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Abstract—Our measurements on production datacenter traffic
together with recently-reported results [1] suggest that datacen-
ter networks suffer from long-lived congestion caused by core
network oversubscription and unbalanced workload placement.
In contrast to traditional traffic engineering approaches that
optimize flow routing, in this paper, we explore the opportunity to
address the continuous congestion via optimizing VM placement
in virtualized datacenters. To this end, we present VirtualKnotter,
an efficient online VM placement algorithm to reduce congestion
with controllable VM migration traffic as well as low time
complexity. Our evaluation with both real and synthetic traf-
fic patterns shows that VirtualKnotter performs close to the
baseline algorithm in terms of link unitization, with only 5%-
10% migration traffic of the baseline algorithm. Furthermore,
VirtualKnotter decreases link congestion time by 53% for the
production datacenter traffic.

I. INTRODUCTION

Driven by technology advances and economies of scale,

datacenters are becoming the mainstream hosting platform for

a variety of infrastructure services (such as MapReduce [2],

GFS [3] and Dryad [4]) and data-intensive applications (such

as online social networking, searching, scientific computing).

Today’s datacenters usually form a multi-root multi-level

(typically 3 tiers) tree with some oversubscription ratios at

its aggregation and core layers. However, due to the massive

nature of communication pattern in the datacenter network, it

frequently exhibits high link utilization and even congestion at

aggregation or core layers [1]. While high resource utilization

is favorable for datacenter owners, network congestion can

cause harmful queuing delay and packet loss, and thus affects

the network throughput. These consequences could signifi-

cantly degrade application performance and user experience.

Therefore, addressing the congestion problem in datacenters

is a meaningful goal and is the focus of this paper.

To address this problem, we resort to an increasingly

adopted feature in modern datacenter - virtualization technol-

ogy. Live virtual machine (VM) migration, as an important

capability of virtualization technology, enables us to move a

live VM from one host to another while maintaining near

continuous service availability. Live VM migration provides

a new dimension of flexibility - rearranging VM placement

on the fly. Such spatial flexibility is proved to be effective

in several scenarios, including server consolidation, power

consumption saving, fault tolerance and QoS management

[5]–[8]. In our case, the spatial mobility also creates an

opportunity to solve the congestion problem. Through a better

VM placement, we can localize a majority of traffic under

ToR switches, balance the outgoing traffic, and thus resolve

congestion.

However, as a limitation, live VM migration usually takes

tens of seconds to transfer VM state and launch on the new

host, which means a new VM placement will not take effect

until all the transfers complete. Thus, to benefit from VM

shuffling, we expect long-term stability in the traffic, so that

we can predict the future traffic pattern and have time to

adjust VM placement. Although no previous measurement di-

rectly shows the traffic stability in datacenters, the prevalence

and massive nature of data-intensive applications indicate the

existence of long-term traffic pattern. For example, typical

applications like search engine indexing and logistic regression

tend to exhibit long runtime and lasting traffic pattern as we

will discuss in Section VI. Furthermore, such long-term traffic

pattern is witnessed in our measurement study. As we will

show in Section III, we collect and analyze an 18-hour traffic

trace from a production datacenter, and observe: a) highly

utilized core and aggregation network with lasting congestion

pattern; and b) a well-predictable end-to-end traffic at a time

granularity of tens of minutes. Such observations, coupled

with the popularity of datacenter virtualization technology,

point a potential avenue to address congestion via online VM

shuffling.

Following this, we propose to tackle the network con-

gestion problem through online VM shuffling. We choose

to minimize the maximum link utilization, and formulate it

as an optimization problem, which is shown to be a varia-

tion of the NP-hard quadratic bottleneck assignment problem

(QBAP). We therefore design VirtualKnotter, an incremental

heuristic algorithm that efficiently optimizes VM placement

with controllable VM migration overhead. We evaluate the

algorithm with various real-world and synthetic traffic patterns.

We specifically compare VirtualKnotter with a clustering-

based baseline algorithm that is expected to produce near-

optimal link utilization. Our results suggest that VirtualKnotter

achieves a link utilization performance that is close to the

baseline algorithm, but with only 5% to 10% migration traffic



compared with the baseline algorithm. Our simulation further

evaluates the total congestion time on each link before and

after applying VirtualKnotter. The result shows VirtualKnotter

is able to decrease link congestion time by 53%, demonstrating

the opportunity to exploit the hourly traffic oscillation via

online VM shuffling.

We summarize the main contributions of this paper as

follows:

1) We collect and make an in-depth analysis on the traffic

trace collected from a production datacenter1.

2) We formulate the online VM placement problem, prove

its NP-hardness, and propose VirtualKnotter.

3) We conduct extensive evaluation with both real and

synthetic traffic patterns to show the optimization per-

formance and algorithm overhead.

The rest of the paper is organized as follows. In Section II,

we discuss related studies and background techniques. Next

we present the measurement result in a production datacenter

in Section III. Then we describe the problem formulation and

the algorithm design in Section IV. In Section V, we evaluate

VirtualKnotter via extensive static and dynamic simulations

respectively. We discuss practical issues and limitations in

Section VI before concluding in Section VII.

II. BACKGROUND AND RELATED WORK

A. Traffic Engineering in Datacenter

Traffic engineering techniques have been investigated for

decades. In the context of Internet, traffic engineering is usu-

ally performed by optimizing flow routing and detouring traffic

away from congested links, so that the traffic is balanced and

the maximal link utilization is minimized [9]–[11]. Most of

those sophisticated traffic engineering techniques manipulate

route via changing the link weights and coupling with link

state protocols like OSPF and ISIS. While they naturally fit

ISP networks with nearly random topologies and high-end

routers, they may not be good options for datacenters with

relatively regular topologies and commodity switches, where

people usually deploy simple spanning tree forwarding and

ECMP [12]. Furthermore, many recently-proposed datacenters

such as BCube [13], DCell [14], PortLand [15], etc. have well-

defined topology and the routing is largely determined by the

base topology. Therefore, we cannot directly apply the existing

traffic engineering techniques to these datacenter scenarios.

Recently, several traffic engineering solutions have been

proposed to deal with unbalanced link utilization problem in

datacenters, such as Hedera [16] and MicroTE [17]. They

both proposed to arrange the traffic in flow granularity with

global knowledge of the traffic load. While providing non-

trivial advantages in dense structures with rich path diversity,

these approaches would have marginal use when the network

structure of datacenter is oversubscribed, and path diversity is

limited [18]. For instance, in a traditional tree-style network,

simultaneous flows have to traverse the oversubscribed core or

aggregation links if the sources and destinations do not locate

1The name of the production cluster is anonymized for privacy concern.

under the same top-of-rack switch, thus creating congestion.

In this scenario, only by relocating the communication corre-

spondents can we manage to mitigate the congestion on the

core and aggregation layers. At this point, our design in this

paper complements the existing approaches especially when

the network is oversubscribed.

B. VM Live Migration and Application

VM live migration was first proposed and implemented by

Clark, et al. [19], providing near continuous service during

VM migration. They reported as short as few hundreds of

milliseconds service downtime. Now, most of the popular VM

management platforms provide support for live migration as

a standard service, such as VMware vMotion [20], KVM

[21], Microsoft Hyper-V Server [22], etc. Live migration

technique delivers spatial mobility for VM placement strategy

in datacenters, along with the cost of extra migration traffic,

which could be 1.1x to 1.4x of VM memory footprint, or

0.34x to 0.43x if adopting appropriate compression [23]. With

such extra mobility, VM placement optimization is found

effective on server consolidation, power consumption saving,

fault tolerance, easier QoS management and so on [5]–[8].

Recently, several studies leverage VM migration or place-

ment to optimize the network metrics like traffic cost and end-

to-end latency [24], [25]. In [24], Shrivastava et al. proposed to

rebalance workloads across physical machines by shifting the

VMs away from overloaded physical machines. The goal was

to offload the overloaded physical machines while minimize

the congestion caused by the migration traffic. In [25], Meng

et al. proposed to minimize the traffic cost, which is quantified

in terms of traffic volume times the communication distance,

via VM placement. They proposed a min-cut clustering-based

heuristic algorithm whose runtime complexity is O(n4), where

n is the number of VMs. Worse, their algorithm did not

take into account the VM migration traffic, leading to a near

complete shuffling of almost all VMs in each round. Rela-

tive to these works, VirtualKnotter minimize the continuous

congestion mainly in core and aggregation links with runtime

overhead of O(n2 log n) and controllable migration traffic,

which enables online VM replacement at the granularity of

tens of minutes.

III. MEASUREMENT AND MOTIVATION

Recent measurement results in datacenter illustrate several

remarkable traffic properties in datacenter network.

• Congestion is ubiquitous in datacenter network. Specif-

ically, it is reported not rare to see above 70% link

utilization at a timescale of 100 seconds [1]. Such a

high utilization can cause serious packet drop, significant

queuing delay at the congested spots, and thus impacts

overall throughput. Those effects can degrade application

performance with both large data transfer and small

request-response flows.

• Datacenter network is frequently the bottleneck to

application-layer performance. For instance, Chowdhury

et al. show communication time account for 42%-70%



running time in MapReduce services [26]. This means

a decrease of 10% in communication time will result in

4.2%-7% performance gain, which is hard to achieve by

speeding up computing.

• Link utilization is highly divergent among core and

aggregation links within a datacenter. It is shown that the

highly utilized hot links usually account for less than 10%

of all the core and aggregation links, while other links

remain lightly utilized with utilization less than 1% [18],

[26]. Such phenomenon indicates the spatially unbalanced

utilization of network resources may be one of the

causes of the network congestion. This implies keeping a

spatially balanced resource demand may potentially have

the same benefit as provisioning bandwidth capacity at

hot spots.

However, despite those observations from previous measure-

ment studies, some traffic properties like congestion pattern

and long-term traffic stability still remain unclear. During our

study, we learn that those properties are essentially helpful to

design a traffic engineering scheme as well as to determine

the parameters for a specific datacenter.

In this section, we focus on obtaining quantitative knowl-

edge of congestion pattern (where and how long does conges-

tion occur?) and traffic stability at various granularities (how

stable is the traffic, viewing in the time scale of seconds,

minutes or hours?). We collected traffic matrices from a

production cluster with 395 servers, which run MapReduce-

like services. This cluster has a hierarchical structure with 4:1

oversubscription ratio. We aggregate the traffic matrices for

every 30 seconds, as shown in Figure 1. The dataset lasts

consecutively for about 18 hours.

Our measurement reveals three key observations with impli-

cations for the VirtualKnotter design. First, we find a majority

of congestion events last for tens of minutes, while the set of

congested links evolves over time. This observation demon-

strates the long-term communication pattern of the upper-

layer application, implying the potential benefit to conduct

traffic engineering at a timescale of tens of minutes. Second,

congestion events tend to be local, usually involving less

than 30% of links, which indicates temporarily unbalanced

traffic in the datacenter. Finally, we observe that over 60%

traffic volume is relatively stable at an hourly granularity.

This property allows for the prediction of future traffic matrix

with the previous ones, which is the key assumption of traffic

engineering techniques.

A. Congestion within Datacenter

a) Traffic Concentration: Figure 1 shows a typical traffic

matrix in our dataset. It presents a busy traffic matrix with

severe local congestion, which involves six out of ten racks

within the cluster. We can see the traffic is highly concentrated

within and across the upper and lower part of the cluster. In

fact, with further inspection into the link utilization, we find

the links among those racks have an average utilization of 65%

in the core and aggregation layer, with the highest of 80.3%. In

Fig. 1. An observed 30-sec traffic matrix. Each data point is the traffic
volume from a sender (x axis) to a receiver (y axis). Gray scale reflects traffic
volume in natural log of bytes.

the meantime, links associated with middle four racks remain

relatively idle.

b) Location and Duration of Congestion Events: To

further understand the spatial distribution and temporal du-

ration of congested links, we locate the congested links by

plotting them into a time series figure, as shown in Figure

2. We pick 60% utilization as the congestion threshold, but

other thresholds like 65% or 70% yields qualitatively similar

results. We define the term congestion event as the period

of time when the set of congested links keeps the same

without discontinuity of longer than five minutes. Using this

definition, we examine the congestion events in our trace,

resulting in two interesting findings. First, congestion events

exist and tend to be local during the observation period, with

no congestion event involving more than half of links. Instead,

a typical congestion event just involves about 1/3 of core

and aggregation links. Moreover, different congestion events

may consist of quite different sets of congested links. This

phenomenon indicates that the application’s communication

demand can distribute highly unevenly within a datacenter,

and that the traffic distribution evolves over time. Second, a

congestion event tends to last for an extended period of time.

We totally observe seven congestion events that last for at

least 20 minutes long. We further speculate such a continuous

congestion event may indicate an application-layer transfer

event, such as a MapReduce shuffle between mappers and

reducers.

B. Traffic Stability Analysis

Although there are measurement results demonstrating poor

predictability of traffic matrix at the timescale of tens of

milliseconds to hundreds of milliseconds [18], [27], we still

have little knowledge about long-term traffic stability in data-

centers. In this subsection, we design a stableness indicator and

conduct measurement in the dataset. Formally, the stableness
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Fig. 2. Time and locations of congestion observed in the datacenter. Each
circle represents a 30-second congestion occurred on a core or aggregation
link.

indicator is defined by

Stableness(tprev, tcurr) =
min(tprev, tcurr)

max(tprev, tcurr)
, (1)

where tprev and tcurr stand for traffic volume in the previous

epoch and the current epoch respectively. The fundamental

idea for stableness indicator is to estimate percentage the stable

part comparing two consecutive traffic states. For a traffic

matrix, we calculate a single stableness value for each element.

Then, we select 10% percentile, median, and 90% percentile

as the indicator of the entire distribution, as shown in Figure

3(a). Similar procedure is used to generate Figure 3(b).

We can simply interpret the stableness indicator as the

percentage of stable traffic volume in two consecutive epochs.

Figure 3(a) illustrates the stableness of end-to-end pairwise

traffic varying the timescales from 30 seconds to 4 hours.

We can see a range of 40% to 70% of traffic volume can

be expected stable, peaking at the timescale of 2 hours, which

demonstrates a good hourly predictability of the traffic matrix

in our dataset. Although the traffic stability varies greatly at

small timescales, the hourly traffic factor tends to concentrate

on about 60% with small oscillation. Furthermore, Figure 3(b)

demonstrates even better stability on core and aggregation

links, with the median stable traffic indicator larger than 90%.

The better stableness of upper-layer links is a result of traffic

aggregation as well as the constantly higher utilization.

Our experiment results reveal highly stable traffic demand

at an hourly granularity in a datacenter. Actually, such high

stable trace is not obtained by chance. Data-intensive appli-

cations tend to exhibit a similar stability, due to the massive

nature of data transfer and long computing time on distributed

computing node. We will discuss the traffic stability issue later

in Section VI.

The above findings motivate us towards an online VM

placement approach for congestion resolving, as the existing

of continuous congestion events, evolving congestion patterns

and good traffic predictability. We argue a considerable part

of continuous link congestion can be eliminated, or at least

mitigated, by evenly distributing outgoing traffic and local-

izing intra-datacenter traffic within a rack or nearby racks.

By exploiting the spatial mobility of VM placement in a

datacenter, we can potentially achieve both localized and
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(a) Stableness indicator of pairwise traffic volume
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Fig. 3. The fraction of traffic volume remains stable in two successive
periods. The bar value shows the median and error bar shows 10% and 90%
percentile.

balanced communication pattern, and thus benefiting from

higher throughput and lower queuing latency.

IV. DESIGN

In this section, we first formulate the online VM placement

problem using integer optimization language and analyze

its complexity. Then, we propose VirtualKnotter, a two-step

heuristic algorithm for efficient online VM placement.

A. Online VM Placement Problem

According to previous discussion, we want to achieve

following goals in the online VM placement scheme:

1) The optimized VM placement should minimize the con-

gestion status measured by a link congestion objective,

such as maximum link utilization.

2) The migration traffic should be controllable, i.e., pa-

rameters should be provided to control the number of

migrated VMs between the current VM placement and

the optimized VM placement.

3) The algorithm should be scalable, i.e., the runtime

overhead should be considerably less than the target

replacement timescale (tens of minutes) for a typical

sized datacenter.

Given above principles, we formulate the online VM place-

ment problem as follows.

Assumptions. We assume the datacenter is connected with

a hierarchical structure, such as a tree or multi-root tree. Note

that we aim to address congestion problem, which theoretically

does not exist in non-blocking network, such as fat tree or

VL2. Thus, we exclude those network structures from the

scope of our study. A server’s ability to host VM is constrained

by the server’s physical capacity, such as CPU/memory. Thus,

we assume a known number of VM hs can be hosted on a



certain server s, referring as VM slots. We further assume a

deterministic single-path routing in the datacenter network.

Input & Output. The online VM placement problem

accepts network routing P , traffic matrix M , external traffic

E and current VM placement X ′ as input, and generates

optimized VM placement X as output. We denote the network

routing by a binary-value function Ps,d(l), meaning whether

the traffic path from server s to d traverses through link

l. Similar notation Ps(l) represents the routing path going

outside the datacenter, meaning whether the traffic path from

server s to the gateway traverses through link l. As the

datacenter runs, we assume the traffic matrix Mi,j and external

traffic Ei for a certain period of time are also available. Mi,j

denotes the traffic volume from VM i to VM j. Ei denotes

external traffic volume from VM i to the gateway. Note, such

traffic statistics can be collected either by ToR switches or

VM hypervisors on each server without incurring considerable

overhead. Moreover, the problem also takes the current VM

placement matrix X ′ as input for incremental VM placement.

The output is the optimized VM placement matrix X . Both

Xi,s and X ′
i,s are binary-value matrix indicating whether VM

i is placed on server s.

Objective. We choose the maximum link utilization (MLU)

as the optimization objective. The MLU is determined by the

highest utilized link, which characterizes the worst congestion

status in a network during a period of time. Given the MLU

is widely adopted as the optimization goal in the context of

Internet traffic engineering [9]–[11], we believe it will also

be effective to represent the overall congestion status in a

datacenter network. With the preceding notations, we formally

define the following objective function

min
X

max
l

T (l,X)

C(l)
, (2)

T (l, X) =
∑

s,d

Ps,d(l)
∑

i,j

XT
i,sMi,jXj,d +

∑

s

Ps(l)EiXi,s,

where s (or s, d pair) enumerates all hosts (or host pairs) and

i, j pair enumerate all VM pairs. X is a valid VM place-

ment matrix, which satisfies two constraints:
∑

j Xi,j = 1 and
∑

i Xi,j ≤ hj . And l is a physical link between two switches.

Another constraint concerning the VM migration traffic is

modeled by the number of VMs needed to be migrated. The

migrated VM number is limited to be no greater than an input

threshold Th: 1
2sum|Xi,s −X ′

i,s| ≤ Th.

In the objective function, two parts in T (l,X) represent

respectively the internal traffic and external traffic traversing a

given link l. The inner maximum operator enumerates all links,

so as to seek for the MLU. The outer minimum operator finds

the lowest MLU among all valid VM placements. Therefore,

this objective function is to minimize the MLU.

Complexity. The above optimization problem falls into

the category of Quadratic Bottleneck Assignment Problem

(QBAP), which is a known NP-hard problem [28]. It is

conceivable that the variables Xi,s have quadratic form in the
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Fig. 4. Algorithm flowchart of VirtualKnotter. The diamond boxes are
input/output data, and the rectangle boxes are functions.

objective function and the overall problem is an assignment

problem with a quadratic bottleneck goal (minimum of maxi-

mum). We formally give the complexity proof by reducing the

QBAP problem to our problem in the Appendix.

B. Algorithm

In this subsection, we propose VirtualKnotter, a heuristic

algorithm to the online VM placement problem. We have

shown our problem is inherently NP-hard; and no efficient

exact solution can scale to the size of a typical datacenter.

Therefore, we resort to an intuitive heuristic approach.

Intuition 1: Incremental local search is preferred rather

than clustering, in order to satisfy migration traffic con-

straint. So far as our knowledge goes, there is no clustering

algorithm that is able to balance the optimality and number of

elements that move across clusters. However, for local search,

it is inherently easy to keep track of the searching depth, which

is equivalent to migration traffic in our case.

Intuition 2: A good initial placement is needed to speed

up local search. Searching usually takes long and uncertain

amount of time, which we do not want in online algorithm.

A possible way to speed up searching is to provide a good

estimation as the initial solution. We find that an efficient algo-

rithm that improves traffic localization may satisfy our require-

ments. More localized traffic means that greater percentage of

data is exchanged within a rack or nearby racks. Although not

exactly the same, traffic localization shares similar objective

with the MLU goal. This is because congestion often occurs

at core and aggregation links, where the localization algorithm

aims to offload traffic from.

Based on the above intuitions, we propose a two-step

heuristic algorithm: we borrow and adapt the multi-way

Kernighan-Lin graph partitioning algorithm to generate initial

VM placement with better localized traffic [29], [30]. Then, we

employ the simulated annealing algorithm to further optimize

the MLU. To avoid excessive VM migration, we only invoke

VirtualKnotter when the minimum invocation time interval is

met and link congestion is observed in the network. Figure 4

shows the high-level logic flow of the algorithm. And we

present the pseudo-code in Algorithm 1, Algorithm 2 and

Algorithm 3.

1) Multiway θ-Kernighan-Lin Algorithm: The key idea of

the Kernighan-Lin graph partitioning algorithm is to greedily

swap elements across clusters, thereby iteratively reduce the

overall weight of a graph cut. We adapt the algorithm by

introducing a migration coefficient θ, in order to constrain



Algorithm 1 Multiway θ-Kernighan-Lin Procedure

Require: M (Traffic matrix), T (Network topology),

X(Current VM placement)

for all layer in T do

Sort element set E ∈ X on layer by outgoing traffic

while |E| ≥ 2 do

Split elements into two half interleavingly, resulting in

S1 and S2

θ-Kernighan-Lin-Improve(M,S1, S2)

E ← S1 and S2 respectively

end while

end for

return X

Algorithm 2 θ-Kernighan-Lin-Improve

Require: M (Traffic matrix), S1, S2(VM sets), θ(Migration

coefficient)

CurrGain← 0, Gain← {empty list}
Initialize the migration gain D(i),
where D(i) =

∑

j 6∈S(i) M(i, j)−
∑

j∈S(i) M(i, j)

for s = 1 to 1
2θ ∗min(len(S1), len(S2)) do

Swap the VM pair (i, j) ∈ (S1, S2), which has maximum

G(i, j) = D(i) +D(j)− 2 ∗M [i, j]
CurrGain = CurrGain+G(i, j)
Gain.append(CurrGain)
Update D: D(k) = D(k)+M(k, j)−M(k, i), if k ∈ S1

D(k) = D(k) +M(k, i)−M(k, j), if k ∈ S2

end for

return max(Gain) and corresponding VM sets S′1, S
′
2

the migration cost of improved VM placement. This heuristic

algorithm is originally used in the layout design of circuits and

components in VLSI [31], where an efficient heuristic solution

for the minimum graph cut problem is needed. In our scenario,

we adapt the Kernighan-Lin algorithm for the purpose of

improving the traffic localization and reduce the traffic load on

core and aggregation layers. The algorithm runs on the original

VM placement hierarchically in a top-down manner. In each

layer, it bisects the VM clusters and calls θ-Kernighan-Lin-

Improve procedure for bisection improvement. The procedure

swaps elements between two clusters iteratively and greedily

according to the Gain on the cut weight reduction. Note that

the number of iterations is limited by migration coefficient

θ, so as to avoid VM swaps which only bring marginal

benefit. The runtime complexity of Multiway θ-Kernighan-Lin

Algorithm is O(n2 log n), where n is the number of VMs.

2) Simulated Annealing Searching: In this step, we need to

efficiently search for a fine-grain solution of minimizing MLU.

We employ the simulated annealing algorithm, which is known

efficient in searching in an immense solution space. The initial

VM placement accepts as input the output of the multiway θ-

Kernighan-Lin algorithm. The function Energy estimates and

returns the MLU for a given VM placement. In each iteration,

a neighboring state Neighbor(X) is generated by swapping

Algorithm 3 Simulated Annealing Procedure

Require: M (Traffic matrix), P (Network routing), X ′(Current

VM placement), Nmax(Max iterations), θ(Migration coeffi-

cient)

X,Xbest ← X ′

E,Ebest ← Energy(M,P,X)
for T ← Nmax to 0 do

Xnew ← Neighbor(X)
Enew ← UpdateEnergy(M,P,X)
if P (E,Enew, T ) > Rand() and Diff(X,X ′) < θ

then

X ← Xnew, E ← Enew

end if

if E < Ebest then

Xbest ← X , Ebest ← E

end if

end for

return Xbest

a VM pair that can offload traffic from the most congested

link. To find such a VM pair, we conceive a heuristic: we

seek for two distinct and heavily communicated pairs over the

congested link, pick one VM from each pair, and swap them.

Then, we move to a neighboring state with a certain acceptance

probability P , which depends on the energy of current and

neighboring placement as well as current temperature T. The

acceptance probability we use is defined as

P (E,Enew, T ) =

{

1 if Enew < E

ec(E−Enew)/T if Enew ≥ E

The temperature is decreased with each iteration until stopped

at zero, allowing a higher probability to move to a worse

placement with a high temperature. This behavior allows

simulated annealing algorithm to avoid stuck at the local

minima. The complexity of the simulated annealing has two

components: the initialization requires O(n2); each simulated

annealing iteration requires O(n). Thus, the overall complexity

is O(n2 + Nmax ∗ n), where Nmax is maximum number of

iterations.

V. EVALUATION

In this section, we describe our evaluation of VirtualKnotter

in three aspects: static performance, overhead and dynamic

performance. The goal of these experiments is to determine

the benefit as well as the cost when deploying VirtualKnotter

and the baseline algorithms.

A. Methodology

1) Baseline Algorithms: We compare VirtualKnotter with

a clustering-based placement algorithm. The advantage of

clustering algorithm lies in the fact that clustering produces

near optimal traffic localization. However, to the best of our

knowledge, clustering algorithm cannot be trivially adapted

to perform an incremental optimization, which implies nearly

100% of VMs need to be migrated in each round. Also,



clustering algorithms usually have a runtime complexity no

less than O(n3), where n is the number of VM number.

Thus, in our evaluation, we treat the clustering algorithms

as a reference of the optimization performance without limit

on runtime and migration traffic. Among many available

clustering algorithms, we select a variation of hierarchical

clustering algorithm, which is able to specify the cluster size

constraint [32]. We run the clustering algorithm following

a top-down order according to the network topology. We

later map each cluster into a switch and VM into a physical

machine. The runtime complexity of the algorithm is O(n3).
The detailed description is referred to the original paper [32].

We also select each single step of VirtualKnotter, namely the

Multiway θ-Kernighan-Lin algorithm (KL) and the simulated

annealing algorithm (SA) as baseline algorithms. The purpose

is to show how the combination of algorithms actually benefits

compared with individual steps.

2) Communication Suites:

• Real-world Traces: We use the collected traffic trace

described in Section III. The traffic trace is collected from

a production cluster with 395 servers and an oversubscrip-

tion ratio of 4:1 in the core layer. The collected data has

a time granularity of 30 seconds, and lasts for nearly 18

hours.

• Measurement-based Patterns: In order to test the s-

calability of the algorithm, we derive the measurement-

based patterns from the measurement results by Kandula

et al. [1]. First, we derive host communication pattern

from both the inter-rack and intra-rack correspondent

distribution. Then, we assign traffic volume to each pair

of hosts, according to the traffic volume distribution. The

VM number is 10K, and the physical topology is assumed

hierarchical with an oversubscription ratio of 10:1.

• Hotspot Patterns: Recent measurement revealed highly

skewed traffic patterns often exist in production datacen-

ter, known as hotspot pattern [18] [33]. We synthesize

such traffic pattern by randomly select ToR switches as

hotspots, connect the individual servers under hotspots

with a number of servers under normal ToRs, and assign

a constant large traffic volume to each connection. The

VM number is 10K, and the physical topology is assumed

hierarchical with an oversubscription ratio of 10:1.

3) Metrics and Settings: First, we evaluate the static algo-

rithm performance by measuring the maximum link utilization.

We compare VirtualKnotter against KL, SA and clustering

algorithm, as well as the original VM placement without any

optimization. Then, we evaluate the algorithm overhead in

the sense of both additional migration traffic and algorithm

runtime. Finally, we simulate the real scenario and evaluate

the overall algorithm performance on dynamic congestion

resolving. We replay the time-series traffic and run the algo-

rithm on current traffic pattern, resulting in an optimized VM

placement. Then, we apply the optimized VM placement on

the next traffic pattern, and inject additional VM migration

traffic into network. We compare the link congestion time

(link∗minute) varying the replacement timescale. Note, the

migration coefficient θ is set to 0.1 in both KL and SA.

B. Static Performance

Figure 5 shows the maximum link utilization before and

after applying the algorithms. Every data point represents

a communication pattern of a collected or synthetic traffic

matrix. We try to minimize the maximum link utilization; thus

the curve close to the upper left corner is favorable. From the

figures, we find VirtualKnotter significantly outperforms both

KL and SA, and has a similar static performance as Clustering

algorithm, which serves as a reference to the upper bound.

This result illustrates that through combination VirtualKnotter

provides qualitative improvement over both KL and SA. It

is worth to note that VirtualKnotter requires significantly

less VM migration compared with Clustering-based algorithm

(5%-10% vs. ∼100%), which will be analyzed in detail in the

following subsection.

C. Overhead

1) Migration Traffic: VM migration introduces consider-

able bulk data transfer into the datacenter network. To un-

derstand the counter-effect, we need to quantitatively measure

how large volume of the additional migration traffic we should

expect for each algorithm. We model the VM migration as bulk

data transfer. We assume each VM has a memory footprint of

2 gigabytes, which will result in 2.2 to 2.8 gigabytes bulk

transfer using live migration [34]. Thus, we take the median

2.5 gigabytes as the extra traffic volume for each migrated VM

in the simulation. We plot the relative traffic volume for both

VirtualKnotter and the baseline algorithm in Figure 6. From

the figure, we observe that the baseline algorithm introduces

around 10% traffic volume of goodput with the timescale of

30 minutes. The traffic overhead of VirtualKnotter is over

one order of magnitude less than Clustering algorithm, which

ranges between 0.2% and 1% of goodput.

2) Algorithm Runtime: The runtime overhead of Virtual-

Knotter is shown in Figure 7. It is evident from the figure,

that VirtualKnotter consumes tens of seconds for a typical

virtual datacenter or tenant with thousands of VMs, and scales

much better than the baseline algorithm. Also the runtime

overhead of VitualKnotter is considerably less than the target

replacement granularity which is tens of minutes, thereby

enabling the online VM replacement.

D. Dynamic Simulation

We conduct simulation to evaluate the dynamic performance

of both VirtualKnotter and the baseline algorithm considering

migration traffic. We replay the real-world traces and run

both algorithms at a variety of timescales. The optimized VM

placement resulted from previous period of time is deployed

on the next period, introducing sudden migration traffic burst.

The migration traffic is modeled exactly the same as in

Subsection V-C. Figure 8 shows the total link congestion

time (link∗time) of all core and aggregation links varying

replacement granularity. The figure demonstrates that, even
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Fig. 5. Static algorithm performance in terms of maximum link utilization.

considering migration overhead, VirtualKnotter still manages

to harvest the benefit of over one half less link congestion time

at timescales of 30 minutes, one hour or two hours. On the

contrary, the baseline algorithm, due to the migration traffic,

exhibits a worse congestion status than original placement,

with a 7.8% to 230.6% higher link congestion time compared

with original placement.

Figure 9 presents the locations and durations of congestion

before and after applying VirtualKnotter. From the figure, we

can see that most of the continuous congestion events are re-

solved by VM replacement right after detected, demonstrating

VirtualKnotter is effective on resolving long-lived congestion
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event. The benefit is harvested at the cost of dispersed short-

lived congestion events caused by the burst of migration

traffic. Such congestion events are normally aligned with VM

replacement events, and last for only one to two minutes. We

believe such ephemeral congestion events are more tolerable

by applications in datacenter and yield far less negative effects

compared with the continuous congestion events.
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Fig. 9. Algorithm performance in term of congestion timeseries. Each circle represents a 30-second congestion occurred on a core or aggregation link.

VI. DISCUSSION

Traffic Stability: VirtualKnotter manifests good perfor-

mance on resolving static congestion with VM placement

shuffling. However, in a real-world setting, we have to predict

the future traffic pattern based on history records; thereby

the traffic stability may have considerable impact on the

accuracy of prediction. We admit that VirtualKnotter is not

suitable for datacenters with highly dynamic traffic. Although

we observe an average proportion of 40% to 70% of traffic

remains stable within our target timescales, we understand

the traffic properties highly depend on the application layer.

We argue that data-intensive applications would most likely

exhibit a similar stability with our measurement result due to

the massive nature of data pre-fetch, intermediate result shuffle

and result transfer. For example, the distributed indexing time

for a search engine is estimated over 10000 seconds and 4000
seconds in the map phase and the reduce phase respectively by

McCreadie et al. [35]. During the whole period, network can

suffer from high utilization with a continuous traffic pattern.

Logistic regression, as a representative machine learning al-

gorithm, involves tens of MapReduce iterations, which lasts

for an hour to train the model on a 29GB dataset [36].

Again, traffic pattern among iterations is not likely to change

greatly. Therefore, we believe there are a part of data-intensive

applications that will exhibit a similar long-term stability in

datacenters.

One-time placement scheduling vs. Dynamic replace-

ment: We propose a dynamic VM replacement scheme in

this paper. For those datacenter whose traffic pattern evolves

over time, we have shown that dynamic replacement scheme

can effectively harvest from the traffic oscillation. However,

we notice that there exist applications with relatively constant

traffic patterns. For those applications, it is probably sufficient

to conduct one-time placement scheduling rather than dynamic

replacement. We leave the identification of such constant

traffic pattern and determination of best replacement timescale

as our future work.

VII. CONCLUSION

In this paper, we present VirtualKnotter, a novel online

VM placement algorithm for resolving link congestion in

datacenter network. VirtualKnotter exploits the flexibility of

VM placement in virtualized datacenter, for the purpose of

improve traffic localization and balance link utilization. Virtu-

alKnotter strikes a good balance between resolving congestion

and introducing migration traffic, resulting in an efficient and



practical VM placement algorithm. We evaluate VirtualKnot-

ter via static experiments and extensive dynamic simulation.

Our results suggest that VirtualKnotter delivers over 50% of

congested time reduction with negligible overhead.
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APPENDIX

PROOF OF PROBLEM COMPLEXITY

We prove the complexity of the online VM placement prob-

lem (OVMPP) by reducing quadratic bottleneck assignment

problem (QBAP) to OVMPP [28]. The QBAP problem is

formally described as following: given three n-by-n matrices

A = (aij), B = (bkl) and C = (cik) with non-negative

real values. One wants to find the optimal permutation φ(i),
which satisfies a one-to-one mapping from N to N (N =
{1, 2, ..., n}). The objective function is

min
φ

max
1≤i,j≤n

aijbφ(i)φ(j) + ciφ(i).

Now, we want to map objective Function 2 to the above

goal, to show for any QBAP instance we can transform it

to an OVMPP in polynomial time. In fact, we can rewrite

assignment matrix X to permutation φ(i) by assign different

index for each VM slot. We further assume a full-meshed

network, where each source destination pair (s, d) uniquely

connected by a physical link l(s, d). Thus, we have the

following reduction mapping

aij =
∑

i,j

Pi,j(l(i, j))

= Pi,j(l(i, j)), (since (s,d) maps to a unique link)

bφ(i)φ(j) =
∑

φ(i),φ(j)

XT
φ(i),iMφ(i),φ(j)Xφ(j),j

ciφ(i) =
∑

i

Pi(l(i))Eφ(i)Xφ(i),i.

The above mapping enables us to transform any QBAP to

an OVMPP, implying QBAP is no harder than OVMPP. Since

QBAP is known NP-hard, we conclude the OVMPP is also

NP-hard.


