
Computer Networks 67 (2014) 141–153
Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier .com/ locate/comnet
VirtualKnotter: Online virtual machine shuffling for congestion
resolving in virtualized datacenter q
http://dx.doi.org/10.1016/j.comnet.2014.03.025
1389-1286/� 2014 Elsevier B.V. All rights reserved.

q A shorter version of this paper has been published in the IEEE
ICDCS’2012.
⇑ Corresponding author. Tel.: +86 10 62283412.

E-mail addresses: zoush@bupt.edu.cn (S. Zou), xwe334@eecs.
northwestern.edu (X. Wen), kaichen@cse.ust.hk (K. Chen),
huangshan19j@gmail.com (S. Huang), ychen@northwestern.edu
(Y. Chen), liuyq7809@gmail.com (Y. Liu), xy12180@gmail.com (Y. Xia),
huc@ieee.org (C. Hu).
Shihong Zou a,⇑, Xitao Wen b, Kai Chen c, Shan Huang a, Yan Chen b, Yongqiang Liu d, Yong Xia d,
Chengchen Hu e

a State Key Laboratory of Networking and Switching, Beijing University of Posts and Telecommunications, Beijing 100876, China
b Northwestern University, Evanston, IL 60208, USA
c Hong Kong University of Science and Technology, Hong Kong, China
d NEC Labs China, Beijing 100084, China
e Xi’an Jiaotong University, Xi’an 710049, China

a r t i c l e i n f o a b s t r a c t
Article history:
Received 20 December 2013
Received in revised form 26 February 2014
Accepted 31 March 2014
Available online 5 April 2014

Keywords:
Link congestion
VM placement
VM migration
Datacenter
Our measurements on production datacenter traffic together with recently-reported
results (Kandula et al.) [1] suggest that datacenter networks suffer from long-lived conges-
tion caused by core network oversubscription and unbalanced workload placement. In con-
trast to traditional traffic engineering approaches that optimize flow routing, in this paper,
we explore the opportunity to address the continuous congestion via optimizing VM place-
ment in virtualized datacenters. To this end, we present VirtualKnotter to reduce conges-
tion with controllable VM migration traffic as well as low migration time, which includes
an online VM placement algorithm and an efficient VM migration scheduling algorithm.
Our evaluation with both real and synthetic traffic patterns shows that VirtualKnotter per-
forms close to the baseline algorithm in terms of link unitization, with only 5–10% migra-
tion traffic of the baseline algorithm. Furthermore, VirtualKnotter decreases link
congestion time by 53% for the production datacenter traffic.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction oversubscription at its aggregation and core layers. How-
Driven by technology advances and economies of scale,
datacenters are becoming the mainstream hosting plat-
form for a variety of infrastructure services (such as
MapReduce [2], GFS [3] and Dryad [4]) and data-intensive
applications (such as online social networking, searching,
scientific computing). Today’s datacenters usually form a
multi-root multi-level (typically 3 tiers) tree with
ever, due to the massive nature of communication pattern
in the datacenter network, it frequently exhibits high link
utilization and even congestion at aggregation or core lay-
ers [1]. While high resource utilization is favorable for
datacenter owners, network congestion can cause harmful
queuing delay and packet loss, and thus affects the net-
work throughput. These consequences could significantly
degrade application performance and user experience.
Therefore, addressing the congestion problem in datacen-
ters is a meaningful goal and is the focus of this paper.

To address this problem, we resort to an increasingly
adopted feature in modern datacenter : virtualization tech-
nology. Live virtual machine (VM) migration, as an impor-
tant capability of virtualization technology, enables us to
move a live VM from one host to another while
maintaining near continuous service availability. Live VM

http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2014.03.025&domain=pdf
http://dx.doi.org/10.1016/j.comnet.2014.03.025
mailto:zoush@bupt.edu.cn
mailto:xwe334@eecs.northwestern.edu
mailto:xwe334@eecs.northwestern.edu
mailto:kaichen@cse.ust.hk
mailto:huangshan19j@gmail.com
mailto:ychen@northwestern.edu
mailto:liuyq7809@gmail.com
mailto:xy12180@gmail.com
mailto:huc@ieee.org
http://dx.doi.org/10.1016/j.comnet.2014.03.025
http://www.sciencedirect.com/science/journal/13891286
http://www.elsevier.com/locate/comnet

142 S. Zou et al. / Computer Networks 67 (2014) 141–153
migration provides a new dimension of flexibility - rear-
ranging VM placement on the fly. Such spatial flexibility
is proved to be effective in several scenarios, including ser-
ver consolidation, power consumption saving, fault toler-
ance and QoS management [5–8]. In our case, the spatial
mobility also creates an opportunity to solve the conges-
tion problem. Through a better VM placement, we can
localize a majority of traffic under ToR switches, balance
the outgoing traffic, and thus resolve congestion.

However, as a limitation, live VM migration usually takes
tens of seconds to transfer VM states and launch on new
host, which means a new VM placement will not take effect
until all the transfers complete. Thus, to benefit from VM
shuffling, we expect long-term stability in the traffic, so that
we can predict the future traffic pattern and have time to
adjust VM placement. Although no previous measurement
directly shows the traffic stability in datacenters, the prev-
alence and massive nature of data-intensive applications
indicate the existence of long-term traffic pattern. For
example, typical applications like search engine indexing
and logistic regression tend to exhibit long runtime and
lasting traffic pattern as we will discuss in Section 6. Fur-
thermore, such long-term traffic pattern is witnessed in
our measurement study. As we will show in Section 3, we
collect and analyze an 18-h traffic trace from a production
datacenter, and observe: (a) highly utilized core and aggre-
gation network with lasting congestion pattern; and (b) a
well-predictable end-to-end traffic at a time granularity of
tens of minutes. Such observations, coupled with the popu-
larity of datacenter virtualization technology, point a poten-
tial avenue to address congestion via online VM shuffling.

Following this, we propose to tackle the network conges-
tion problem through online VM shuffling. We choose to
minimize the maximum link utilization, and formulate it
as an optimization problem, which is shown to be a varia-
tion of the NP-hard quadratic bottleneck assignment prob-
lem (QBAP). We therefore design VirtualKnotter, an
incremental heuristic algorithm that efficiently optimizes
VM placement with controllable VM migration overhead.
In addition, we design an efficient VM migration scheduling
algorithm to minimize the time to do the shuffling. We eval-
uate the algorithms with various real-world and synthetic
traffic patterns. We specifically compare VirtualKnotter
with a clustering-based baseline algorithm that is expected
to produce near-optimal link utilization. Our results suggest
that VirtualKnotter achieves a link utilization performance
that is close to the baseline algorithm, but with only
5–10% migration traffic compared with the baseline algo-
rithm. Our simulation further evaluates the total congestion
time on each link before and after applying VirtualKnotter.
The result shows VirtualKnotter is able to decrease link con-
gestion time by 53%, demonstrating the opportunity to
exploit the hourly traffic oscillation via online VM shuffling.

We summarize the main contributions of this paper as
follows:

(1) We collect and make an in-depth analysis on the
traffic trace collected from a production datacenter.1
1 The name of the production cluster is anonymized for privacy concern.
Our analysis sheds light on the status quo of conges-
tion and stability inside the datacenter, which moti-
vates our design.

(2) We formulate the online VM placement problem,
prove its NP-hardness, and propose an efficient VM
placement and shuffling algorithm for congestion
mitigation with controllable migration traffic and
low time complexity.

(3) We formulate the VM migration scheduling prob-
lem, and propose an efficient VM migration schedul-
ing algorithm to schedule the migration of the VM
pairs selected by the former algorithm.

(4) We conduct extensive evaluation with both real
and synthetic traffic patterns to show the
optimization performance and algorithm overhead
of VirtualKnotter.

The rest of the paper is organized as follows. In Sec-
tion 2, we discuss related studies and background tech-
niques. Next we present the measurement result in a
production datacenter in Section 3. Then we describe the
problem formulation and the algorithm design in Section 4.
In Section 5, we evaluate VirtualKnotter via extensive sta-
tic and dynamic simulations respectively. We discuss prac-
tical issues and limitations in Section 6 before concluding
in Section 7.
2. Background and related work

2.1. Traffic engineering in datacenter

Traffic engineering techniques have been investigated
for decades. In the context of Internet, traffic engineering
is usually performed by optimizing flow routing and
detouring traffic away from congested links, so that the
traffic is balanced and the maximal link utilization is min-
imized [9–11]. Most of those sophisticated traffic engineer-
ing techniques manipulate route via changing the link
weights and coupling with link state protocols like OSPF
and ISIS. While they naturally fit ISP networks with nearly
random topologies and high-end routers, they may not be
good options for datacenters with relatively regular topol-
ogies and commodity switches, where people usually
deploy simple spanning tree forwarding and ECMP [12].
Furthermore, many recently-proposed datacenters such
as BCube [13], DCell [14], and PortLand [15], have well-
defined topology and the routing is largely determined
by the base topology. Therefore, we cannot directly apply
the existing traffic engineering techniques to these data-
center scenarios.

Recently, several traffic engineering solutions have
been proposed to deal with unbalanced link utilization
problem in datacenters, such as Hedera [16] and MicroTE
[17]. They both proposed to arrange the traffic in flow
granularity with global knowledge of the traffic load.
While providing non-trivial advantages in dense structures
with rich path diversity, these approaches would have
marginal use when the network structure of datacenter is
oversubscribed, and path diversity is limited. For instance,
in a traditional tree-style network, simultaneous flows

S. Zou et al. / Computer Networks 67 (2014) 141–153 143
have to traverse the oversubscribed core or aggregation
links if the sources and destinations do not locate under
the same top-of-rack switch, thus creating congestion. In
this scenario, only by relocating the communication corre-
spondents can we manage to mitigate the congestion on
the core and aggregation layers. At this point, our design
in this paper complements the existing approaches espe-
cially when the network is oversubscribed.

2.2. VM live migration and application

VM live migration was first proposed and implemented
by Clark et al. [18], providing near continuous service dur-
ing VM migration. They reported as short as few hundreds
of milliseconds service downtime. Now, most of the popu-
lar VM management platforms provide support for live
migration as a standard service, such as VMware vMotion
[19], KVM [20], and Microsoft Hyper-V Server [21]. Live
migration technique delivers spatial mobility for VM place-
ment strategy in datacenters, along with the cost of extra
migration traffic, which could be 1.1� to 1.4� of VM mem-
ory footprint, or 0.34� to 0.43� if adopting appropriate
compression [22]. With such extra mobility, VM placement
optimization is found effective on server consolidation,
power consumption saving, fault tolerance, easier QoS
management and so on [5–8].

Recently, several studies leverage VM migration or
placement to optimize the network metrics like traffic cost
and end-to-end latency [23,24]. In [23], Shrivastava et al.
proposed to rebalance workloads across physical machines
by shifting the VMs away from overloaded physical
machines. The goal is to minimize the data center network
traffic while satisfying all of the server-side constraints.
They particularly tried to minimize the overhead of VM
migration. In [24], Meng et al. proposed to minimize the
traffic cost, which is quantified in terms of traffic volume
times the communication distance, via VM placement.
They proposed a min-cut clustering-based heuristic algo-
rithm whose runtime complexity is Oðn4Þ, where n is the
number of VMs. Worse, their algorithm does not take into
account the VM migration traffic, leading to a near com-
plete shuffling of almost all VMs in each round. Relative
to these works, VirtualKnotter minimize the continuous
congestion mainly in core and aggregation links with run-
time overhead of Oðn2 log nÞ and controllable migration
traffic, which enables online VM replacement at the gran-
ularity of tens of minutes. In [25], Dias et al. proposed to
cluster virtual machines by traffic matric among VMs with
the concept of graph community. However, they did not
take into account the cost of migration traffic. The paper
[26] presents a system for network aware steady state
VM management that first select a VM heuristically and
then ranks target hosts for a VM migration based on the
associated cost of migration, available bandwidth for
migration and the network bandwidth balance achieved
by a migration. In this paper, we adopt the idea to swap
VM pair in two clusters of a datacenter which simplifies
the problem and can be closer to optimization. In [27],
Wenjie Jiang et al. solved a joint tenant placement and
route selection problem with Markov chain approximation.
It assumes a dynamic multi-tenants data center where
tenants come and go frequently. In our work, we focus
on internal production data centers. In [28], the authors
present the design, implementation, and evaluation of a
system called XCo, that performs explicit coordination of
network transmissions over a shared Ethernet fabric to
proactively prevent Ethernet congestion. A central control-
ler issues transmission directives to individual nodes at
fine-grained timescales (every few milliseconds) to tempo-
rally separate transmissions competing for bottleneck
links. It focuses on solving the problem of Ethernet conges-
tion, not from the view of the whole datacenter. In [29], the
authors proposed a distributed VM migration scheme to
minimize the overall communication cost of the DC topol-
ogy. Every VM individually tests the candidate servers and
migrate when the benefit overweighs the migration cost.
However, we argue that in datacenter there are already
extensive central monitoring and management systems
in industry and VM migration can be figured out more effi-
ciently with central control.
3. Measurement and motivation

Recent measurement results in datacenter illustrate
several remarkable traffic properties in datacenter
network.

� Congestion is ubiquitous in datacenter network. Specif-
ically, it is reported not rare to see above 70% link utili-
zation at a timescale of 100 s [1]. Such a high utilization
can cause serious packet drop, significant queuing delay
at the congested spots, and thus impacts overall
throughput. Those effects can degrade application per-
formance with both large data transfer and small
request-response flows.
� Datacenter network is frequently the bottleneck to

application-layer performance. For instance, Chowdhu-
ry et al. show communication time account for 42–70%
running time in MapReduce services [30]. This means a
decrease of 10% in communication time will result in
4.2–7% performance gain, which is hard to achieve by
speeding up computing.
� Link utilization is highly divergent among core and

aggregation links within a datacenter. It is shown that
the highly utilized hot links usually account for less
than 10% of all the core and aggregation links, while
other links remain lightly utilized with utilization less
than 1% [30,31]. Such phenomenon indicates the spa-
tially unbalanced utilization of network resources may
be one of the causes of the network congestion. This
implies keeping a spatially balanced resource demand
may potentially have the same benefit as provisioning
bandwidth capacity at hot spots.

However, despite those observations from previous
measurement studies, some traffic properties like conges-
tion pattern and long-term traffic stability still remain
unclear. During our study, we learn that those properties
are essentially helpful to design a traffic engineering
scheme as well as to determine the parameters for a spe-
cific datacenter.

144 S. Zou et al. / Computer Networks 67 (2014) 141–153
In this section, we focus on obtaining quantitative
knowledge of congestion pattern (where and how long
does congestion occur?) and traffic stability at various
granularities (how stable is the traffic, viewing in the time
scale of seconds, minutes or hours?). We collected traffic
matrices from a production cluster with 395 servers, which
run MapReduce-like services. This cluster has a hierarchi-
cal structure with 4:1 oversubscription ratio. We aggregate
the traffic matrices for every 30 s, as shown in Fig. 1. The
dataset lasts consecutively for about 18 h.

Our measurement reveals three key observations with
implications for the VirtualKnotter design. First, we find a
majority of congestion events last for tens of minutes,
while the set of congested links evolves over time. This
observation demonstrates the long-term communication
pattern of the upper-layer application, implying the poten-
tial benefit to conduct traffic engineering at a timescale of
tens of minutes. Second, congestion events tend to be local,
usually involving less than 30% of links, which indicates
temporarily unbalanced traffic in the datacenter. Finally,
we observe that over 60% traffic volume is relatively stable
at an hourly granularity. This property allows for the pre-
diction of future traffic matrix with the previous ones,
which is the key assumption of traffic engineering
techniques.

3.1. Congestion within datacenter

(a) Traffic Concentration: Fig. 1 shows a typical traffic
matrix in our dataset. It presents a busy traffic
matrix with severe local congestion, which involves
six out of ten racks within the cluster. We can see
the traffic is highly concentrated within and across
the upper and lower part of the cluster, which is
shown by the four gray blocks in Fig. 1. In fact, with
further inspection into the link utilization, we find
the links among those racks have an average utiliza-
tion of 65% in the core and aggregation layer, with
the highest of 80.3%. In the meantime, links associ-
ated with middle four racks remain relatively idle.
Fig. 1. An observed 30-s traffic matrix. Each data point is the traffic
volume from a sender (x axis) to a receiver (y axis). Gray scale reflects
traffic volume in natural log of bytes.
(b) Location and Duration of Congestion Events: To fur-
ther understand the spatial distribution and tempo-
ral duration of congested links, we locate the
congested links by plotting them into a time series
figure, as shown in Fig. 2. We pick 60% utilization
as the congestion threshold, but other thresholds
like 65% or 70% yields qualitatively similar results.
We define the term congestion event as the period
of time when the set of congested links keeps the
same without discontinuity of longer than 5 min.
Using this definition, we examine the congestion
events in our trace, resulting in two interesting find-
ings. First, congestion events exist and tend to be
local during the observation period, with no conges-
tion event involving more than half of links. Instead,
a typical congestion event just involves about 1/3 of
core and aggregation links. Moreover, different con-
gestion events may consist of quite different sets of
congested links. This phenomenon indicates that
the application’s communication demand can dis-
tribute highly unevenly within a datacenter, and
that the traffic distribution evolves over time. Sec-
ond, a congestion event tends to last for an extended
period of time. We totally observe seven congestion
events that last for at least 20 min long. We further
speculate such a continuous congestion event may
indicate an application-layer transfer event, such as
a MapReduce shuffle between mappers and
reducers.

3.2. Traffic stability analysis

Although there are measurement results demonstrating
poor predictability of traffic matrix at the timescale of tens
of milliseconds to hundreds of milliseconds [31,32], we
still have little knowledge about long-term traffic stability
in datacenters. In this subsection, we design a stableness
indicator and conduct measurement in the dataset. For-
mally, the stableness indicator is defined by

Stablenessðtprev ; tcurrÞ ¼
minðtprev ; tcurrÞ
maxðtprev ; tcurrÞ

; ð1Þ

where tprev and tcurr stand for traffic volume in the previous
epoch and the current epoch respectively. The fundamen-
tal idea for stableness indicator is to estimate percentage
the stable part comparing two consecutive traffic states.
For a traffic matrix, we calculate a single stableness value
0 2 4 6 8 10 12 14 16 18

0
5

10
15
20
25
30

Time (hours)

Ag
gr

eg
at

io
n

an
d

C
or

e
Li

nk
 In

de
x

Fig. 2. Time and locations of congestion observed in the datacenter. Each
circle represents a 30-s congestion occurred on a core or aggregation link.

S. Zou et al. / Computer Networks 67 (2014) 141–153 145
for each element. Then, we select 10% percentile, median,
and 90% percentile as the indicator of the entire distribu-
tion, as shown in Fig. 3(a). Similar procedure is used to
generate Fig. 3(b).

We can simply explain the stableness indicator as the
percentage of stable traffic volume in two consecutive
epochs. Fig. 3(a) illustrates the stableness of pairwise traf-
fic varying the timescales from 30 to 4 h. We can see a
range of 40% to 70% of traffic volume can be expected sta-
ble, peaking at the timescale of 2 h, demonstrating a good
hourly predictability of the traffic matrix in our dataset.
Although the traffic stability varies greatly with short
timescales, the hourly traffic factor tends to concentrate
on about 60% with small oscillation. Furthermore,
Fig. 3(b) demonstrates even better stability, with the med-
ian stable traffic indicator larger than 90%. The better sta-
bleness of upper-layer links is a result of traffic
aggregation as well as the constantly higher utilization.

Our experiment results reveal highly stable traffic
demand at an hourly granularity in a datacenter. Actually,
such high stable trace is not obtained by chance. Data-
intensive applications tend to exhibit a similar stability,
due to the massive nature of data transfer and long com-
puting time on distributed computing node. We will dis-
cuss the traffic stability issue later in Section 6.

The above findings motivate us towards an online VM
placement approach for congestion resolving, as the exist-
ing of continuous congestion events, evolving congestion
patterns and good traffic predictability. We argue a consid-
erable part of continuous link congestion can be elimi-
nated, or at least mitigated, by localizing intra-datacenter
traffic and evenly distributing outgoing traffic. By exploit-
ing the spatial mobility of VM placement in a datacenter,
we can potentially achieve both localized and balanced
communication pattern, and thus benefiting from higher
throughput and lower queuing latency.
24012060301584210.5
0

0.2

0.4

0.6

0.8

1

Time Granularity (in minutes)

St
ab

le
ne

ss

(a) Stableness indicator of pairwise traffic volume

0.5 1 2 4 8 15 30 60 120 240
0

0.2

0.4

0.6

0.8

1

Time Granularity (in minutes)

St
ab

le
ne

ss

(b) Stableness indicator of core and aggregates links

Fig. 3. The fraction of traffic volume remains stable in two successive
periods. The bar value shows the median and error bar shows 10% and
90% percentile.
4. Design

In this section, we first formulate the online VM place-
ment problem using integer optimization language and
analyze its complexity. Then, we formulate the VM migra-
tion scheduling problem with combinational optimiza-
tion. At last, we propose VirtualKnotter, which is
composed of two corresponding algorithms to solve
the above problems.
4.1. Assumptions

We assume the datacenter is connected with a hierar-
chical structure, such as a tree or multi-root tree. Note that
we aim to address congestion problem, which theoretically
does not exist in non-blocking network, such as fat tree or
VL2. Thus, we exclude those network structures from the
scope of our study. A server’s ability to host VM is con-
strained by the server’s physical capacity, such as CPU/
memory. Thus, we assume a known number of VM hs can
be hosted on a certain server s, referring as VM slots. We
further assume a known single-path routing in the data-
center network. In addition, we assume live migration
[18] is used to provide near continuous service during
VM migration.
4.2. Online VM placement problem

According to previous discussion, we want to achieve
following goals in the online VM placement scheme:

(1) The optimized VM placement should minimize the
congestion status measured by a link congestion
objective, such as maximum link utilization.

(2) The migration traffic should be controllable, i.e.,
parameters should be provided to control the num-
ber of migrated VMs between the current VM place-
ment and the optimized VM placement.

(3) The algorithm should be scalable, i.e., the runtime
overhead should be considerably less than the target
replacement timescale (tens of minutes) for a typical
sized datacenter.

Given above principles, we formulate the online VM
placement problem as follows.

Input and Output. The online VM placement problem
accepts network routing P, traffic matrix M, external traffic
E and current VM placement X 0 as input, and generates
optimized VM placement X as output. We denote the net-
work routing by a binary-value function Ps;dðlÞ, meaning
whether the traffic path from server s to d traverses
through link l. Similar notation PsðlÞ represents the routing
path going outside the datacenter, meaning whether the
traffic path from server s to the gateway traverses through
link l. As the datacenter running, we assume the traffic
matrix Mi;j and external traffic Ei for a certain period of
time are also available. Mi;j denotes the traffic volume from
VM i to VM j. Ei denotes externally traffic volume from VM i
to the gateway. Note, such traffic statistics can be collected
either by ToR switches or VM hypervisors on each server

146 S. Zou et al. / Computer Networks 67 (2014) 141–153
without incurring considerable overhead. Moreover, the
problem also takes the current VM placement matrix X 0

as input for incremental VM placement. The output is the
optimized VM placement matrix X. Both Xi;s and X0i;s are
binary-value matrix indicating whether VM i is placed on
server s.

Objective. We choose the maximum link utilization
(MLU) as the optimization objective. The MLU is deter-
mined by the highest utilized link, which characterizes
the worst congestion status in a network during a period
of time. Given the MLU is widely adopted as the optimiza-
tion goal in the context of Internet traffic engineering
[9–11], we believe it will also be effective to represent
the overall congestion status in a datacenter network. With
the preceding notations, we formally define the following
objective function
min
X

max
l

Tðl;XÞ
BðlÞ ; ð2Þ
s:t:

Tðl;XÞ ¼
X
s;d

Ps;dðlÞ
X

i;j

XT
i;sMi;jXj;d þ

X
s

PsðlÞEiXi;s

X
j

Xi;j ¼ 1

X
i

Xi;j 6 hj

1
2

X
i;j

jXi;j � X0i;jj 6 Th

where s (or s; d pair) enumerates all hosts (or host pairs)
and i; j pair enumerate all VM pairs, X is a valid VM place-
ment matrix, l is a physical link between two switches, BðlÞ
is the bandwidth of link l. Tðl;XÞ is the traffic traversing
through link l under the placement of X. The second con-
straint means that for one VM can only be placed in one
server. The third constraint limits the number of VMs to
be placed in one server. The last constraint limits the
migrated VM number to be no greater than an input
threshold Th and so it is feasible to schedule the VM migra-
tion in time.

In the objective function, two parts in Tðl;XÞ represent
respectively the internal traffic and external traffic travers-
ing a given link l. The inner maximum operator enumer-
ates all links, so as to seek for the MLU. The outer
minimum operator finds the lowest MLU among all valid
VM placements. Therefore, this objective function is to
minimize the MLU.

Complexity. The above optimization problem falls into
the category of Quadratic Bottleneck Assignment Problem
(QBAP), which is a known NP-hard problem [33]. It is con-
ceivable that the variables Xi;s have quadratic form in the
objective function and the overall problem is an assign-
ment problem with a quadratic bottleneck goal (minimum
of maximum). We formally give the complexity proof by
reducing the QBAP problem to our problem in the Appen-
dix. Hence, our problem is also NP-hard.
4.3. VM migration scheduling problem

Input and Output. The VM migration scheduling prob-
lem accepts the output of the online VM placement prob-
lem as input, and generates optimized VM migration
scheduling order fxig as output. We denote the cost of a
pair of VM migration to be Ci, which is a little bit more than
the total of both VMs’ memory footprint. Let Gi represent
the bandwidth gain after the migration of ith pair of
VMs. In addition, we assume that at the beginning, there
are A bandwidth available for doing the first swap of VM
pair.

Objective. We choose the total time to execute VM
migration as the optimization objective. Hence, we have
the following objective function:

min
fxig

Xn

i¼1

txi ð3Þ

s:t:

tx1 ¼ Cx1=A

tx2 ¼ Cx2=ðAþ Gx1Þ
. . .

txi ¼ Cxi=ðAþ
Xi�1

k¼1

GxkÞ

where txi denotes the time needed to swap the ith VM pair.
The bandwidth can be used to swap the ith VM pair is com-
posed of the initial available bandwidth A and the accumu-

lated bandwidth gain
Pi�1

k¼1Gxk.

4.4. Algorithms

In this subsection, we propose VirtualKnotter, which
includes a heuristic algorithm to the online VM placement
problem and an efficient algorithm to the VM migration
scheduling problem. We have shown our problems are
inherently NP-hard; and no efficient exact solution can
scale to the size of a typical datacenter. Therefore, we
resort to an intuitive heuristic approach.

Intuition 1: Incremental local search is preferred
rather than clustering, in order to satisfy migration
traffic constraint. So far as our knowledge goes, there
is no clustering algorithm that is able to balance the opti-
mality and number of elements that move across clusters.
However, for local search, it is inherently easy to keep
track of the searching depth, which is equivalent to
migration traffic in our case.

Intuition 2: A good initial placement is needed to
speed up local search. Searching usually takes long and
uncertain amount of time, which we do not want in
online algorithm. A possible way to speed up searching
is to provide a good estimation as the initial solution.
We find that an efficient algorithm that improves
traffic localization may satisfy our requirements.
Although not exactly the same, traffic localization shares
similar objective with the MLU goal. This is because

Fig. 4. Algorithm flowchart of VirtualKnotter. The diamond boxes are input/output data, and the rectangle boxes are functions.

S. Zou et al. / Computer Networks 67 (2014) 141–153 147
congestion often occurs at core and aggregation links,
where the localization algorithm aims to offload traffic
from.

Based on the above intuitions, we propose a two-step
heuristic algorithm: we borrow and adapt the multi-way
Kernighan–Lin graph partitioning algorithm to generate
initial VM placement with better localized traffic [34,35].
Then, we employ the simulated annealing algorithm to fur-
ther optimize the MLU. Fig. 4 shows the high-level logic
flow of the algorithms. And we present the pseudo-code
in Algorithms 1–4.
4.4.1. Multiway h-Kernighan–Lin Algorithm
The key idea of the Kernighan–Lin graph partitioning

algorithm is to greedily swap elements across clusters,
thereby iteratively reduce the overall weight of a graph
cut. We adapt the algorithm by introducing a migration
coefficient h, in order to constrain the migration cost of
improved VM placement. This heuristic algorithm is orig-
inally used in the layout design of circuits and compo-
nents in VLSI [36], where an efficient heuristic solution
for the minimum graph cut problem is needed. In our sce-
nario, we adapt the Kernighan–Lin algorithm for the pur-
pose of improving the traffic localization and reduce the
traffic load on core and aggregation layers. The algorithm
runs on the original VM placement hierarchically in a top-
down manner. In each layer, it bisects the VM clusters
and calls h-Kernighan–Lin-Improve procedure for bisec-
tion improvement. The procedure swaps elements
between two clusters iteratively and greedily according
to the Gain on the cut weight reduction. Note that the
number of iterations is limited by migration coefficient
h, so as to avoid VM swaps which only bring marginal
benefit. The runtime complexity of Multiway h-Kerni-
ghan–Lin Algorithm is Oðn2 log nÞ, where n is the number
of VMs.
Algorithm 1. Multiway h-Kernighan–Lin Procedure

Require: M(Traffic matrix), T(Network topology),
X(Current VM placement)
for all layer in T do

Sort element set E 2 X on layer by outgoing traffic
while jEj � 2 do

Split elements into two half interleavingly,
resulting in S1 and S2

h-Kernighan–Lin-Improve (M; S1; S2)
E S1 and S2 respectively

end while
end for
return X
Algorithm 2. h-Kernighan–Lin-improve

Require: M(Traffic matrix), S1; S2(VM sets),
h(Migration coefficient),C(Migration traffic, which is
set as 1.25 times memory footprint), T(Period length
between two shuffling)

CurrGain 0;Gain femptylistg
Initialize the migration gain DðiÞ,
where DðiÞ ¼

P
jRSðiÞMði; jÞ �

P
j2SðiÞMði; jÞ

for s ¼ 1 to 1
2 h �minðlenðS1Þ; lenðS2ÞÞ do

Swap the VM pair ði; jÞ 2 ðS1; S2Þ, which has
maximum gain
Gði; jÞ ¼ DðiÞ þ DðjÞ � 2 �M½i; j� � ðCi þ CjÞ=T
CurrGain ¼ CurrGainþ Gði; jÞ
Gain:appendðCurrGainÞ
Update D : DðkÞ ¼ DðkÞ þMðk; jÞ �Mðk; iÞ, if k 2 S1

DðkÞ ¼ DðkÞ þMðk; iÞ �Mðk; jÞ, if k 2 S2

end for
return maxðGainÞ and corresponding VM sets S01; S

0
2

Networks 67 (2014) 141–153
4.4.2. Simulated annealing searching
Algorithm 3. Simulated annealing searching

148 S. Zou et al. / Computer
Require: M(Traffic matrix), P(Network routing),
X0(Current VM placement), Nmax(Max iterations),
h(Migration coefficient)

X;Xbest X0

E; Ebest EnergyðM; P;XÞ
for T Nmax to 0 do

Xnew NeighborðXÞ
Enew EnergyðM; P;XnewÞ
if PðE; Enew; TÞ > RandðÞ and Diff ðX;X0Þ < h
then

X Xnew; E Enew

end if
if E < Ebest then

Xbest X; Ebest E
end if

end for
return Xbest

In this step, we need to efficiently search for a fine-grain
solution of minimizing MLU. We employ the simulated
annealing algorithm, which is known efficient in searching
in an immense solution space. The initial VM placement
accepts as input the output of the multiway h-Kerni-
ghan–Lin algorithm. The function Energy estimates and
returns the MLU for a given VM placement. In each itera-
tion, a neighboring state NeighborðXÞ is generated by swap-
ping a VM pair that can offload traffic from the most
congested link. To find such a VM pair, we conceive a heu-
ristic: we seek for two distinct and heavily communicated
pairs over the congested link, pick one VM from each pair,
and swap them. Then, we move to a neighboring state with
a certain acceptance probability P, which depends on the
energy of current and neighboring placement as well as
current temperature T. The acceptance probability we use
is defined as

PðE; Enew; TÞ ¼
1 if Enew < E

ecðE�EnewÞ=T if Enew P E

�

The temperature is decreased with each iteration until
stopped at zero, allowing a higher probability to move to
a worse placement with a high temperature. This behavior
allows simulated annealing algorithm to avoid stuck at the
local minima. The complexity of the simulated annealing
has two components: the initialization requires Oðn2Þ;
each simulated annealing iteration requires OðnÞ. Thus,
the overall complexity is Oðn2 þ Nmax � nÞ, where Nmax is
maximum number of iterations.

4.4.3. Simulated annealing scheduling
In this step, we need to efficiently search for an opti-

mized scheduling order for the n pairs of VMs to be swa-
ped, which has the least scheduling time. Once again, we
employ the simulated annealing algorithm. The initial
scheduling order is set according to the descending order
of Gi=Ci, which is straightforward to schedule those VM
pairs with more bandwidth gain and less migration traffic
first. The function Energy estimates and returns the total
scheduling time for the VM migration. In each iteration, a
neighboring state NeighborðXÞ is generated by randomly
swap two items. The complexity of the algorithm has
two components: the initialization requires Oðn2Þ; each
simulated annealing iteration requires OðnÞ. Thus, the
overall complexity is Oðn2 þ Nmax � nÞ, where Nmax is maxi-
mum number of iterations.

Algorithm 4. Simulated annealing scheduling

Require: C (VM migration traffic vector), G
(bandwidth gain vector), A (Initial available
bandwidth),Nmax(Max iterations)

X;Xbest X0;X0 is a permutation of {1, . . . ,n} by
descending Gi=Ci

E; Ebest EnergyðC;G;XÞ
for T Nmax to 0 do

Xnew NeighborðXÞ
Enew EnergyðC;G;XnewÞ
if PðE; Enew; TÞ > RandðÞ then

X Xnew; E Enew

end if
if E < Ebest then

Xbest X; Ebest E
end if

end for
return Xbest
5. Evaluation

In this section, we describe our evaluation of VirtualKn-
otter in three aspects: static performance, overhead and
dynamic performance. The goal of these experiments is
to determine the benefit as well as the cost when
deploying VirtualKnotter and the baseline algorithms.

5.1. Methodology

5.1.1. Baseline algorithms
We compare VirtualKnotter with a clustering-based

placement algorithm. The advantage of clustering algo-
rithm lies in the fact that clustering produces near optimal
traffic localization. However, to the best of our knowledge,
clustering algorithm cannot be trivially adapted to perform
an incremental optimization, which implies nearly 100% of
VMs need to be migrated in each round. Also, clustering
algorithms usually have a runtime complexity no less than
Oðn3Þ, where n is the number of VM number. Thus, in our
evaluation, we treat the clustering algorithms as a refer-
ence of the optimization performance without limit on
runtime and migration traffic. Among many available clus-
tering algorithms, we select a variation of hierarchical clus-
tering algorithm, which is able to specify the cluster size
constraint [37]. We run the clustering algorithm following
a top-down order according to the network topology. We
later map each cluster into a switch and VM into a physical
machine. The runtime complexity of the algorithm is Oðn3Þ.

0.4 0.5 0.6 0.7 0.8 0.85
0

0.2

0.4

0.6

0.8

1

Maximum Link Utilization

C
D

F

Original
VirtualKnotter
KL
SA
Clustering

(a) CDF of MLU on Real-world Traces (VM#)

0.4 0.5 0.6 0.7 0.8 0.85
0

0.2

0.4

0.6

0.8

1

Maximum Link Utilization

C
D

F
Original
VirtualKnotter
KL
SA
Clustering

(b) CDF of MLU on Measurement-based Patterns (VM#=10K)

0.4 0.5 0.6 0.7 0.8
0

0.2

0.4

0.6

0.8

1

Maximum Link Utilization

C
D

F

Original
VirtualKnotter
KL
SA
Clustering

(c) CDF of MLU on Hotspot Patterns (VM#=10K)

Fig. 5. Static algorithm performance in terms of maximum link
utilization.

S. Zou et al. / Computer Networks 67 (2014) 141–153 149
The detailed description is referred to the original paper
[37].

We also select each single step of VirtualKnotter,
namely the Multiway h-Kernighan–Lin algorithm (KL)
and the simulated annealing algorithm (SA) as baseline
algorithms. The purpose is to show how the combination
of algorithms actually benefits compared with individual
steps.

5.1.2. Communication suites

� Real-world Traces: We use the collected traffic trace
described in Section 3. The traffic trace is collected from
a production cluster with 395 servers and an oversub-
scription ratio of 4:1 in the core layer. The collected
data has a time granularity of 30 s, and lasts for nearly
18 h.
� Measurement-based Patterns: In order to test the

scalability of the algorithm, we derive the measure-
ment-based patterns from the measurement results by
Kandula et al. [1]. First, we derive host communication
pattern from both the inter-rack and intra-rack corre-
spondent distribution. Then, we assign traffic volume
to each pair of hosts, according to the traffic volume
distribution. The VM number is 10 K, and the physical
topology is assumed hierarchical with an oversubscrip-
tion ratio of 10:1.
� Hotspot Patterns: Recent measurement revealed

highly skewed traffic patterns often exist in production
datacenter, known as hotspot pattern [31,38]. We syn-
thesize such traffic pattern by randomly select ToR
switches as hotspots, connect the individual servers
under hotspots with a number of servers under normal
ToRs, and assign a constant large traffic volume to each
connection. The VM number is 10 K, and the physical
topology is assumed hierarchical with an oversubscrip-
tion ratio of 10:1.

5.1.3. Metrics and settings
First, we evaluate the static algorithm performance by

measuring the maximum link utilization. We compare Vir-
tualKnotter against KL, SA and clustering algorithm, as well
as the original VM placement without any optimization.
Then, we evaluate the algorithm overhead in the sense of
additional migration traffic, migration time and algorithm
runtime. Finally, we simulate the real scenario and evalu-
ate the overall algorithm performance on dynamic conges-
tion resolving. We replay the time-series traffic and run the
algorithm on current traffic pattern, resulting in an opti-
mized VM placement. Then, we apply the optimized VM
placement on the next traffic pattern, and schedule VM
migration according to the order produced by Algorithm
4. We compare the number of congested links varying
the replacement timescale. Note, the migration coefficient
h is set to 0.1 in both KL and SA, the maximum number of
iterations Nmax is set to 1000 in SA.

5.2. Static performance

Fig. 5 shows the maximum link utilization before and
after applying the algorithms. Every data point represents
a communication pattern of a collected or synthetic traffic
matrix. We try to minimize the maximum link utilization;
thus the curve close to the upper left corner is favorable.
From the figures, we find VirtualKnotter significantly out-
performs both KL and SA, and has a similar static perfor-
mance as Clustering algorithm, which serves as a
reference to the upper bound. This result illustrates that
through combination VirtualKnotter provides qualitative
improvement over both KL and SA. It is worth to note that
VirtualKnotter requires significantly less VM migration
compared with Clustering-based algorithm (5–10% vs.
�100%), which will be analyzed in detail in the following
subsection.

Fig. 7. Total time for executing VM migration.

500 1K 2K 4K 8K 16K
0

50

100

150

200

250

300

350

Size of Datacenter

R
un

tim
e

(in
 s

ec
on

ds
)

VirtualKnotter
Clustering

Fig. 8. Algorithm runtime overhead varying the size of a datacenter.

150 S. Zou et al. / Computer Networks 67 (2014) 141–153
5.3. Overhead

VM migration introduces considerable bulk data trans-
fer into the datacenter network. To understand the coun-
ter-effect, we need to quantitatively measure how large
volume of the additional migration traffic we should
expect for each algorithm and how long it takes to do the
migration. We model the VM migration as bulk data trans-
fer. We assume each VM has a memory footprint ranged
from 1 to 8 gigabytes. For a VM with 2 gigabtyes, it will
result in 2.2–2.8 gigabytes bulk transfer using live migra-
tion [39]. Thus, we take the median 1.25 times memory
footprint as the extra traffic volume for each migrated
VM in the simulation. .

5.3.1. Migration traffic
We plot the relative traffic volume for both VirtualKnot-

ter and the baseline algorithm in Fig. 6. From the figure, we
observe that the baseline algorithm introduces around 10%
traffic volume of goodput with the timescale of 30 min. The
traffic overhead of VirtualKnotter is over one order of mag-
nitude less than Clustering algorithm, which ranges
between 0.2% and 1% of goodput.

5.3.2. Migration time
We implement a straightforward VM migration sched-

uling algorithm named Gain, which simply schedule the
VMs pair with most bandwidth gain first. The initial avail-
able bandwidth is set as 200Mbit/s, and the bandwidth
gain after each swap of VMs pair is set from 10 Mbit/s to
200 Mbit/s. The memory footprint of VM and the band-
width gain are randomly chosen in each trial run and an
average of 100 trial runs is used for a data point in Fig. 7.
From it we can see that VirtualKnotter uses almost 30% less
time than Gain.

5.3.3. Algorithm runtime
The runtime overhead of VirtualKnotter is shown in

Fig. 8. It is evident from the figure, that VirtualKnotter con-
sumes tens of seconds for a typical virtual datacenter or
tenant with thousands of VMs, and scales much better than
the baseline algorithm. Also the runtime overhead of Vitu-
alKnotter is considerably less than the target replacement
0 5 10 15 20 25 30
0.001

0.01

0.1

1

Time (hours)

R
el

at
iv

e
M

ig
ra

tio
n

Vo
lu

m
e

(v
s.

 G
oo

dp
ut

)

Goodput Volume
VirtualKnotter
Clustering

Fig. 6. Relative migration traffic compared with network goodput. The
timescale is 30 min.
granularity which is tens of minutes, thereby enabling
the online VM replacement.
5.4. Dynamic simulation

We conduct simulation to evaluate the dynamic perfor-
mance of both VirtualKnotter and the baseline algorithm
considering migration traffic. We replay the real-world
traces and run both algorithms in a variety of timescales.
The optimized VM placement resulted from previous per-
iod of time is deployed on the next period with the VM
migration scheduling algorithm.
8 15 30 60 120
0

1500

3000

4500

5500

Migration Timescale (in minutes)

Li
nk

 C
on

ge
st

io
n

Ti
m

e
(li

nk
*m

in
ut

e)

Original
VirtualKnotter
Clustering

Fig. 9. Link congestion time varying replacement timescale. Congestion
threshold is 0.6. All the congested time of core and aggregation links are
included.

0 2 4 6 8 10 12 14 16 18

0

5

10

15

20

25

30

Time (hours)
Ag

gr
eg

at
e

an
d

C
or

e
Li

nk
 In

de
x

(a) Congestion timeseries before VirtualKnotter

0 2 4 6 8 10 12 14 16 18

0

5

10

15

20

25

30

Time (hours)

Ag
gr

eg
at

e
an

d
C

or
e

Li
nk

 In
de

x

(b) Congestion timeseries after VirtualKnotter

Fig. 10. Algorithm performance in term of congestion timeseries. Each circle represents a 30-s congestion occurred on a core or aggregation link.

S. Zou et al. / Computer Networks 67 (2014) 141–153 151
The migration traffic is modeled exactly the same as in
Section 5.3. Fig. 9 shows the total congestion time of all
core and aggregation links varying replacement granular-
ity. The figure demonstrates that, even considering migra-
tion overhead, VirtualKnotter still manages to harvest the
benefit of over one half less link congestion time at time-
scales of 30 min, one hour or two hours. On the contrary,
the baseline algorithm, due to the migration traffic, exhib-
its a worse congestion status than original placement, with
a 7.8–230.6% higher link congestion time compared with
original placement.

Fig. 10 presents the locations and durations of conges-
tion before and after applying VirtualKnotter. From the fig-
ure, we can see that most of the continuous congestion
events are resolved by VM replacement right after
detected, demonstrating VirtualKnotter is effective on
resolving long-lived congestion event. The benefit is har-
vested at the cost of dispersed short-lived congestion
events caused by the burst of migration traffic. Such con-
gestion events are normally aligned with VM replacement
events, and last for only one to two minutes. We believe
such ephemeral congestion events are more tolerable by
applications in datacenter and yield far less negative
effects compared with the continuous congestion events.
6. Discussion

6.1. Traffic stability

VirtualKnotter manifests good performance on resolv-
ing static congestion with VM placement shuffling. How-
ever, in a real-world setting, we have to predict the future
traffic pattern using history records; thereby the traffic sta-
bility may have considerable influence on the accuracy of
prediction. We admit that VirtualKnotter is not suitable
for datacenters with highly dynamic traffic. Although we
observe an average proportion of 40–70% of traffic remains
stable within our target timescales, we understand the traf-
fic properties highly depend on the application layer. We
argue that data-intensive applications would most likely
exhibit a similar stability with our measurement result
due to the massive nature of data pre-fetch, intermediate
result shuffle and result transfer. For example, the distrib-
uted indexing time for a search engine is estimated over
10,000 s and 4000 s in the map phase and the reduce phase
respectively by Mccreadie et al. [40]. During the whole per-
iod, network can suffer from high utilization with a contin-
uous traffic pattern. Logistic regression, as a representative
machine learning algorithm, involves tens of MapReduce
iterations, which lasts for an hour to train the model on a
29 GB dataset [41]. Again, traffic pattern among iterations
is not likely to change greatly. Therefore, we believe there
are a part of data-intensive applications that will exhibit a
similar long-term stability in datacenters.

6.2. One-time placement scheduling vs. dynamic replacement

We propose a dynamic VM replacement scheme in this
paper. For those datacenter whose traffic pattern evolves
over time, we have shown that dynamic replacement
scheme can effectively harvest from the traffic oscillation.
However, we notice that there exist applications with rel-
atively constant traffic patterns. For those applications, it is
probably sufficient to conduct one-time placement sched-
uling rather than dynamic replacement. We leave the iden-
tification of such constant traffic pattern and
determination of best replacement timescale as our future
work.

7. Conclusion

In this paper, we present VirtualKnotter, a novel online
VM placement algorithm and an efficient VM migration

152 S. Zou et al. / Computer Networks 67 (2014) 141–153
scheduling algorithm for resolving link congestion in data-
center network. VirtualKnotter exploits the flexibility of
VM placement in virtualized datacenter, for the purpose
of improving traffic localization and balance link utiliza-
tion. VirtualKnotter strikes a good balance between resolv-
ing congestion and introducing migration traffic, resulting
in an efficient and practical VM placement algorithm. In
addition, VirtualKnotter efficiently schedules VM migra-
tion to shorten the migration time and avoid extra conges-
tion. We evaluate VirtualKnotter via static experiments
and extensive dynamic simulation. Our results suggest that
VirtualKnotter delivers over 50% of congested time reduc-
tion with negligible overhead.
Acknowledgements

This work was partially supported by National High-
tech R&D Program of China (863 Program) (No.
2011AA01A101, No. 2013AA013303).

Appendix A. Proof of problem complexity

We prove the complexity of the online VM placement
problem (OVMPP) by reducing quadratic bottleneck
assignment problem (QBAP) to OVMPP [33].

The QBAP problem is formally described as following:
given three n-by-n matrices A ¼ ðaijÞ;B ¼ ðbklÞ and
C ¼ ðcikÞ with non-negative real values. One wants to find
the optimal permutation /ðiÞ, which satisfies a one-to-
one mapping from N to N (N ¼ f1;2; . . . ;ng). The objective
function is

min
/

max
16i;j6n

aijb/ðiÞ/ðjÞ þ ci/ðiÞ:

Now, we want to map objective Function 2 to the above
goal, to show for any QBAP instance we can transform it to
an OVMPP in polynomial time. In fact, we can rewrite
assignment matrix X to permutation /ðiÞ by assign differ-
ent index for each VM slot. We further assume a full-
meshed network, where each source destination pair
ðs; dÞ uniquely connected by a physical link lðs; dÞ. Thus,
we have the following reduction mapping

aij ¼
X

i;j

Pi;jðlði; jÞÞ

¼ Pi;jðlði; jÞÞ; ðsince ðs;dÞ maps to a unique linkÞ
b/ðiÞ/ðjÞ ¼

X
/ðiÞ;/ðjÞ

XT
/ðiÞ;iM/ðiÞ;/ðjÞX/ðjÞ;j

ci/ðiÞ ¼
X

i

PiðlðiÞÞE/ðiÞX/ðiÞ;i:

The above mapping enables us to transform any QBAP
to an OVMPP, implying QBAP is no harder than OVMPP.
Since QBAP is known NP-hard, we conclude the OVMPP
is also NP-hard.

References

[1] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, R. Chaiken, The nature
of data center traffic: measurements & snalysis, in: IMC ’09.
[2] J. Dean, S. Ghemawat, Mapreduce: simplified data processing on
large clusters, Commun. ACM (2008) 107–113.

[3] S. Ghemawat, H. Gobioff, S.-T. Leung, The google file system, in: SOSP
’03.

[4] M. Isard, M. Budiu, Y. Yu, A. Birrell, D. Fetterly, Dryad: distributed
data-parallel programs from sequential building blocks, SIGOPS
Oper. Syst. Rev. (2007) 59–72.

[5] R. Nathuji, K. Schwan, Virtualpower: Coordinated power
management in virtualized enterprise systems, in: SOSP ’07.

[6] N. Bobroff, A. Kochut, K. Beaty, Dynamic placement of virtual
machines for managing SLA violations, in: Integrated Network
Management, 2007.

[7] A.B. Nagarajan, F. Mueller, C. Engelmann, S.L. Scott, Proactive fault
tolerance for hpc with xen virtualization, in: ICS ’07.

[8] B. Li, J. Li, J. Huai, T. Wo, Q. Li, L. Zhong, Enacloud: an energy-saving
application live placement approach for cloud computing
environments, in: CLOUD ’09.

[9] H. Wang, H. Xie, L. Qiu, Y.R. Yang, Y. Zhang, A. Greenberg, Cope:
traffic engineering in dynamic networks, in: SIGCOMM ’06.

[10] D. Awduche, A. Chiu, A. Elwalid, I. Widjaja, X. Xiao, Overview and
Principles of Internet Traffic Engineering. RFC Editor, 2002.

[11] D. Applegate, E. Cohen, Making intra-domain routing robust to
changing and uncertain traffic demands: understanding
fundamental tradeoffs, in: SIGCOMM ’03.

[12] A. Dixit, P. Prakash, R. Rao Kompella, On the efficacy of fine-grained
traffic splitting protocols in data center networks, in: SIGCOMM ’11.

[13] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian, Y. Zhang, S. Lu,
BCube: A high performance, server-centric network architecture for
modular data centers, in: SIGCOMM, 2009.

[14] C. Guo, H. Wu, K. Tan, L. Shi, Y. Zhang, S. Lu, DCell: a scalable and
fault tolerant network structure for data centers, in: SIGCOMM,
2008.

[15] R.N. Mysore, A. Pamboris, N. Farrington, N. Huang, P. Miri, S.
Radhakrishnan, V. Subramanya, A. Vahdat, PortLand: a scalable
fault-tolerant layer 2 data center network fabric, in: SIGCOMM,
2009.

[16] M. Al-fares, S. Radhakrishnan, B. Raghavan, N. Huang, A. Vahdat,
Hedera: dynamic flow scheduling for data center networks, in: NSDI
’10.

[17] T. Benson, A. Anand, A. Akella, M. Zhang, The case for fine-grained
traffic engineering in data centers, in: INM/WREN ’10.

[18] C. Clark, K. Fraser, S. Hand, J.G. Hansen, E. Jul, C. Limpach, I. Pratt, A.
Warfield, Live migration of virtual machines, in: NSDI ’05.

[19] VMware, Vmware Vmotion for Live Migration of Virtual Machines,
2011, November. <http://www.vmware.com/products/vmotion/
overview.html>.

[20] KVM, Kvm Migration, 2011, November. <http://www.linux-kvm.org/
page/Migration>.

[21] Microsoft, Hyper-v Live Migration, 2011, November. <http://
technet.microsoft.com/en-us/library/dd446679>(WS.10).aspx.

[22] H. Jin, L. Deng, S. Wu, X. Shi, X. Pan, Live virtual machine migration
with adaptive, memory compression, in: 2009 IEEE International
Conference on Cluster Computing and Workshops, 2009, pp. 1–10.

[23] V. Shrivastava, P. Zerfos, K.-W. Lee, H. Jamjoom, Y.-H. Liu, S. Banerjee,
Application-aware virtual machine migration in data centers, in:
INFOCOM ’11.

[24] X. Meng, V. Pappas, L. Zhang, Improving the scalability of data center
networks with traffic-aware virtual machine placement, in:
INFOCOM ’10.

[25] D.S.C. Dias, L.H. MK, Online traffic-aware virtual machine placement
in data center networks, in: Global Information Infrastructure and
Networking Symposium (GIIS), 2012, IEEE, 2012, pp. 1–8.

[26] A.G. Vijay Mann, P. Dutta, A. Vishnoi, P. Bhattacharya, R. Poddar, A.
Iyer, Remedy: Network-aware steady state vm management for data
centers, in: Networking, 2012 Proceedings IFIP, 2012.

[27] M.C. Wenjie Jiang, T. Lan, S. Ha, M. Chiang, Dynamic vm placement
and routing in a data center network, in: MiniINFOCOM, 2012
Proceedings IEEE, 2012.

[28] J.A. Rajanna Vijay, S. Smit, G. Kartik, Explicit coordination to prevent
congestion in data center networks, Cluster Comput. 15 (2012) 183–
200. 10.1007/s10586-011-0156-9, <http://dx.doi.org/10.1007/
s10586-011-0156-9>.

[29] G.H. Fung Po Tso, K. Oikonomou, D.P. Pezaros, Implementing
scalable, network-aware virtual machine migration for cloud data
centers, in: CLOUD, 2013 Proceedings IEEE, 2013.

[30] M. Chowdhury, M. Zaharia, J. Ma, M. Jordan, I. Stoica, Managing data
transfers in computer clusters with orchestra, in: SIGCOMM ’11.

[31] T. Benson, A. Akella, D.A. Maltz, Network traffic characteristics of
data centers in the wild, in: IMC ’10.

http://refhub.elsevier.com/S1389-1286(14)00139-X/h0185
http://refhub.elsevier.com/S1389-1286(14)00139-X/h0185
http://refhub.elsevier.com/S1389-1286(14)00139-X/h0190
http://refhub.elsevier.com/S1389-1286(14)00139-X/h0190
http://refhub.elsevier.com/S1389-1286(14)00139-X/h0190
http://www.vmware.com/products/vmotion/overview.html
http://www.vmware.com/products/vmotion/overview.html
http://www.linux-kvm.org/page/Migration
http://www.linux-kvm.org/page/Migration
http://technet.microsoft.com/en-us/library/dd446679
http://technet.microsoft.com/en-us/library/dd446679
http://dx.doi.org/10.1007/s10586-011-0156-9
http://dx.doi.org/10.1007/s10586-011-0156-9

S. Zou et al. / Computer Networks 67 (2014) 141–153 153
[32] A. Greenberg, N. Jain, S. Kandula, C. Kim, P. Lahiri, D. Maltz, P. Patel, S.
Sengupta, VL2: a scalable and flexible data center network, in:
SIGCOMM, 2009.

[33] R.E. Burkard, Selected topics on assignment problems, Discrete Appl.
Math. 123 (1-3) (2002) 257–302.

[34] B.W. Kernighan, S. Lin, An efficient heuristic procedure for
partitioning graphs, Bell Syst. Technical J. 49 (1970) 291.

[35] M.W. Sung, S. Kyu, L. Jason, C.M. Sarrafzadeh, Multi-way partitioning
using bi-partition heuristics, in: ASPDAC, 2000.

[36] C.P. Ravikumar, Parallel Methods for VLSI Layout Design, Greenwood
Publishing Group Inc., Westport, CT, USA, 1995.

[37] C. Pluempitiwiriyawej, A New Hierarchical Clustering Model for
Speeding up the Reconciliation of xml-based, Semistructured Data in
Mediation Systems, Ph.D. Dissertation, 2001.

[38] D. Halperin, S. Kandula, J. Padhye, P. Bahl, D. Wetherall, Augmenting
data center networks with multi-gigabit wireless links, in:
SIGCOMM ’11.

[39] C. Clark, K. Fraser, S. Hand, J.G. Hansen, E. Jul, C. Limpach, I. Pratt, A.
Warfield, Live migration of virtual machines, in: NSDI ’05.

[40] R. Mccreadie, C. Mcdonald, I. Ounis, Comparing distributed indexing:
to MapReduce or not? in: 7th Workshop on Large-Scale Distributed
Systems for Information Retrieval, 2009.

[41] M. Zaharia, M. Chowdhury, M.J. Franklin, S. Shenker, I. Stoica, Spark:
Cluster computing with working sets, in: HotCloud, 2010.

Shihong Zou received his Bachelor of Engi-
neering degree in Computer Engineering from
Nanjing University of Posts and Telecommu-
nications (Nanjing, China) in 1999, and his
Ph.D. degree in communication and informa-
tion systems from Beijng University of Posts
and Telecommunications (BUPT) in 2004. He
is an Associate Professor at State Key Labora-
tory of Networking and Switching Technology
in Beijing University of Posts and Telecom-
munications. His research interests include
mobile security, wireless networking, and

network performance analysis. He has published over 40 papers in top
conferences and journals, and has applied over 20 patents.
Xitao Wen received his Bachelor of Science
degree in Computer Science from Peking
University (Beijing, China) in 2010, and is now
pursuing his Ph.D degree in Northwestern
University, US. His interests span the area of
networking and security in networked sys-
tems, with a current focus on software-
defined network security and data center
networking.
Yan Chen received my Ph.D. in Computer
Science from University of California at
Berkeley in December 2003, now is an asso-
ciate professor in Northwestern University,
US. His research interests are in computer
networking and large-scale distributed sys-
tems, network security, measurement, and
diagnosis. He won the DOE Early CAREER
Award in 2005, the DOD (Air Force of Scien-
tific Research) Young Investigator Award in
2007, and the Microsoft Trustworthy Com-
puting Awards in 2004 and 2005 with my

colleagues. Based on Google Scholar, his papers have been cited over 6500
times, and the h-index of his publications is 31 as of December 2013.
Kai Chen is an Assistant Professor with the Department of Computer
Science and Engineering, Hong Kong University of Science and Technol-
ogy, Hong Kong. He received his PhD from Northwestern University,
Evanston IL in 2012. His research interests include networked systems
design and analysis, data center networks, and cloud computing. He is
interested in finding simple yet deep and elegant solutions to real-world
networking and systems problems.

Shan Huang received her Bachelor of Engineering degree in Communi-
cation Engineering from Xi’an University of Posts and Telecommunica-
tions (Xi’an, China) in 2013, now is a postgraduate student in
communication and information systems from Beijing University of Posts
and Telecommunications (BUPT).Her research interests include wireless
networking and network performance analysis.

YongqiangLiu received his Bachelor of Engineering degree in Computer
Science from Harbin Institute of Technology (Harbin, China) in 2001,and
his Ph.D.degree in Computer Networking from Peking University in
2006.He worked as Researcher, Research Manager at NEC Laboratories
China from Jul.2011 to Feb.2012.Now is a Senior Research Scientist at
Hewlett-Packard Laboratories China.His research interests includewire-
less ad hoc network and wireless mesh network, data center networking,
parallel computing, and android networking research

Yong Xia is currently a principal engineer at Microsoft, Bellevue, WA,
USA. His research interests include computer networks and distributed
systems. He received a B.E. degree from Huazhong University of Science
and Technology, Wuhan, China, a M.E. degree from the Institute of
Automation, Chinese Academy of Sciences, Beijing, and a Ph.D. degree
from Rensselaer Polytechnic Institute, Troy, NY, in 1994, 1998, and 2004,
respectively. He is a Senior Member of IEEE and a Member of ACM.

Chengchen Hu received his B.S. degree from the Department of Auto-
mation, Northwestern Polytech-nicalUniversity, Xi’an, China, and his Ph.
D. degree from the Department of Computer Science and Technology,
Tsinghua University, in 2003 and 2008 respectively. He worked as an
assistant research professor in Tsinghua University from Jun. 2008 to Dec.
2010 andis now an associate professor in the MOE key lab for Intelligent
Networks and Network Security, Department of Computer Science and
Technology, in Xi’an Jiaotong University. His recent research interests is
computer networking systems, including network measurement and
monitoring, cloud data center networks, software defined networking. He
servers at the organization committee and technique program committee
of several conferences, e.g., INFOCOM, IWQoS, GLOBECOM, ICC, etc.

http://refhub.elsevier.com/S1389-1286(14)00139-X/h0200
http://refhub.elsevier.com/S1389-1286(14)00139-X/h0200
http://refhub.elsevier.com/S1389-1286(14)00139-X/h0205
http://refhub.elsevier.com/S1389-1286(14)00139-X/h0205

	VirtualKnotter: Online virtual machine shuffling for congestion resolving in virtualized datacenter
	1 Introduction
	2 Background and related work
	2.1 Traffic engineering in datacenter
	2.2 VM live migration and application

	3 Measurement and motivation
	3.1 Congestion within datacenter
	3.2 Traffic stability analysis

	4 Design
	4.1 Assumptions
	4.2 Online VM placement problem
	4.3 VM migration scheduling problem
	4.4 Algorithms
	4.4.1 Multiway ? -Kernighan–Lin Algorithm
	4.4.2 Simulated annealing searching
	4.4.3 Simulated annealing scheduling

	5 Evaluation
	5.1 Methodology
	5.1.1 Baseline algorithms
	5.1.2 Communication suites
	5.1.3 Metrics and settings

	5.2 Static performance
	5.3 Overhead
	5.3.1 Migration traffic
	5.3.2 Migration time
	5.3.3 Algorithm runtime

	5.4 Dynamic simulation

	6 Discussion
	6.1 Traffic stability
	6.2 One-time placement scheduling vs. dynamic replacement

	7 Conclusion
	Acknowledgements
	Appendix A Proof of problem complexity
	References

