hash function H(x) = [x/N] where N is decided by the agreement of two parties.

ACM Transactions on Intelligent Systems and Technology, Vol. 13, No. 4, Article 58. Publication date: June 2022.

Improving Availability of Vertical Federated Learning 58:11

Dataset Hash Table Result Table
0 | o [Fail
X1 T 1 | Fai
X2 Bucket 0 M,
X3 N-1 | X, N1 [omx)
" Local
HE@) =1yl 0 | model o [Fail
1 X 1 m(x,)
Xn—1 |:> Bucket 1 L= > u I .
1
Xn
N-1] N-1 Fail
Random 0] 0 [Fail
numbers 1| 1| Fail
Bucket K
Samples in My
dataset
N-1 X, N1 [om(x,)

Fig. 7. OT Preparation—Hash table setup.

The collision in the hash table is solved by putting the collided elements into an array with index
of fset = xmod N.

At the begining, each party agrees with the number N. Then the parties put their elements into
the hash table with hash function H(x) = |x/N]. After that the parties fill their empty entries in
the buckets with random numbers. At the end of table building, each element x in the dataset is
put into mth entry at n bucket, where m = x mod N and n = | x/N]. See Figure 7 for example.

Note that the number of buckets may vary across parties because the largest bucket numbers
M = |maXyeparaser X/N| are different across parties. After the mapping completes, the passive
party performs inferences on elements in real samples in the hash table and gives FAIL indicator
on the random masks. The result, as shown in Figure 7, is the result hash table with K buckets
named My, My, ..., Mg.

Ciphertext Generation. In this operation, the active party and passive party exchange keys
and generate ciphertexts for later OTs. First, the passive party generates N X B X 2 keys and
the cryptography scheme could be AES or RSA or other preferred protocols. Here, B = [logN]
and the keys are given indexes (i, j, k) where i € {0,...,N —1},j € {0,...,B - 1},k € {0,1}.
Then for every bucket, the passive party performs recursive encryption on the elements based
on the binary representation of the elements’ indexes within the bucket. To be exact, if the bi-
nary representation of element’s index is {by, b1, . . ., briogn7-1}, then we encrypt it with the key
at (i,j,b;),i € {0,...,N = 1},j € {0,..., B — 1}. After the encryption, each element in the bucket
will have N corresponding ciphertexts, see Algorithm 3 for detail.

At the end of the ciphertext generation, the passive party has a set of encrypted buckets, and
the elements in the bucket are recursively encrypted with the keys that have the same binary
representation in array as the elements, see Figure 8 for illustration.

For the active party, it first generates a random permutation of {0,1,...,N — 1} as R = {r,
r1,...,rN-1}. Then for every element, r in R, the active party and the passive party conduct (;) -0T
for [logN times where the active party plays as the receiver, and the passive party plays as the
sender. The receiver uses the binary presentation of r;,i € {0 ... N—1} as the choice string, and the
passive party uses the i — th key matrix keys(i, :, :) as the message. At the end of the OT operations,
for r; € R, it has an array of keys that are keys(i, j, b;) where j is the j — th bit in i’s binary
representation.

To summarize the OT preparation for oblivious inference, the passive party generates a set of
keys and generates N encrypted buckets for each bucket of inference results. The active party first

ACM Transactions on Intelligent Systems and Technology, Vol. 13, No. 4, Article 58. Publication date: June 2022.

alg:element_encryption

58:12 Z. Ren et al.

0 Fail 0 Co.0 0 C1,0 0 CN-1,0
1 Fail 1 Coa 1 C14q 1 Cn_11
keys (i, j, k)
N1 [om(xy) N1 | con—s N1 g N-1 [eyoin-g
Result Bucket Encrypted by Encrypted by Encrypted by
M, keys (0, :, 3) keys (1,:,:) keys (N-1,)
Ceo Ce1 Cen-1

Fig. 8. Encrypted matrix for result bucket M;.

ALGORITHM 3: Generate Encrypted elements for x;
Result: Encrypted array of elements C = {cp,c1,...,cN-1}
Input: Element x;, keys and bucket size N;
i=0;
set b as the binary representation of i;
while i < N do

tmp = x; j=0;

while j < [logN] do

tmp = Enc(keys(i, j, bj), tmp);

j+=1
end
ci = tmp;

i+=1;

end

generates a permutation of {0,1,..., N — 1} as R. Then it conducts OT to get an array of keys for
every element in R. We will use these data for queries in the online stage.

4.6 Online Phase

The online stage starts when the active party wants to conduct an inference task with data id = x.
At the beginning, the active party calculates the bucket index and offset with the hash function
bkt_id = [x/N7] and of fset = x mod N. Then, the active party find the index t of random permu-
tation R so that R[t] = of fset. Next, the active party sends bkt_id and t to the passive party and
the passive party sends Cpy; iq.; to the active party. At the end of this operation, the active party
gets a encrypted bucket.

The next step is decryption, with R[] and its corresponding array of keys {ko, ki, ..., kfiogn1},
we perform decryption recursively with the array of keys. At the end of decryption, only one
element (x,7fse:)in the encrypted bucket is decrypted successfully because other elements in the
bucket are encrypted with different combinations of keys. See Figure 9 for illustration.

We give the following assertion and proof to show that only x,¢fse; is correctly decrypted, and
the passive party cannot learn anything about the value of of fset.

THEOREM 4.1. In the online stage, xoffser is correctly decrypted and x;,t! = of fset cannot be
decrypted. Moreover, the passive party learns nothing about of f'set.

PROOF. First, xorfse: in encrypted bucket Cp; jq,; is encrypted with the unique combination
of keys keys(t, j, bj) where j goes from 0 to N and b; is the j — th bit of binary representation of
of fset. So only xoffses is correctly decrypted by the active party.

ACM Transactions on Intelligent Systems and Technology, Vol. 13, No. 4, Article 58. Publication date: June 2022.

Improving Availability of Vertical Federated Learning 58:13

Passive Party Active Party
u=|x/N|
tmp = x mod N
v = R.index(tmp)

Request (u, v)

Encrypted Decrypt
Buckets | ——» Cuv keys (u, k, bi)
' —_—
Cij Cup

Fig. 9. The passive party sends the encrypted bucket with index u,v to the active party for decryption.

Second, the passive party only knows the index of of f'set in the active party’s random permuta-
tion. Because of the OT operation in the preparation phase, the passive party learns nothing about
the combination of keys that the active party has chosen. O

The last step for the active party is to check the result of inference. If the inference is successful,
then the inference from the passive party is aggregated to produce the VFL model’s inference.
Otherwise, if the result is an indicator for failure, the active party must conduct inference on the
student model.

5 EVALUATION

This section describes our experiments showing the efficiency and performance of the student
model. We conduct our experiments on two datasets: the click-through dataset collected from
Criteo [8] and Taobao [31]. The results of the experiments showed the performance of the student
model under different portions of the overlapping dataset, and also showed the limitations of our
method.

5.1 Experiment Setup

First, we briefly describe the datasets. The first dataset is collected from Criteo. It contains a label
indicating whether the advertisement is clicked by the user and features of the advertisements
displayed in several days. The second dataset is collected from Taobao, it records whether the
product displayed in the webpage is clicked by the user, together with the feature of products and
users.

Note that these two datasets have great potential in VFL applications because the records of
advertisements are naturally distributed among multiple websites and multiple companies. These
distributed datasets may contain different features and cannot be directly shared because of privacy
restrictions. For example, Taobao dataset consists of three data sheets: the feature of the products,
the feature of users, and the click-through records. With the restriction of privacy, one can get the
click-through dataset and the features of product but cannot get the dataset of users. In this case
VFL is needed.

Then we give a short introduction to the experimental platform. We construct and conduct
experiments on FATE [35] which supports VFL on two parties. After specifying the dataset, FATE
will perform private intersection and VFL. We built our solution as an plugin for VFL model in
FATE. As we have defined in Equation (3), when A equals zero, the model is equivalent to the local
model.

In our experiment, the training set is vertically partitioned into two datasets: the click-through
dataset and the user dataset. A logistic regression model is trained on these two datasets vertically.
We also consider different portions of data samples overlapping between two parties.

ACM Transactions on Intelligent Systems and Technology, Vol. 13, No. 4, Article 58. Publication date: June 2022.

58:14 Z. Ren et al.

Table 3. Student Model’s AUC under A = 0.5 and Different
Portions of Overlapping Samples

a 0.1 0.25 0.5 0.75 0.9
Criteo local model 0.6642 | 0.6642 | 0.6642 | 0.6642 | 0.6642
Criteo student model | 0.7234 | 0.7304 | 0.7341 | 0.7351 | 0.7349
Criteo VFL model 0.7289 | 0.7476 | 0.7534 | 0.7536 | 0.7603
Taobao local model 0.5109 | 0.5109 | 0.5109 | 0.5109 | 0.5109
Taobao student model | 0.5104 | 0.5136 | 0.5274 | 0.5448 | 0.5439
Taobao VFL model 0.5744 | 0.5965 | 0.6308 | 0.6405 | 0.6509

The bolded entries in the table show the performance of student model which surpasses
local model in most cases.

To implement our solution with the data distribution illustrated in Figure 6, first the dataset
is loaded into FATE data table on two parties, respectively. Then the intersection dataset is
calculated by FATE with secure intersection [19]. The intersection dataset is then fed into VFL
training module. A student model will then be trained with the active party’s local dataset and
the supervision of VFL model based on target function 3. We have tried different values of A and
also considered different portions of overlapping samples in VFL training.

Note that during the training of the student model, we generate batches of training data where
half of the data samples are from the overlapping dataset with soft labels, and the other half of
data samples do not have soft labels. This ensures that we conduct an equal number of iterations
of training over different types of data samples.

5.2 Student Model Performance

We evaluate the performance of models with AUC (area under the ROC curve) which is widely used
in the classification problem. The closer AUC is near to 1, the better the model’s performance is.

Denote the portion of overlapping samples in the training set as «. First, we evaluate and com-
pare the AUC of the VFL model, local model, and non-federated model (local model). The VFL
model is trained collaboratively with two parties’ datasets; the local model is trained on local
dataset only; the student model is trained on local dataset together with the soft labels. Then the
experiments with combination of several different values of A in Equation (3) and different val-
ues « are conducted to measure the effect of supervision by the VFL model. We trained a Logistic
Regression model on the dataset to predict the “clicked” label. As shown in Table 3, the student
model’s performance surpassed the local model’s performance.

From the Table 3, we observed that our method performs good on Criteo dataset but gives
less improvement on Taobao dataset. This is mainly because the click-through dataset in Taobao
has few features relevent to the labels. This reminds us that the supervision of the VFL model
has no guarantee in performance because the features in local dataset still dominate the model’s
performance. In this case, we still need to conduct collaborative inference.

The choice of A depends on the distribution of features. In our experiment, we divide features
with equal possibility so that the features in two parties are almost equally important. In Table 3,
we set A = 0.5 so that the loss from real labels and loss from VFL models are equally important. In
practice, the choice of A should be larger if there is more important features in the other party’s
dataset, which can be decided by the improvement of AUC in VFL model compared to local model.

In Figure 10, the Criteo student model’s AUC with different « and A are shown. We observed that:

— The AUC of the student model increases with the portion of overlapping samples.
— The AUC of the student model increases as A increases, which is the weight of the loss with
soft label marked by the VFL model.

ACM Transactions on Intelligent Systems and Technology, Vol. 13, No. 4, Article 58. Publication date: June 2022.

Improving Availability of Vertical Federated Learning 58:15

Student Model's Performance

0.74 1
variable
0.721 - a=0.1
O -4~ 0=0.25
2070
< Y -= 0=0.5
—+ 0a=0.75
0.68 1 & 0=0.9
0.00 0.25 0.50 0.75 1.00

A

Fig. 10. Criteo student model’s AUC under different overlapping portions and A.

Table 4. Comparison of the Cost between Oblivious Inference and Naive OT

OT Preparation Online Phase
Method Comp. Comm. Comp. Comm. Rounds
(MY) -or - - 2[logMN7 + MN | 2I[logMN7 + IMN | 2
() -or - - 2[logN1 + N 21[logN7 + IN 2
Oblivious Inference | N?M[logNT | INTlogN] [logN1 N =1 1

The AUC of the student model increases as the portion of overlapping samples increases. This
is because, on the one hand, the more overlapping data, the more soft labels produced by the VFL
model to supervise the student model’s training. On the other hand, when the overlapping sample
increases, the VFL model also gets more training data, thus gives better performance. Although
the AUC of student model is less than the AUC of VFL model, the improvement is verified.

In the figure, it can also be concluded that AUC also increases as A increases. This can be ex-
plained by how the soft labels influence the training of the student model. The soft labels produced
by VFL models are the probabilities that the samples are predicted to be 1 (clicked). So compared
to real labels, which take only 0 and 1, the soft labels give continuous target to fit the model. More-
over, when A reaches 1, the only targets are soft labels. Note that when A = 0, the model is trained
without soft labels, and it is equal to training on the local dataset. However, this does not necessary
mean that increasing A leads to a better student model, since soft labels are not always the same
as real labels.

5.3 Oblivious Inference Cost

To compare the cost of our solution to the cost of naive (’11) — OT, we give the following table to
show the optimization, assuming that the OT is implemented by Bellare-Micali OT [5]. See Table 4
for statistics.

In the table, we define the number of the bucket as M, and every bucket has N elements. 1 is the
length of the ciphertext. We compare our method with two other implementations: the (MIN) -0T

and (IY) — OT solution with bucket_id in plaintext.
In the naive (MIN) — OT solution, the choice of active party is completely hidden to the passive

party. So to privately transfer the inference result, the passive party conducts (MIN) — OT with the
active party where the active party holds the data ID and the passive party holds M X N inference

ACM Transactions on Intelligent Systems and Technology, Vol. 13, No. 4, Article 58. Publication date: June 2022.

58:16 Z. Ren et al.

results. This method has the strongest privacy for data ID but needs to transfer tremendous
amounts of data in every inference task. The (A’IIN) — OT is implemented by performing (f) -0rT
for [logN1 times. Note that these OT operations can be executed in parallel, so only two rounds
are counted (OT and sending ciphertext).

On the other hand, if we chose to expose bucket_id to the passive party and conduct a (I;]) -0T

which is composed of [logNT] times of (f) —OT, we will get much fewer data to transfer during the
online stage. But still, we need to conduct OT during online inference. For one OT operation, based
on the implementation of Bellare-Micali, the cost of communication is dependent on the number
of ciphertexts, which is the total length of keys plus the length of encrypted buckets. Since, we
have N elements in each bucket, the total cost of communication is 2/[logN7] + IN.

In our solution, based on the observation that the keys generation, encryption, and OT opera-
tions on keys can be done before the inference begins, those operations are moved to OT Prepara-
tion. Though we need to compute and store N times more ciphertexts than ('f) — OT solution, the
computation and communication cost of the online phase is greatly reduced. Note that the data
ID is still unknown to the passive party in this solution, but the passive party knows whether the
data IDs in different inference tasks are the same based on the index of the requested encrypted
bucket. The trade-off between privacy and efficiency is worthy given the acceleration.

6 RELATED WORK
6.1 Feature Distributed Machine Learning

Feature Distributed Machine Learning (FDML) defines the training of a machine learning
model on a dataset whose features are distributed among many clients. FDML is a special case
of distributed machine learning. In previous studies of FDML, the messages between parties are
plaintext, so privacy is at risk during training.

Compared to data-parallel distributed machine learning, which aggregates the gradients in the
parameter server during training, FDML tries to learn embedding on the client, and with the em-
bedding transmitted to the central server [15], a global model is trained on the central server with
the embedding as the input. The main difference between FDML and VFL lies in privacy protection.
In VFL, the dataset is private for the clients, so the messages exchanged during training shall not
expose private information to other parties. While in FDML, although the parties are not allowed
to centralize their dataset to a single server, they still know the data ID of other parties, and the
embedding is not encrypted. Generally, VFL can be regarded as a FDML with more strict privacy
restrictions.

Other studies of VFL also focus on the architecture design during training. VAFL [7] discussed
the asynchronous pattern of training in VFL. VAFL adapted the parameter server architecture for
VFL training, and the local model of every party is updated multiple times before it is pushed to the
parameter server for asynchronous updates. Different from our work which focuses on availability
and privacy, VAFL focuses on a new training paradigm which reduces the communication cost
during training.

6.2 Federated Transfer Learning

FTL defines the problem of privately training a model with a relatively small dataset or a small
number of labels in the target [21, 30]. Basically, FTL is the transfer learning in federated set-
ting [29]. FTL trains the model by transferring the knowledge from a different but related model
to the target model. The performance of the model trained in FTL is closely related to how rele-
vant the two domains are. The studies of FTL include the FTL framework, and FTL applications in
healthcare, finances [30], and so on.

ACM Transactions on Intelligent Systems and Technology, Vol. 13, No. 4, Article 58. Publication date: June 2022.

Improving Availability of Vertical Federated Learning 58:17

Both FTL and our framework focus on training a machine learning model collaboratively with
few intersection labels. The main difference between FTL and our framework is that FTL transfers
the knowledge from the source domain to the target domain and the two domains reside on differ-
ent parties, while our framework focuses on transferring knowledge from VFL model to the active
party’s local model. And our experiments have shown that transferring from VFL model is more
effective to improve the performance of the active party’s local model.

6.3 Privileged Features Distillation

Our solution is mainly inspired by knowledge distillation and privileged feature distillation in
machine learning. Knowledge distillation is known as a solution to transfer the knowledge from a
large model (called teacher model) to a smaller one (called student model). Generally, this technique
works by supervising the learning process of the student model by the teacher model.

Also, there have been studies of privileged information that defines the information that is avail-
able only in the training stage but unavailable in the test or inference stage. Reference [33] gives the
paradigm for learning with privileged information. Moreover, some studies give new paradigms
for generating new features or information of the sample, such as [32]. Similarly, some studies of
privileged features involve the distillation from the model trained with privileged features to the
model without privileged features [36].

6.4 OT in Machine Learning

OT allows the sender to transmit one of its elements to the receiver so that the sender remains
oblivious about the choice of receiver and the receiver learns just the element it chose. OT has
been an important tool for constructing secure protocols, and it is very useful for constructing
privacy-preserving machine learning protocols.

Many studies focus on improving the efficiency of OT protocols, and our solution is also inspired
by OT with precomputation [3]. OT extension [2, 4, 16] is proposed, which performs base OTs
with a constant number of rounds so that the cost in computation and transmission is reduced.
Moreover, some special conditions in OT are also exploited for optimization like correlated OT
(C-0T) [2] and random OT (R-OT) [26].

OT has been used in the construction of privacy-preserving machine learning protocols. ABY
[10] and ABY3 [24] supports training machine learning models on arbitrarily partitioned datasets
using secret sharing and OT.

7 SUMMARY

Current VFL models cannot guarantee the success of inference in the online stage because some
parties’ datasets may not have the data instance with specified data ID. Also, sending the data ID
to all parties may violate privacy constraints. Our work proposes a new training and inference
algorithm in VFL that improves availability and privacy. This idea is inspired by knowledge distil-
lation from a large model to a smaller model in traditional machine learning. Unlike knowledge
distillation in machine learning which relies on the student model’s inference, the inference is first
conducted on the VFL model (teacher model), and when it fails because of an absence of data ID
in some party, the inference will be carried out by the student model. Moreover, we protect the
information about data ID during inference by performing OT across multiple parties. We also im-
prove the efficiency by constructing a hash table for queries and moving the encryption operation
to the preparation stage.

Our experiments on the Crieto CTR dataset show that the knowledge transfer from the federated
model to the student model will improve the performance on testing datasets. This is because the
federated model got more knowledge during training with extra features from other parties. With

ACM Transactions on Intelligent Systems and Technology, Vol. 13, No. 4, Article 58. Publication date: June 2022.

58:18 Z. Ren et al.

the federated model’s supervision, the local model tends to give inferences close to the VFL model
and thus performs better than training on local datasets only.

8 DISCUSSION AND FUTURE WORK
8.1 Additional Overhead

Our framework introduced an extra step to ensure the success of inference which may lead to
additional latency in inference task. However, the overhead can be relieved by paralleling the
inference on VFL model and student model. In practice, the inference on VFL model and student
model can be conducted simultaneously. Since conducting inference on VFL model gives more
latency because of extra communication and computation, the total inference latency is almost
equal to conducting inference on VFL model only.

8.2 Other VFL Solutions

In this article, we build our solution based on Paillier homomorphic encryption, which supports
addition operation on ciphertexts. But there are other protocols that can be applied in federated
learning, such as secure MPC, fully homomorphic encryption (FHE), and Trusted Execution
Environment (TEE). The main difference between these solutions lies in cryptographic tools and
security definition. Here, we illustrate that our solution is suitable for all existing VFL protocols.

First, our framework does not relies on certain cryptographic tools. The only feature we used
in the protocol is additive homomorphic, which is also supported by other VFL solutions. MPC
supports addition on ciphertexts with arithmetic secret sharing; TEE supports addition on secret
values with hardware enclave; and FHE supports addition on ciphertexts. Our framework can be
implemented on all these backends since they all support addition on secret values.

Second, the only assumptions of our framework is the feature distribution of dataset. We assume
that the active party has at least one feature for conducting inference locally. This assumption will
not break the framework if we change the cryptographic backend to MPC, FHE, or TEE.

REFERENCES

[1] Frederik Armknecht, Colin Boyd, Christopher Carr, Kristian Gjosteen, Angela Jaschke, Christian A. Reuter, and Martin

Strand. 2015. A Guide to Fully Homomorphic Encryption. Cryptology ePrint Archive Report 2015/1192. https://eprint.

iacr.org/2015/1192.

Gilad Asharov, Yehuda Lindell, Thomas Schneider, and Michael Zohner. 2013. More efficient oblivious transfer and

extensions for faster secure computation. In Proceedings of the 2013 ACM SIGSAC Conference on Computer and Com-

munications Security. Association for Computing Machinery, New York, NY, 535-548. DOI: https://doi.org/10.1145/

2508859.2516738

[3] Donald Beaver. 1995. Precomputing oblivious transfer. In Proceedings of the Advances in Cryptology, Don Coppersmith
(Ed.). Springer Berlin, Berlin, 97-109.

[4] Donald Beaver. 1996. Correlated pseudorandomness and the complexity of private computations. In Proceedings of the

28th Annual ACM Symposium on Theory of Computing. Association for Computing Machinery, New York, NY, 479-488.

DOI:https://doi.org/10.1145/237814.237996

Mihir Bellare and Silvio Micali. 1990. Non-interactive oblivious transfer and applications. In Proceedings of the Ad-

vances in Cryptology, Gilles Brassard (Ed.). Springer New York, New York, 547-557.

[6] Di Chai, Leye Wang, Kai Chen, and Qiang Yang. 2021. Secure federated matrix factorization. IEEE Intelligent Systems
36, 5(2021), 11-20. DOI : https://doi.org/10.1109/MIS.2020.3014880

[7] Tianyi Chen, Xiao Jin, Yuejiao Sun, and Wotao Yin. 2020. VAFL: a Method of Vertical Asynchronous Federated Learn-
ing. arXiv:2007.06081. Retrieved from https://arxiv.org/abs/2007.06081.

[8] Criteo Challenge. 2014. Criteo Display Advertising Challenge. https://www.kaggle.com/c/criteo-display-ad-
challenge/data. Access on 20 Feb. 2021.

[9] Ivan Damgard, Marcel Keller, Enrique Larraia, Valerio Pastro, Peter Scholl, and Nigel P. Smart. 2013. Practical covertly
secure MPC for dishonest majority — or: Breaking the SPDZ limits. In Proceedings of the Computer Security, Jason
Crampton, Sushil Jajodia, and Keith Mayes (Eds.). Springer Berlin, Berlin, 1-18.

[2

—

(5

—_

ACM Transactions on Intelligent Systems and Technology, Vol. 13, No. 4, Article 58. Publication date: June 2022.

https://eprint.iacr.org/2015/1192
https://doi.org/10.1145/2508859.2516738
https://doi.org/10.1145/237814.237996
https://doi.org/10.1109/MIS.2020.3014880
http://arxiv.org/abs/2007.06081
https://arxiv.org/abs/2007.06081
https://www.kaggle.com/c/criteo-display-ad-challenge/data

Improving Availability of Vertical Federated Learning 58:19

[10] Daniel Demmler, Thomas Schneider, and Michael Zohner. 2015. ABY-A framework for efficient mixed-protocol secure
two-party computation. In Proceedings of the NDSS.

[11] Dashan Gao, Yang Liu, Anbu Huang, Ce Ju, Han Yu, and Qiang Yang. 2019. Privacy-preserving heterogeneous fed-
erated transfer learning. In Proceedings of the 2019 IEEE International Conference on Big Data. 2552-2559. DOI : https:
//doi.org/10.1109/BigData47090.2019.9005992

[12] Craig Gentry. 2009. Fully homomorphic encryption using ideal lattices. In Proceedings of the 41st Annual ACM
Symposium on Theory of Computing. Association for Computing Machinery, New York, NY, 169-178. DOI: https:
//doi.org/10.1145/1536414.1536440

[13] Chun Sheng Gu. 2015. Fully homomorphic encryption from approximate ideal lattices. Ruan Jian Xue Bao/Journal of
Software 26, 10 (2015), 2696—-2719. DOI : https://doi.org/10.13328/j.cnki.jos.004808

[14] Andrew Hard, Chloé M. Kiddon, Daniel Ramage, Francoise Beaufays, Hubert Eichner, Kanishka Rao, Rajiv Mathews,
and Sean Augenstein. 2018. Federated Learning for Mobile Keyboard Prediction. https://doi.org/10.48550/ARXIV.1811.
03604

[15] Yaochen Hu, Di Niu, Jianming Yang, and Shengping Zhou. 2018. FDML: A collaborative machine learning framework
for distributed features. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining (2018), 2232-2240.

[16] Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. 2003. Extending oblivious transfers efficiently. In Proceedings
of the Advances in Cryptology, Dan Boneh (Ed.). Springer Berlin, Berlin, 145-161.

[17] Peter Kairouz, H. Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin Bhagoji, Kallista
Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, and D’Oliveira RG. 2019. Advances and open prob-
lems in federated learning. arXiv:1912.04977. Retrieved from https://arxiv.org/abs/1912.04977.

[18] Vladimir Kolesnikov and Ranjit Kumaresan. 2013. Improved ot extension for transferring short secrets. In Proceedings
of the Advances in Cryptology, Ran Canetti and Juan A. Garay (Eds.). Springer Berlin, Berlin, 54-70.

[19] Gang Liang and Sudarshan S. Chawathe. 2004. Privacy-preserving inter-database operations. In Proceedings of the
Intelligence and Security Informatics, Hsinchun Chen, Reagan Moore, Daniel D. Zeng, and John Leavitt (Eds.). Springer
Berlin, Berlin, 66-82.

[20] Yang Liu, Yan Kang, Xin wei Zhang, Liping Li, Yong Cheng, Tianjian Chen, M. Hong, and Q. Yang. 2019. A communi-
cation efficient collaborative learning framework for distributed features. https://doi.org/10.48550/ARXIV.1912.11187

[21] Sudipan Saha and Tahir Ahmad. 2020. Federated Transfer Learning: concept and applications. https://doi.org/10.48550/
ARXIV.2010.15561

[22] Yang Liu, Yan Kang, Chaoping Xing, Tianjian Chen, and Qiang Yang. 2020. A secure federated transfer learning

framework. IEEE Intelligent Systems 35, 4 (2020), 70-82. DOI : https://doi.org/10.1109/MIS.2020.2988525

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas. 2017. Communication-

efficient learning of deep networks from decentralized data. In Proceedings of the 20th International Conference on

Artificial Intelligence and Statistics, Aarti Singh and Jerry Zhu (Eds.). PMLR, Fort Lauderdale, FL, 1273-1282. Retrieved

from http://proceedings.mlr.press/v54/memahani7a.html.

Payman Mohassel and Peter Rindal. 2018. ABY®: A mixed protocol framework for machine learning. In Proceedings of

the 2018 ACM SIGSAC Conference on Computer and Communications Security. Association for Computing Machinery,

New York, NY, 35-52. DOI: https://doi.org/10.1145/3243734.3243760

[25] Payman Mohassel and Yupeng Zhang. 2017. SecureML: A system for scalable privacy-preserving machine learning.
In Proceedings of the 2017 IEEE Symposium on Security and Privacy, 19-38. DOI : https://doi.org/10.1109/SP.2017.12

[26] Jesper Buus Nielsen, Peter Sebastian Nordholt, Claudio Orlandi, and Sai Sheshank Burra. 2012. A new approach to

practical active-secure two-party computation. In Proceedings of the Advances in Cryptology, Reihaneh Safavi-Naini

and Ran Canetti (Eds.). Springer Berlin, Berlin, 681-700.

Pascal Paillier. 1999. Public-key cryptosystems based on composite degree residuosity classes. In Proceedings of the

Advances in Cryptology, Jacques Stern (Ed.). Springer Berlin, Berlin, 223-238.

Pascal Paillier and David Pointcheval. 1999. Efficient public-key cryptosystems provably secure against active adver-

saries. In Proceedings of the Advances in Cryptology, Kwok-Yan Lam, Eiji Okamoto, and Chaoping Xing (Eds.). Springer

Berlin, Berlin, 165-179.

Sinno Jialin Pan and Qiang Yang. 2009. A survey on transfer learning. IEEE Transactions on Knowledge and Data

Engineering 22, 10 (2009), 1345-1359.

Shreya Sharma, Chaoping Xing, Yang Liu, and Yan Kang. 2019. Secure and efficient federated transfer learning. In

Proceedings of the 2019 IEEE International Conference on Big Data. IEEE, 2569-2576.

Taobao. 2018. Taobao Display/Click Dataset. https://tianchi.aliyun.com/dataset/dataDetail?datald=56, Access on 23

Feb. 2021.

Vladimir Vapnik and Rauf Izmailov. 2015. Learning using privileged information: Similarity control and knowledge

transfer. Journal of Machine Learning Research 16, 1 (2015), 2023-2049.

[23

=

[24

flan)

[27

—

[28

[t

[29

—

(30

-

[31

—

(32

—

ACM Transactions on Intelligent Systems and Technology, Vol. 13, No. 4, Article 58. Publication date: June 2022.

https://doi.org/10.1109/BigData47090.2019.9005992
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.13328/j.cnki.jos.004808
https://doi.org/10.48550/ARXIV.1811.03604
https://arxiv.org/abs/1912.04977
https://doi.org/10.48550/ARXIV.1912.11187
https://doi.org/10.48550/ARXIV.2010.15561
https://doi.org/10.1109/MIS.2020.2988525
http://proceedings.mlr.press/v54/mcmahan17a.html
https://doi.org/10.1145/3243734.3243760
https://doi.org/10.1109/SP.2017.12
https://tianchi.aliyun.com/dataset/dataDetail?dataId=56

58:20 Z. Ren et al.

[33] Vladimir Vapnik and Akshay Vashist. 2009. A new learning paradigm: Learning using privileged information. Neural
Networks 22, 5 (2009), 544-557. DOI : https://doi.org/10.1016/j.neunet.2009.06.042

[34] Paul Voigt and Axel Von dem Bussche. 2017. The eu general data protection regulation (gdpr). A Practical Guide, 1st
Ed., Cham: Springer International Publishing 10, 3152676 (2017), 10-55.

[35] Webank. 2019. FATE: An Industrial Grade Federated Learning Framework. Retrieved from https://github.com/
Federated AI/FATE, Access on 20 Feb. 2021.

[36] Chen Xu, Quan Li, Junfeng Ge, Jinyang Gao, Xiaoyong Yang, Changhua Pei, Fei Sun, Jian Wu, Hanxiao Sun, and
Wenwu Ou. 2020. Privileged features distillation at taobao recommendations. In Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining. Association for Computing Machinery, New York,
NY, 2590-2598. DOI : https://doi.org/10.1145/3394486.3403309

[37] Qiang Yang, Yang Liu, Tianjian Chen, and Yongxin Tong. 2019. Federated machine learning: Concept and applications.
arXiv 10, 2 (2019), 1-19.

[38] Kaiqiang Xu, Xinchen Wan, Hao Wang, Zhenghang Ren, Xudong Liao, Decang Sun, Chaoliang Zeng, and Kai Chen.
2021. TACC: A Full-stack Cloud Computing Infrastructure for Machine Learning Tasks. https://doi.org/10.48550/arXiv.
2110.01556

Received April 2021; revised August 2021; accepted November 2021

ACM Transactions on Intelligent Systems and Technology, Vol. 13, No. 4, Article 58. Publication date: June 2022.

https://doi.org/10.1016/j.neunet.2009.06.042
https://github.com/FederatedAI/FATE
https://doi.org/10.1145/3394486.3403309
https://doi.org/10.48550/arXiv.2110.01556

