
IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 4, AUGUST 2017 2281

Toward A Scalable, Fault-Tolerant,
High-Performance Optical Data

Center Architecture
Kai Chen, Xitao Wen, Xingyu Ma, Yan Chen, Fellow, IEEE, Yong Xia, Senior Member, IEEE,

Chengchen Hu, Qunfeng Dong, and Yongqiang Liu

Abstract— Optical data center networks (DCNs) are becoming
increasingly attractive due to their technological strengths com-
pared with the traditional electrical networks. However, existing
optical DCNs are either hard to scale, vulnerable to single point
of failure, or provide limited network bisection bandwidth for
many practical data center workloads. To this end, we present
WaveCube, a scalable, fault-tolerant, high-performance optical
DCN architecture. To scale, WaveCube removes MEMS,1 a
potential bottleneck, from its design. WaveCube is fault-tolerant,
since it does not have single point of failure and there are
multiple node-disjoint parallel paths between any pair of top-of-
rack switches. WaveCube delivers high performance by exploiting
multi-pathing and dynamic link bandwidth along the path. For
example, our evaluation results show that, in terms of network
bisection bandwidth, WaveCube outperforms prior optical DCNs
by up to 400% and is 70%–85% of the ideal non-blocking
network (ı.e., theoretical upper bound) under both realistic and
synthetic traffic patterns. WaveCube’s performance degrades
gracefully under failures—it drops 20% even with 20% links cut.
WaveCube also holds promise in practice—its wiring complexity
is orders of magnitude lower than Fattree, BCube, and c-Through
at scale, and its power consumption is 35% of them.

Index Terms— Data center networks, network structure,
optical networking.

Manuscript received March 25, 2015; revised February 6, 2016 and
January 28, 2017; accepted March 7, 2017; approved by IEEE/ACM TRANS-
ACTIONS ON NETWORKING Editor S. Sengupta. Date of publication April 14,
2017; date of current version August 16, 2017. This work was supported by
the Hong Kong RGC under Grant GRF-16203715, Grant ECS-26200014,
Grant GRF-613113, and Grant CRF-C703615G. (Corresponding author:
Kai Chen.)

K. Chen is with The Hong Kong University of Science and Technology,
Hong Kong (e-mail: kaichen@cse.ust.hk).

X. Wen is with Google, Mountain View, CA 94043 USA (e-mail:
xitao.wen@gmail.com).

X. Ma is with the University of California, Los Angeles, CA 90095, USA
(e-mail: mxy020426@gmail.com).

Y. Chen is with Northwestern University, Evanston, IL 60208 USA (e-mail:
ychen@northwestern.edu).

Y. Xia is with Microsoft, Redmond, WA 98052 USA (e-mail:
xy12180@gmail.com).

C. Hu is with Xi’an Jiaotong University, Xi’an 710048, China (e-mail:
huc@ieee.org).

Q. Dong is with DataBox Ltd., Suzhou 215123, China (e-mail:
dong.qunfeng@gmail.com).

Y. Liu is with NEC Labs China, Beijing 100084, China (e-mail:
liuyq7809@gmail.com).

Digital Object Identifier 10.1109/TNET.2017.2688376
1Micro-Electro-Mechanical-System–one of the most popular optical circuit

switches used as the main component by many recently-proposed optical
DCNs [15], [18], [39].

I. INTRODUCTION

A. Motivation

Nowadays, data centers are being built around the world
to support various Internet applications and cloud services
such as web search, online social networks, scientific com-
puting, and data analysis (e.g., GFS [20], Mapreduce [17]
and Dryad [26]). As a result, people have been investi-
gating new data center structures with the goal to better
meet the bandwidth requirement of these applications. The
current representative designs include pure electrical structures
(e.g., BCube [22], DCell [23], Fattree [10], PortLand [32],
VL2 [21], CamCube [9], and Jellyfish [37]) and optical/
electrical structures (e.g., Helios [18], c-Through [39],
OSA [15], and Mordia [34]). However, these existing DCN
designs fall short.

Electrical DCNs: Initially, people statically provision uni-
formly high capacity between all servers using sophisti-
cated designs like Fattree [10], BCube [22], and VL2 [21]
with pure electrical devices. While this approach seems to
be the only way to prevent any communication bottleneck
assuming arbitrary traffic demands, it suffers from signifi-
cant wiring challenge and management complexity. Further-
more, full bisection bandwidth at the scale of the entire
data center is not necessary given not so many real appli-
cations require such high bandwidth at this scale [18]. This
leads to a dilemma: the network must be fully provisioned
against any localized congestion despite the fact that, at
any time, certain parts of network are rarely used or even
sit idle.

In addition, the industry recently has an increasing trend
towards deploying 10 GigE NICs at end hosts. As an evidence,
Google has already deployed 10 GigE and is pushing for
40/100 GigE [29], [31], [35]. However, copper cables would be
unsustainable for 10 GigE over 10 meters due to the intrinsic
tradeoff between the length, power budget, and high electrical
loss at higher data rate [18]. This results in another dilemma
for high-speed electrical DCN designs.

Optical DCNs: To solve these dilemmas, optical
network technologies, due to their ability to dynamically
provision bandwidth resources across the network and support
high bit-rate (e.g., 64 Tb/s) over long distance, have been
introduced in recent optical DCNs such as Helios [18],
c-Through [39], OSA [15], and Mordia [34]. Most of these

1063-6692 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

2282 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 4, AUGUST 2017

TABLE I

SUMMARY OF PRIOR OPTICAL DCNS AND COMPARISON TO WAVECUBE

optical designs explore the reconfigurability of MEMS-based2

optical switches to set up optical circuits for bandwidth
demanding parts of the network. They have made significant
contributions in pointing out a promising direction for
building thin dynamic structures instead of the fat static ones
as above. However, we find that the following important issues
have not been fully attended in these existing optical DCNs.

• Scalability: MEMS is the central switch to connect all
ToR switches, thus the low port density of MEMS limits
the scalability. For example, today’s largest MEMS has
320 ports and only supports 2560 servers in OSA [15].
A natural way to scale is to interconnect multiple MEMSes
in the form of multi-stage fattree [39]. Unfortunately, as
we will show in Section II, the properties of MEMS make
it (both technically and economically) hard to scale optical
DCNs in this way. Practical and economic scaling of optical
DCNs still remains a challenge.

• Performance: c-Through and Helios
set up one-hop optical circuits between ToRs on-demand
but with low fan-in/out, which greatly restricts their per-
formance when hotspots occur with high fan-in/out – a
common pattern in real DCN workloads [25], [28]. For
example, people see real cases where even the top 5 ToR
neighbors cumulatively add up to a small fraction of load
on hotspots [25]. In such scenarios, c-Through circuits can
only offload less than 20% of the traffic since a ToR can
only connect one other ToR at a time. OSA [15] solves this
problem via multi-hop routing on a k-regular topology (each
ToR connects k other ToRs). However, there is a tradeoff
between k and network scale.

• Fault-tolerance: Both c-Through and OSA have all ToRs
connect to a central MEMS, creating a single point of
failure. Mordia [34] resides on a ring, any link cut will break
the ring and affect the connectivity. Helios can have multiple
MEMSes to connect all Pods to increase fault-tolerance,
however, one additional MEMS will impose $160,000 cost,
which is expensive.
Considering these, our goal is to design a scalable, fault-

tolerant and high performance optical DCN architecture
(Table I). To the best of our knowledge, none of existing
optical DCNs can achieve all these properties simultaneously.

B. Our Approach and Contributions

Given that MEMS is the bottleneck for scalability and it is
hard to interconnect multiple MEMSes to scale, we take the

2While Helios/c-Through/OSA use 3D MEMS based switches, Mordia [34]
uses Nistica wavelength selective switches which contain Texas Instruments
DLP 2D MEMS-based switches. Note that such 2D technology has different
optical properties, e.g., smaller port count, faster switching speed, and greater
insertion loss, etc.

contrary approach: instead of adding multiple MEMSes, we
completely remove it from our design. Without MEMS, the
network can easily scale. As a side-effect, however, we lose
the dynamic topology. But this gives us a chance to develop
more advanced routing mechanisms which otherwise cannot
be easily achieved in a dynamic topology.

Our general design principle in WaveCube is to use multi-
path routing and dynamic link bandwidth scheduling on each
path to compensate the loss of not having dynamic topol-
ogy, while achieving scalability. Furthermore, after removing
MEMS, fault-tolerance can be obtained since we eliminate the
single point of failure.

This paper makes the following contributions:

• We design WaveCube, a new MEMS-free optical DCN
architecture that achieves scalability, fault-tolerance, and
high-performance simultaneously (Section III). Specifically,
WaveCube easily scale up to hundreds of thousands of
servers. It delivers high performance and fault-tolerance
by exploiting multi-pathing and dynamic link bandwidth
on each path—in terms of network bisection bandwidth,
WaveCube outperforms prior optical DCNs by up to 400%
and is 70%-85% of the ideal non-blocking network with
both realistic and synthetic traffic patterns; its performance
degrades gracefully in case of failures—a 20% drop even
with 20% links cut.

• By exploiting WaveCube topology properties, we introduce
a polynomial-time optimal solution to wavelength assign-
ment for dynamic link bandwidth (Section IV), which is a
challenging problem remains unsolved in previous optical
DCN [15].

• We inspect the practical deployment issues of WaveCube,
and show that it holds promise in practice (Section VI). For
example, using a practical model, we find that WaveCube
is easy to build—its wiring complexity is 2-3 orders of
magnitude simpler than Fattree/BCube and 1 order simpler
than c-Through at large scale. Furthermore, it incurs low
cost and consumes minimal power of all.
It is also worthwhile to note that WaveCube achieves all

its design goals without requiring any advanced, expensive
optical devices beyond what are used by existing optical
DCNs [15], [18], [34], [39]. Our strategy is to better orches-
trate them to realize our aims. We have presented a hardware
feasibility analysis for implementing WaveCube, however,
building a non-trivial, fully functional WaveCube prototype
is our next step effort and is beyond the scope of this paper.
Our hope is that the design, analysis, and extensive simulations
conducted in this paper will pave the way for the next step of
prototyping.

II. BACKGROUND

Optical network technologies have been extensively intro-
duced in optical DCNs [15], [18], [39]. We overview the main
devices and their properties. For more details, please refer to
those papers.

MEMS-based Optical Switch: MEMS works on the physical
layer. It is a bipartite N×N circuit switching matrix, which
allows any input port to be connected to any one of the output

CHEN et al.: TOWARD A SCALABLE, FAULT-TOLERANT, HIGH-PERFORMANCE OPTICAL DATA CENTER ARCHITECTURE 2283

ports by mechanically rotating micro-mirrors. The switching
time of MEMS is around 10 milliseconds [38].

Wavelength Selective Switch (WSS): A WSS unit is a 1×N
optical device for wavelength de-multiplexing. It has one
common incoming port and N outgoing ports. It can divide
all the wavelengths from the common incoming port into
N groups, with each group going via an outgoing port. The
WSS is run-time reconfigurable (around 10 milliseconds).

Wavelength Division Multiplexing (WDM): WDM encodes
multiple non-conflict wavelengths onto a single fiber. Depend-
ing on the channel spacing, up to 100 wavelengths can be
carried on a fiber in the conventional or C-band. In optical
DCNs, a wavelength is usually rate-limited by the port of the
electrical switch it is connected to, e.g., 10Gbps.

Others: There are other optical devices such as circula-
tor, transceiver, coupler, etc. Circulator enables bidirectional
transmission over a fiber so that MEMS ports can be used
efficiently. Transceiver converts between electrical and optical
signals on ToR switches. Coupler multiplexes multiple wave-
lengths onto a fiber (similar but simpler than multiplexer).

III. THE WAVECUBE ARCHITECTURE

In this section, we present the WaveCube architecture.
We first introduce its topology, multi-pathing and dynamic
link bandwidth. Then, we show how to use multi-pathing and
dynamic link bandwidth for network performance.

A. WaveCube Topology

In WaveCube (Figure 1), servers are connected to ToRs,
and ToRs are directly connected to each other via optical
components which provide dynamic link bandwidth between
ToRs (Section III-C). There is no aggregate or core layers.
At ToR level, it is a n-dimensional cube where the ith dimen-
sion has ki ToRs in a loop, i.e., a (kn−1, kn−2, · · · , k0)-radix
topology.3 In our design, we assume every ki is even.

Each ToR has an address array A = (an−1, an−2, · · · , a0),
where ai ∈ [0, ki − 1].

The distance between two ToRs A and B, which we
call WaveCube distance, is DW (A, B) =

∑n−1
i=0 ω(ai − bi),

where ω(ai − bi) = min{|ai − bi|, ki − |ai − bi|}. For
example, in Figure 1, where n = 2 and k0 = k1 = 4,
DW ((1, 1), (3, 4)) = 2 + 1 = 3. Two ToRs A and B are
neighbors in WaveCube if and only if DW (A, B) = 1. In other
words, their address arrays only differ in one dimension, and
only differ by 1 (mod ki).4

Lemma 1: A WaveCube network is composed of
∏n−1

i=0 ki

ToRs and n
∏n−1

i=0 ki ToR links (bidirectional).
Lemma 2: The diameter of a WaveCube network (i.e., the

longest shortest path between all ToR pairs) is
∑n−1

i=0
ki

2 .
Scalable Topology: Lemma 1 and Lemma 2 indicate that

a k-ary-n-cube WaveCube contains N = kn ToRs and

3Essentially, WaveCube is a generalized k-ary-n-cube [16] with variable
radices. CamCube [9] also used a k-ary-n-cube, 3D Torus, for its server-
centric network topology. WaveCube differs from CamCube in that it is
switch-centric and, more importantly, the link bandwidth of WaveCube can
be dynamically adjusted.

4WaveCube distance is similar to Lee distance [4], but with different radix
values in certain dimensions.

Fig. 1. The WaveCube architecture.

its diameter is nk
2 = n

n√
N

2 = k logN
k

2 , which shows that
WaveCube diameter scales nicely with the number of ToRs.
The total number of optical links scales linearly with and is
always n times the number of ToRs. For example, using a
4-ary-8-dimensional WaveCube, 65,536 ToRs can be con-
nected into a DCN whose diameter is 16, accommodating
2,097,152 servers (assuming 32 servers per ToR).

Centralized Control: Note that WaveCube employs a cen-
tral controller to manage the network, such as fault-tolerant
routing, bandwidth scheduling, etc. This is inspired by many
other DCN designs [15], [18], [21], [22], [32], [39].

B. Multi-pathing: Routing and Fault-tolerance

Node-disjoint paths between two ToRs provide a means
of selecting alternate routes and increase fault-tolerance.
WaveCube provides 2n node-disjoint paths between every pair
of ToRs, which is maximum since every ToR is only connected
to 2n neighbor ToRs.

Theorem 1: WaveCube contains 2n node-disjoint paths
between every pair of ToRs.

Proof: Suppose DW (A, B) = l and DH(A, B) = h
(Hamming distance, i.e., the number of digits on which
A and B differ), we can find 2n node-disjoint paths as follows.
(Without loss of generality, assume A and B differ on the
lowest h digits.)

2284 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 4, AUGUST 2017

Class 1 (h paths of length l): For each i (0 ≤ i ≤ h − 1),
starting from A, we first “correct” the ith digit in |ai − bi|
steps along the shortest path on the ith dimension, adding 1
to ai or subtracting 1 from ai at each step; then, we repeat
the same correction process on the (i + 1)th digit, (i + 2)th
digit, . . ., (h − 1)th digit, 0th digit, 1st digit, . . ., (i − 1)th
digit, respectively; a l-hop path from A to B is thus formed.
By finding such a l-hop path for every i (0 ≤ i ≤ h − 1),
h node-disjoint paths of length l can be found. For example,
between two ToRs (0, 0) and (0, 2) in Figure 1, we can find
one such path — (0, 0)(0, 1)(0, 2).

Class 2 (h Paths of Length l + ki − 2di): where di =
min(|ai − bi|, ki − |ai − bi|), (0 ≤ i ≤ n − 1). For each
i (0 ≤ i ≤ h − 1), we move one step along the longest path
from ai to bi on the ith dimension, say from ToR A to ToR
A′ =(an−1, · · · , ai+1, ai − 1, ai−1, · · · , a0); then, we find
a Class 1 path of length l between A′ and B′ =(bn−1, · · · ,
bi+1, ai−1, bi−1, · · · , b0); finally, we move on from B′ to B,
along the longest path from ai to bi on the ith dimension; a
(l+ki−2di)-hop path from A to B is thus formed. This gives
us h node-disjoint paths of length l + ki − 2di. For example,
between two ToRs (0, 0) and (0, 2) in Figure 1, we can find
one such path — (0, 0)(0, 3)(0, 2).

Class 3 (2(n− h) Paths of Length l + 2): For each i (h ≤
i ≤ n − 1), we first move one step from A to B on the
ith dimension, from ToR A to ToR A′ =(an−1, · · · , ai+1,
ai + 1, ai−1, · · · , a0); then, we can find a Class 1 path of
length l between A′ and B′ =(bn−1, · · · , bi+1, bi + 1, bi−1,
· · · , b0); finally, we move one step along the ith dimension,
from B′ back to B; a (l+2)-hop path from A to B is thus
formed. Similarly, we can also find such a (l+2)-hop path via
A′′ =(an−1, · · · , ai+1, ai−1, ai−1, · · · , a0) and B′′ =(bn−1,
· · · , bi+1, bi−1, bi−1, · · · , b0). By finding such a pair of (l+2)-
hop paths for every i (h ≤ i ≤ n− 1), 2(n− h) node-disjoint
paths of length l+2 are found. For example, between two ToRs
(0, 0) and (0, 2) in Figure 1, we can find two such paths —
(0, 0)(1, 0)(1, 1)(1, 2)(0, 2) and (0, 0)(3, 0)(3, 1)(3, 2)(0, 2).

In total, we have found h+h+2(n−h) = 2n paths between
A and B, and it is clear from the above path finding process
that the paths are all node-disjoint.

WaveCube’s 2n node-disjoint paths are efficient for high-
performance routing, load-balancing, and fault-tolerance.

C. Dynamic Link Bandwidth

In addition to multi-pathing, WaveCube enables dynamic
link bandwidth on each path using optical components
(mainly WSS).

Take ToR11 in Figure 1 for example, as a sender, the WSS
receives all wavelengths from the ToR, which are multiplexed
onto a single fiber by the MUX. Then, the WSS divides these
wavelengths into K groups, each group of wavelengths going
to another ToR through one of the K outgoing links/ports
of the WSS. The number of wavelengths assigned to a ToR
link amounts to the bandwidth of that link. For example, if
the WSS incoming port receives 40 wavelengths, it can route
wavelengths 1–5 to outgoing port 1, 11–20 to port 2, 22–30
to port 3 etc. Then, links 1, 2, 3 are assigned 5, 10, 9 units of

bandwidth (i.e., 50Gbps, 100Gbps, 60Gbps if each ToR port
is 10Gbps), respectively.

As a receiver, the coupler multiplexes K groups of wave-
lengths received from K other ToRs to a single fiber, and the
DEMUX de-multiplexes all the wavelengths to their respective
ports on ToR.

However, wavelength contention requires that the same
wavelength cannot be assigned to a ToR link twice simul-
taneously. This poses a challenge to fully use the property
of dynamic link bandwidth, since non-contention wavelength
assignment is NP-hard and has not been solved in existing
optical DCN [15]. As shown later in Section IV, we make a
new contribution in designing an optimal wavelength assign-
ment algorithm by taking advantage of the WaveCube topology
properties.

It is worthwhile to note that WaveCube’s use of WSS is
inspired by OSA [15], but WaveCube significantly outperforms
OSA by designing the optimal wavelength assignment and
optimized wavelength adjustment algorithms (Section IV).

D. Optimization with The Above Two Properties

To optimize network performance using multi-pathing and
dynamic link bandwidth, we schedule flows over the multiple
paths and then dynamically provision link bandwidth to fit the
resulted traffic.

Per-Flow Scheduling: For each incoming flow, the central
controller decides, among 2n parallel paths, which one to
route the flow. There are many known scheduling methods
to use, such as random, round-robin, ECMP, etc. Recent
work Hedera [11] also introduced an advanced DCN flow
scheduling method. However, WaveCube does not require
sophisticated (possibly high-overhead) per-flow scheduling,
since it has dynamic link bandwidth. We just distribute traffic
among multiple paths randomly, and then dynamically allocate
link bandwidth to handle possible congestion resulted from
unbalanced flow scheduling. Our evaluation results show that
this simple method works well.

Bandwidth Scheduling: The goal of link bandwidth schedul-
ing is to find a link bandwidth assignment such that link
utilization is optimized. Here, link utilization is defined as
τ(u,v)
cφ(u,v)

, where τ(u, v) is the traffic volume on link (u, v),
and cφ(u, v) is the bandwidth assigned by φ to link (u, v).
Given a traffic matrix T, we define an optimal bandwidth
assignment as an assignment φ that minimizes the maximum
link utilization. For that, we define a variable yφ, which
represents the reciprocal of the maximum link utilization,
given by min(u,v)∈E { cφ(u,v)

τ(u,v) }. The bandwidth scheduling
problem is formulated as the following linear program.

Objective : max
φ

yφ (1)

Subject to : yφ ≤ cφ(u, v)
τ(u, v)

, ∀φ, ∀(u, v) ∈ E (2)
∑

v∈V

cφ(u, v) ≤ C, ∀u ∈ V (3)

cφ(u, v) ∈ R+, ∀(u, v) ∈ E (4)

The objective function (1) specifies the goal of maximiz-
ing yφ, which is equivalent to minimizing the maximum link

CHEN et al.: TOWARD A SCALABLE, FAULT-TOLERANT, HIGH-PERFORMANCE OPTICAL DATA CENTER ARCHITECTURE 2285

TABLE II

SOME KEY NOTATIONS USED IN SECTION IV

utilization. Constraint (2) states the correctness requirement
that, in any feasible assignment φ, yφ should be less than
or equal to the reciprocal of the link utilization τ(u,v)

cφ(u,v) of
any link (u, v). Constraint (3) shows that the total bandwidth
assigned to the links incident to a node cannot exceed the
node’s capacity. Here, link bandwidth is denoted by the
number of wavelengths carried on the link, which is a positive
integer. Constraint (4) relaxes the integer to be a real number,
which we will round back to an integer later.

While the traditional Internet TE has a similar optimization
goal but through changing flow routing [19], WaveCube opti-
mizes by adjusting link bandwidth. This linear program can
be solved efficiently with tools such as Cplex and Glpk.

IV. WAVELENGTH ASSIGNMENT

After computing a bandwidth assignment φ, we need phys-
ically assign wavelengths to each link that is equal to the
desired bandwidth of that link. In this section, we study two
key problems for wavelength assignment:
• Wavelength assignment: What is the minimal number of

wavelengths to implement φ?
• Wavelength adjustment: How to optimize wavelength

adjustment during bandwidth re-assignment?

A. Optimal Wavelength Assignment

In WaveCube (Figure 1), each ToR up-port is bound to
a fixed wavelength. The total wavelengths for each ToR are
the same and equal to the number of up-ports. Further, due
to wavelength contention introduced above, the same wave-
length cannot be assigned to a ToR link twice simultaneously.
Given a φ, we have to assign non-conflict wavelengths to
satisfy φ. Notations are explained in Table II.

Problem 1 (Optimal Wavelength Assignment (OWA)): Given
a WaveCube graph G = (V, E, φ) where φ is a link bandwidth
assignment on E, find a non-conflict wavelength assignment
λ on E to satisfy φ, such that the number of wavelengths used
is minimized.

In G = (V, E, φ), each node in V is a ToR, each edge in
E is a ToR link, and φ specifies the bandwidth demand on
each link. Figure 2 (left) is an example of G with bandwidth
demand specified. We translate it to a multigraph G′ = (V, E′)
(right), so that the number of edges between two ToRs in G′

is equal to the bandwidth demand between them in G. Then,
satisfying φ with the minimal non-conflict wavelengths is
equivalent to an edge-coloring solution [2] on the multigraph,
where each color represents a distinct wavelength and no two
adjacent edges share the same color.

We note that the traditional Routing and Wavelength Assign-
ment (RWA) [33] in optical networks is to select a suitable

Fig. 2. Example of multigraph construction.

lightpath for each connection so that no two lightpaths share
a link assigned the same wavelength. Moreover, in such
networks without wavelength converters, the same wavelength
must be used on all links along the lightpath (known as
wavelength continuity constraint). The RWA problem has
mostly been formulated as an integer programming problem
that does not lend itself to efficient solution. In comparison,
WaveCube leverages multi-hop optical links (with Optical-
Electrical-Optical conversion) to build an end-to-end path, and
each hop can use a different wavelength. As a result, OWA in
WaveCube can be model as the edge coloring problem.

However, the edge coloring problem on a general multi-
graph G′ is NP-complete [2], and the minimal number of
colors needed in an edge coloring χ(G′) ∈ [Δ(G′), Δ(G′) +
μ(G′)], where Δ(G′) is the maximum node degree of G′ and
μ(G′) is the multiplicity (i.e., the maximum number of edges
in any bundle of parallel edges).

This poses a challenge as Δ(G′) equals to the total number
of wavelengths available, while by theory it is possible to
require as many as Δ(G′) + μ(G′) = 2Δ(G′) in order to
fully satisfy φ. This problem has not been solved in previous
work [15]. However, WaveCube introduces a polynomial-time
optimal wavelength assignment solution by taking advantage
of the WaveCube topology properties.

Theorem 2: For any WaveCube graph G = (V, E, φ), we
can always provision φ (without wavelength contention) using
Δ(G′) wavelengths.

First of all, it is clear that at least Δ(G′) wavelengths
are needed to provision φ. Otherwise, there are not enough
wavelengths to avoid wavelength conflict at the ToR with
maximal degree in G′. Theorem 2 guarantees that we can
always use this minimum number of Δ(G′) wavelengths to
provision φ.

We will prove Theorem 2 by finding an edge-coloring
solution on G′ with Δ(G′) colors (i.e., wavelengths). This
is a daunting goal since it is NP-hard on general topolo-
gies [2], [15]. Our novelty is that WaveCube is designed in
such a way that its topology is guaranteed to be bipartite in
nature, for which an elegant polynomial-time algorithm can be
found for the optimal wavelength assignment. This innovative
architectural property makes WaveCube the very first optical
DCN of its kind. In the following, we first show the bipartite
nature of WaveCube, and then briefly describe the polynomial-
time algorithm for the optimal wavelength assignment.

Proof: To show its bipartite nature, we randomly select
a node in a WaveCube topology and mark it “black”,
and then starting from this black node, we mark all its
neighbors “white”. In the following steps, for each white
(or black) node, we mark its neighbors black (or white)

2286 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 4, AUGUST 2017

Fig. 3. An example of topology transformation.

iteratively until all the nodes are covered. Since in WaveCube,
every radix ki (0 ≤ i ≤ n − 1) is even, this procedure will
converge. We then put all black nodes in one group and white
nodes in another. This apparently is a bipartite graph since all
the edges are between these two groups. Figure 3 illustrates
an example of topology transformation.

We next theoretically prove the correctness. For that, we
show how nodes in G (and G′) can be partitioned into two
sets, say V1 and V2, so that every pair of neighboring nodes
in WaveCube must go to different sets and hence edges in
WaveCube exist across V1 and V2 only. To prove that, for
each node u = (an−1, an−2, · · · , a0), if

∑n−1
i=0 ai is even, we

put u in V1 and otherwise V2.
In WaveCube, two neighbors u = (an−1, an−2, · · · , a0) and

v = (bn−1, bn−2, · · · , b0) differ on exactly one dimension, say
dimension t, and we can assume without loss of generality that
bt = (at + 1) mod kt. Since kt is even, if at is odd, bt must
be even; if at is even, bt must be odd. Therefore, if

∑n−1
i=0 ai

is odd,
∑n−1

i=0 bi must be even; if
∑n−1

i=0 ai is even,
∑n−1

i=0 bi

must be odd. This proves that u and v must go to different
sets. Hence, G (as well as G′) is a bipartite graph.

Given G′ is a bipartite graph, a polynomial-time algorithm
for coloring G′ with Δ(G′) colors consists of three steps: (1)
We augment bipartite graph G′ into a Δ(G′)-regular bipartite
graph Gr by adding dummy edges (Δ(Gr) = Δ(G′)).
A Δ(G′)-regular bipartite graph is a bipartite graph where
the degree of every node is Δ(G′). (2) Partition the edges
in Δ(Gr) into Δ(G′) perfect matchings via Decomposition()
(described in Figure 4); (3) Assign a distinct color to each
perfect matching, and G′ is therein colored by Δ(G′) col-
ors (without wavelength conflict). Proof of Theorem 2 is
completed.

In the 3 steps of coloring G′, Decomposition() is critical.
It finds Δ(Gr) perfect matchings in Gr in a divide-and-
conquer manner. Its correctness is guaranteed by the fact that
“any k-regular bipartite graph has a perfect matching” [36].
Given this, we can extract one perfect matching from the
original graph, the residual graph is (Δ(Gr)−1)-regular; then
we extract the second perfect matching, etc, until ending up
with Δ(Gr) perfect matchings. Find_Perfect_Matching() is a
procedure to find a perfect matching in a regular bipartite
graph we learned from previous work. We show its correctness
in Appendix-A.

B. Optimized Wavelength Adjustment

In operation, network state may change and link band-
width needs adjustment to better fit traffic. Once bandwidth
demand φ changes, we need to re-assign wavelengths to satisfy
the new φ accordingly. A naive approach is to assign the

Fig. 4. Find Δ(Gr) perfect matchings that form Gr .

Fig. 5. A heuristic algorithm of MWA problem.

wavelengths from scratch without considering the old distri-
bution. However, given that shifting a wavelength from one
WSS port to another would incur ∼10ms latency, wavelength
re-assignment should shift minimal wavelengths. This mini-
mizes the disruption of ongoing traffic and is specially impor-
tant to latency-sensitive flows.

Problem 2 (Minimal Wavelength Adjustment (MWA)): Given
the WaveCube topology G = (V, E), the old bandwidth
distribution φo, the old wavelength distribution λo satisfying
φo, and the new bandwidth demand φn, find a wavelength
assignment λn satisfying φn such that, from λo→λn, the
shifting of wavelengths is minimal.

We formulate MWA problem as a 0-1 integer linear pro-
gram, and prove it is NP-hard. We then design a heuristic
algorithm in Figure 5. The basic idea is to use the old
wavelength distribution λo={m1, m2, · · · , mΔ} to assist the

CHEN et al.: TOWARD A SCALABLE, FAULT-TOLERANT, HIGH-PERFORMANCE OPTICAL DATA CENTER ARCHITECTURE 2287

decomposition of new multigraph G′
n into Δ matchings

λn={m′
1, m

′
2, · · · , m′

Δ}, and then assign colors to λn to
maximize overlap between λn and λo (Hungarian [3]).

Specifically, in lines 3-13, using each of the old matchings
mi as a reference, we try to find a new matching m in G′

n

that has as many overlap edges with mi as possible. It is
worthwhile to note that in lines 5 and 11, we require that the
new matching found must cover all the maximum degree nodes
in the current graph. This is a sufficient condition to guarantee
that G′

n can be decomposed into Δ matchings finally. Because
with this requirement, after successfully finding i matchings,
the residual graph has maximum node degree (Δ−i) and thus
can be decomposed into (Δ−i) matchings. If lines 3-13 cannot
find all the Δ matchings of G′

n, in 14-15, we proceed to use
ordinary method in Figure 4 to find the remaining matchings.
Finally, in lines 16-22, we use Hungarian algorithm to assign
colors to λn with the goal to maximize the color overlap
between λn and λo. We note that our algorithm is not optimal
and there is room to improve. However, it runs quickly and
provides impressive gains as shown in Section V-E.

V. PERFORMANCE EVALUATION

In this section, we evaluate WaveCube via large-scale sim-
ulations. We first introduce the evaluation methodology, and
then present the results.

A. Methodology

Topology: Our simulation is mainly based on a (6, 6, 6)-
radix WaveCube topology. It has 3 dimensions and each
dimension has 6 ToRs. We assume each ToR has 80 10G
ports: half of them connect to 40 hosts with 10G NICs and the
other half connect to 6 other ToRs via optics. This topology
has a total number of 8640 hosts. Further, we assume each
port of ToR that connects to the optics is equipped with an
optical transceiver with a unique wavelength that carries 10G
bandwidth. The number of wavelengths on a specific ToR link
varies from 1 to 40, suggesting a variance from 10G to 400G.

Traffic Patterns: We use the following traffic patterns.

• Realistic: We collect real traffic matrix (TM) from a pro-
duction data center5 with ∼400 servers with 1G ports. The
data center runs Map-reduce style applications, with wide-
spread communication patterns. For example, the average
server fan-in/out degrees are 45/43 and the maximal are
169/164. To replay the traffic over 8640 servers with 10G
ports, we proportionally reduce the transmission time by
10X (from 1G to 10G) and replicate TMs spatially (assum-
ing more concurrent Map-reduce applications). Specifically,
we partition the entire servers into over 20 groups and
replay the TM in each group.

• Microsoft-based: We synthesize traffic patterns based on
measurement results from recent works [12], [25], [28]
by Microsoft. These papers describe the traffic character-
istics in real data centers. For example, they found that
hotspots are often associated with a high fan-in (fan-out)
manner [25], and most of the traffic (80%) are within the

5The name of the production data center is anonymized for privacy.

Fig. 6. Network bisection bandwidth.

rack [12]. We capture the hotspot characteristics and assume
all traffic exit the rack to create intensive communications.

• Random: We assume each server in a ToR talks to servers
in up to 15 randomly selected ToRs. In this pattern, many
ToRs can simultaneously talk to one ToR, creating hotspots
and communication bottlenecks.
Evaluation Metrics: We extensively evaluate WaveCube

from the following aspects. First, we measure the network
bisection bandwidth of WaveCube under the above traffic
patterns. Second, we quantify the benefit of dynamic link
bandwidth in improving network performance. Third, we
check the fault-tolerance. Fourth, we quantify the effect of
wavelength adjustment optimization in avoiding unnecessary
wavelength shifting. Fifth, we analyze the control overhead of
WaveCube. Finally, we discuss the effect of traffic stability on
WaveCube.

Simulator: We implement our own simulator because there
is no standard one for our purpose. The simulator we devel-
oped models WaveCube as a directed graph with alterable
edge weights. It takes as input the flows with sizes, start time,
source and destination hosts. The simulation runs in discrete
time ticks with the granularity of millisecond. On each tick,
the rate of each flow is updated by running on all active
flows the progressive filling algorithm [6], which produces
a bandwidth allocation satisfying max-min fairness, and is
known as a good estimation of TCP behaviors. The sent
bytes are subtracted after each tick and completed flows
are removed. The simulator calls the bandwidth scheduler to
reschedule link bandwidth periodically.

B. Achieved Network Bisection Bandwidth

Figure 6 shows the average (max/min) network bisection
bandwidth achieved by WaveCube when running 40 instances
of each of the above traffic patterns on the simulated
WaveCube with 8640 hosts. The results are specifically
compared against c-Through (Helios performs similarly as
c-Through, OSA/Mordia perform better but they are not
scalable.)6 and a hypothetical non-blocking network, which
serves as the upper-bound of performance for any DCN.

6We note that Helios has the same idea as c-Through as it uses both optical
and electrical switches for interconnection, except that it is designed for inter-
modular-DCNs with one or more MEMSes for inter-Pods. Helios will perform
similar as c-Through when it employs a MEMS for inter-ToRs inside a single
DCN. We expect OSA to perform better than c-Through/Helios, however it
is designed for container-size DCN with 2560 servers, and cannot scale to
8640 servers at its current design. Mordia has even more severe scalability
issue than OSA. Due to these concerns, we do not compare with Helios, OSA,
or Mordia directly in this paper.

2288 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 4, AUGUST 2017

Fig. 7. WaveCube under failures.

From the figure, we find that, in terms of network bisection
bandwidth, WaveCube outperforms c-Through by 300%-400%
and is 70%-85% of non-blocking under all traffic patterns.
This is not a surprising result. Because c-Though assumes an
one-hop pairwise circuits in its optical part, such interconnect
is of marginal use to offload the traffic when hotspots are
associated with high fan-in (fan-out). In contrast, our (6, 6, 6)-
radix WaveCube uses multi-hop routing in a fixed 6-regular
topology, and any pair of ToRs has 6 node-disjoint paral-
lel paths. Despite a fix topology, WaveCube demonstrates
competitive performance via its rich path diversity. Further-
more, WaveCube dynamically adjusts its link bandwidth to
fit the underlying traffic, further improving its performance
(see Section V-C). In summary, our results suggest that multi-
pathing and dynamic link bandwidth are effective to offload
the hotspots, and deliver high bisection bandwidth for both
realistic and synthetic traffic patterns.

C. Benefit of Dynamic Link Bandwidth

To evaluate the benefit brought by our link bandwidth
optimization, we assume a static network where the 40 wave-
lengths of each node in the (6, 6, 6)-radix topology are evenly
and statically distributed along all dimensions. Figure 9 shows
the network bisection bandwidth versus time for WaveCube
against the static network under different traffic patterns.

From the three figures, we find that, with dynamic link
bandwidth optimization, the performance can be increased
by 10%-40%. This indicates that while the path diversity in
WaveCube balances the traffic loads among the network, the
uncoordinated flow scheduling for different source-destination
ToR pairs causes congestion on some links. WaveCube can
adaptively change link bandwidth to handle such congestion,
leading to improved performance.

D. Performance under Failures

To show fault-tolerance, we check the aggregate throughput
of WaveCube under failures. In our experiment, we generate
the node/link failures in the network randomly, and we regard
a node failure as a combination of link failures incident to
this node. We run with the realistic traffic pattern and show
the result in Figure 7. The throughput is normalized by the
non-failure case.

In the figure, we see a graceful performance degradation
with increased failures. For example, with as many as 20%
links down, the network aggregate throughput is decreased

Fig. 8. Quality of wavelength adjustment (mean, IQR).

by 20%. This result is expected because WaveCube structure
is fault-tolerant. It has 2n node-disjoint parallel paths between
any pair of ToRs. Once failures happen, the traffic can be easily
routed away from the failed parts using other parallel paths.
Furthermore, WaveCube has flexible link bandwidth. In case a
link fails, the associated nodes can reschedule the bandwidth
of the failed link to other links so that the resources can be
potentially reused elsewhere.

E. Quality of Wavelength Adjustment

We evaluate the quality of our wavelength adjustment
algorithm in Figure 5 on the (6, 6, 6)-radix WaveCube with
each ToR having 40 wavelengths. We first select a base
network state (S1) with initial bandwidth demand (φ1) and
wavelength distribution (λ1). Then, we generate another net-
work state (S2) with a new bandwidth demand (φ2) by
randomly rearranging bandwidth requirement on its links.
We run Wavelength_Adjustment() to get the new wavelength
distribution (λ2) and check how our algorithm can keep its
original distribution unmodified (i.e., |λ2∩λ1|) during the state
transition (S1→S2). We compare our algorithm with the one
without optimization. We repeat 100 times for each experiment
and compute the mean and IQR, i.e., 25th-75th percentiles.

Results in Figure 8 suggest that our algorithm effectively
avoids unnecessary wavelength shifting. For example, when
the bandwidth demand difference (i.e., |φ1 − φ2|) is 20, our
algorithm maintains 3876/4320=90% wavelengths unshifted,
while a non-optimized method only keeps 949/4320=22%
wavelengths unchanged. There is a decreasing trend on the
curves. This is because larger bandwidth demand change is
likely to cause bigger wavelength shifting. We have not been
able to compare our algorithm with the optimal solution due
to its complexity. But we are able to make an estimation. For
example, when |φ1 − φ2| = 640, the optimal solution can at
most keep 4320− 640 = 3680 wavelengths unshifted (should
be less than 3680). As a comparison, our algorithm can keep
3000 wavelengths unshifted, over 80% of the optimal.

F. Overhead of the Central Controller

The central controller handles most of intelligences in con-
trol plane. It needs to maintain the connectivity, utilization and
wavelength distribution information for each ToR link. The
connectivity is used for detecting failures, utilization for link
bandwidth optimization, and wavelength distribution for wave-
length adjustment optimization, respectively. Required states

CHEN et al.: TOWARD A SCALABLE, FAULT-TOLERANT, HIGH-PERFORMANCE OPTICAL DATA CENTER ARCHITECTURE 2289

Fig. 9. Benefit of dynamic link bandwidth optimization in network performance improvement.

TABLE III

TIME COST OF LINK BANDWIDTH SCHEDULING (LBS) AND

WAVELENGTH ADJUSTMENT OPTIMIZATION (WAO)

for these information is O(m) where m is the number of ToR
links in the network. This is modest considering Lemma 1,
which is O(105) even for mega data centers.

We next evaluate time cost of two main algorithms exe-
cuted by the central controller: link bandwidth schedul-
ing (Section III-D) and wavelength adjustment optimization
(Section IV-B). Table III shows the results for both opti-
mization algorithms versus network sizes. The result for
LBS suggests that the optimization can be finished quickly.
For example, it takes 16.6ms for a large WaveCube with
69,120 hosts. Further, we find that the runtime increases
with the network size incrementally. The result for WAO
suggests that our algorithm is time-efficient as it just spends
tens of milliseconds for the 69,120-host WaveCube. The fast
algorithms are essential to make WaveCube react to new traffic
patterns promptly.

G. Effect of Traffic Stability

WaveCube performs well due to its multi-pathing and
dynamic link bandwidth. Among these two, the gain of
dynamic link bandwidth should assume certain traffic stability.
The analysis on our real traffic matrices shows over 60% traffic
stablity at minutes or even hourly timescale [40]. Another
study [13] found that 60% of ToR-pairs see less than 20%
change in demand for seconds. Further, recent work [25] used
300s to compute the demands from their traces and found
that the present traffic demand can be well predicted from
the past ones. All of these studies give us confidence that
WaveCube’s dynamic link bandwidth can take effect on a
variety of practical workloads.

However, we envision that if the traffic is highly
dynamic [27], WaveCube’s performance can be significantly
affected due to its 10ms switching delay. To quantify this,
we vary the traffic stability period t from 1ms to 1000ms
for two synthetic traffic patterns used in Helios [18], i.e.,
Node (or Rack) Stride and Host Stride. Basically, denote

Fig. 10. Throughput vs traffic stability (Node=Rack, Host=Server).

n as the number of racks in the entire topology and k the
number of hosts per rack. The traffic patterns are described as
follows.
• Node Stride: Numbering the racks from 0 to n−1. For the

i-th node, its j-th host initiates a TCP flow to the j-th host
in the (i + l mod n)-th node, where l rotates from 1 to n
every t ms (t is the traffic stability period). This pattern tests
the response to abrupt demand changes between nodes, as
the traffic from one rack completely shifts to another rack
in a new period.

• Host Stride: Numbering the hosts from 0 to n×k−1, the
i-th host sends a TCP flow to the (i+k+ l mod (n × k))-th
host, where l rotates from 1 to �k/2	 every t ms. This
pattern showcases the gradual demand shift between nodes.

Figure 10 shows the average throughput vs traffic stability.
We make two observations: 1) If stability period is less
than 10ms (i.e., the reconfiguration delay), Node Stride
achieves almost 0 throughput while Host Stride achieves 50%
of the full bisection bandwidth. This is because for the Node
Stride case, all the wavelengths need to be reconfigured each
time; while for the Host Stride case, 50% of the wavelengths
stay unchanged; 2) Both patterns see the throughput increasing
to full bisection bandwidth with longer stability period.

From the above result, we find it is detrimental to apply
WaveCube for dynamic traffic whose stability period is less
than the reconfiguration delay. One alternative way to handle
such case is to disable dynamic link bandwidth. Then, the per-
formance of WaveCube is degraded to be a static network with
multi-pathing. Actually, the bottom curves in Figure 9 show
the performance without dynamic link bandwidth. Though
there is performance degradation, it would not completely
disable WaveCube.

2290 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 4, AUGUST 2017

VI. PRACTICAL DEPLOYMENT ANALYSIS

We discuss the practical deployment issues like construction
and expansion of WaveCube, and compare it with previous
DCNs. Given a large body of recent designs, we select
Fattree [32] (switch-centric), BCube [22] (server-centric) and
c-Through [39] (optical) as representatives. Then, we analyze
the cost and power. Finally, we evaluate the hardware feasi-
bility of WaveCube by comparing it with OSA [15].

A. Wiring Complexity

We observe that some DCN designs [21]–[23], [32], while
providing good performance, are hard to construct in practice
due to their dense connections and strict wiring rules. For
example, many wires must be connected between specific
devices or via specific ports. How to build a data center
is a practical question, especially when the data center is
large. Comparing to all recently proposed DCNs, WaveCube
is perhaps the easiest-to-build one in terms of wiring.

Directly counting the number of wires as previous work
did [22] is not a very sound way to quantify the wiring
complexity. Not all the wires have the same difficulty to set
up in practice. To analyze and compare the complexity of
wiring in DCNs, we develop the following metrics. First, we
categorize wires into rule-based ones and rule-free ones. The
rule-free wire refers to the wire that if one end is fixed, the
other end can be selected from a set of devices or ports
unconditionally. Usually, wires from servers to ToR on the
same rack are rule-free and very easy to connect. In contrast,
a rule-based wire requires that once one end is fixed, the other
end should be connected to a specific device/port or one of
several devices/ports conditionally. Such rule-based wiring is
usually error-prone and needs special care. Hence, the real
complexity of wiring mainly comes from the rule-based wires.

To quantify the complexity, we first need to understand
the placement of devices in data centers. Usually, devices
are arranged in racks, and racks are organized in rows and
columns [8]. Thus, we assign each rack a coordinate (i, j), i
is the index of column and j is the index of row. Suppose two
devices a and b are in different racks (ia, ja) and (ib, jb), we
use d(a, b) = |ia − ib| + |ja − jb| (Manhattan distance [5]) to
estimate the wiring length between these two devices. This
is because a practical and structured approach is to place
wires in rows or columns along the racks, which facilitates
cable identification, trouble-shooting and planning for future
changes [1].

We assume two devices in the same rack have length
d(a, b) = 1. We use r(a, b) to denote whether a wire is rule-
free (i.e., r(a, b) = 0) or rule-based (i.e., r(a, b) = 1). Then,
we summarize the wiring complexity of a data center as:

C_index =
∑

∀a,b∈V

r(a, b) × d(a, b) (5)

With the above metric, we compare WaveCube with
Fattree, BCube and c-Through. We target at both
container-size (3000-5000 servers) and large-scale
(25000-40000 servers). Especially, in order to make the
comparison more accurate, we compute the complexity of

TABLE IV

WIRING COMPLEXITY OF DCNs4

each structure according to its specific structure characteristics
individually. We put racks in rows and columns, and place
servers and switches in a way that the length of rule-based
wires is optimized.

The results are shown in Table IV.7 It can be seen
that WaveCube is 2-3 orders of magnitude simpler than
Fattree/BCube and 1 order of magnitude simpler than
c-Through at scale. When the size grows, the complexity of
WaveCube grows much slower than the others. The advantages
of WaveCube come from two main reasons: a) A single optical
fiber can aggregate high data volume which otherwise need
to be carried by many copper cables; b) Most of wires in
WaveCube are local except the loop-back ones, while many
wires in Fattree and BCube are (and have to be) between
remote racks. In c-Through, all ToRs connect to the central
MEMS, introducing remote wiring.

B. Data Center Expansion

With the growth of applications and storage, the scale
of a DCN will not remain the same for long [14]. Thus,
it is desirable that a structure should support expansion. In
WaveCube, the expansion can be easily achieved via adding
ToR switches in one dimension. For example, a (6, 6, 6)-radix
WaveCube can be extended to (6, 6, 8)-radix WaveCube via
adding 72 ToRs and 2840 servers. In addition, since most
WaveCube wires are local, it is relatively easy to “insert” new
ToRs in one dimension locally without causing re-wiring else-
where. Similarly, expanding c-Through can be done through
adding more ToRs and connecting them to the MEMS with
possibly long wires, and thus is not hard either.

On the contrary, expansion in BCube or Fattree (or related
DCNs) is not easy. Regardless of many long wires, the primary
reason is that the number of servers in the networks is decided
by the switch port density. For example, Fattree-1 hosting
16000 servers can be built with 40-port switches, and Fattree-2
hosting 27648 servers can be built with 48-port switches.
To expand from Fattree-1 to Fattree-2, two possible ways may
exist: 1. Initially build Fattree-1 with 48-port switches and
reserve 27648-16000=11648 ports for future expansion, or 2.
Initially build Fattree-1 with 40-port switches and replace them
with 48-port switches when expansion is required. Apparently,
both approaches are inflexible.

7Note that there are many other DCNs like VL2 [21], DCell [23],
Ficonn [30], BCN [24], Helios [18], OSA [15], etc, not specifically listed
here. Basically, VL2 is similar as Fattree and both are Clos network. DCell,
Ficonn and BCN are all server-centric as BCube, they have extremely complex
wiring rules making them hard to build. Helios and OSA are similar, if not
harder than c-Through since they introduce denser optical interconnections.

CHEN et al.: TOWARD A SCALABLE, FAULT-TOLERANT, HIGH-PERFORMANCE OPTICAL DATA CENTER ARCHITECTURE 2291

TABLE V

COST AND POWER FOR DIFFERENT DEVICES (†PER PORT VALUE),
SOME VALUES ARE REFERRED FROM HELIOS [18]

Fig. 11. Cost and power for different DCNs.

C. Cost and Power Consumption

We estimate the cost and power consumption for different
DCNs based on the values listed in Table V. Note that in 10G
electrical networks, optical transceivers are required for over
10m links [18]. So long-distance, cross-rack links in Fattree
or BCube must be optical. For example, Google’s DCN uses
optical fibers over fattree interconnect fabric [7].

Figure 11 shows the results. It is evident that, to host the
same number of servers, WaveCube is significantly cheaper
than either Fattree (∼35%) or BCube (∼40%) and consumes
much less power (∼35% for both). This is counter-intuitive
since it is common-sense that optical devices such as WSS
and MEMS are expensive. However, a detailed check reveals
that the real dominance is optical transceivers. Both Fattree
and BCube have much higher switch port density, and so their
cost is higher. For example, Fattree uses 5k3/4 ports to connect
k3/4 servers (where k is the number of ports on a Fattree
switch), while BCube uses (l + 1)kl+1 ports to connect kl+1

servers (where k is the number of ports on a BCube switch,
and l is the level of BCube).

In contrast, WaveCube only has ToR switches, and
c-Through has a few more electrical switches in addition to
ToRs. Both have lower switch port density, leading to lower
cost. Due to the same reason, the power cost of WaveCube
and c-Through is lower than Fattree and BCube. The same
trend applies to other related DCNs: electrical ones are more
expensive and consume more power than optical ones at the
era of 10G. Finally, we observe that WaveCube is slightly
costly than c-Through. This is because WaveCube employs a
few more optical devices such as circulator and coupler, and
WSS is more expensive than MEMS.

D. Usage of Optical Devices

In Table VI, we compare WaveCube with other optical
structures in terms of the main optical devices (e.g., WSS,
MEMS optical switch, MUX/DEMUX, and transceiver) used
at the same scale of 8640 hosts (= 216 racks × 40 hosts/rack).
We just follow the construction rule in each paper. As shown
in the table, Helios/c-Through do not need WSS but a

TABLE VI

COMPARISON OF OPTICAL DEVICES AT THE SAME SCALE (8640 HOSTS)

216-port MEMS to interconnect 216 racks. OSA almost has
the same devices as WaveCube, except that it requires one
additional 1296-port MEMS to connect all 216 racks (each
rack needs 6 MEMS ports). By default, Mordia only supports
limited port count, e.g., 88 [34], on a Mordia ring (due to
wavelength contention). We scale it out to 8640 by stacking
98 rings together using a 98×98 MEMS optical switch as
suggested by [34]. Furthermore, Mordia only needs MUX
but not DEMUX. Finally, all the structures require the same
number of optical transceivers.

However, it is important to note that, while at the same
scale, different structures may deliver different network bisec-
tion bandwidth. For example, Helios/c-Through only sup-
port rack-to-rack pairwise connection at a time [18], [39].
Mordia (stacked rings) is blocking, meaning that not any two
ports across different rings are connected [34]. In contrast,
WaveCube/OSA provide all-to-all connectivity at any time via
multi-hop routing. Furthermore, the WSSes used in different
structures are also different, e.g., the WSS used in Mordia is
microsecond level (11.5μs, expensive) switching [34], whereas
in WaveCube the WSS is millisecond level (∼10ms, cheaper)
switching.

E. WaveCube Hardware Feasibility

The crux of showing the feasibility of WaveCube is
to demonstrate the feasibility of the optical component
in Figure 1. This part is similar to that of OSA without
introducing any new advanced optical devices. To this end,
instead of building a dedicated small WaveCube testbed, we
leverage the OSA testbed to discuss the hardware feasibility of
WaveCube. (Readers can refer to [15] for details of the OSA
testbed.)

In the OSA testbed, instead of direct connection, one Polatis
series-1000 OSM/MEMS with 32 ports (16×16) was used to
connect 8 PC-emulated ToRs through WSS units. The key
difference between WaveCube and OSA is that WaveCube
removes MEMS and directly connects ToRs in a k-ary-n-cube
topology. As we have shown through analysis and extensive
simulations, this seemingly simple architecture re-design has
translated to significant benefits in scalability, fault-tolerance,
as well as the optimal wavelength assignment.

WaveCube can be built by fixating the MEMS circuits and
simply treating them as dumb fibers. Therefore, the extensive
feasibility study in OSA paper [15], as a reference, has also
demonstrated the feasibility of the optical component of a
small-scale WaveCube. However, we note that even with such
a small-scale testbed, it is far from sufficient to conduct per-
formance evaluation for WaveCube, whose target is scalable
optical DCN. Thus, we have focused on evaluating WaveCube

2292 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 4, AUGUST 2017

in large-scale simulated settings as elaborated in last section,
and leave the implementation of a larger non-trivial WaveCube
prototype as our next step.

VII. RELATED WORK

There are a large spectrum of works in data center networks
and optical networks that are related to WaveCube. Due to
space limitation, we only focus on the closely related ones.

Helios [18], c-Through [39], OSA [15], and Mordia [34] are
the most related works to WaveCube since they all explore
optical technologies in DCNs. However, WaveCube differs
from them in both design goals and methodology. Generally
speaking, WaveCube seeks a scalable, fault-tolerant, high-
performance optical DCN architecture, while none of these
three proposals achieves the three goals simultaneously.

c-Through and Helios present hybrid optical/electrical
DCNs. Their basic idea is to use MEMS-based optical
switch to provide high-capacity one-hop, pairwise connections
between ToRs, and use traditional electrical interconnects
(possibly oversubscribed) for overall connections among ToRs
for bursty traffic. Helios targets on inter-Pod connections
where each Pod is a modular DCN with thousands of servers,
while c-Through focuses on inter-ToR connections inside a
single DCN. A common feature of c-Through and Helios is
that their optical connection is of low fan-in (fan-out) and
non-transitive. This leads to reduced performance when the
hotspots occur with a high fan-in (fan-out) manner which are
prevalent in practical data center workloads [25].

In an earlier paper [15], OSA introduces a topology mal-
leable all-optical DCN. It allows multi-hop single-path routing
via optical links on a reconfigurable K-regular topology
with MEMS and also enables link capacities to be changed
on-demand. The highlight of OSA is its unprecedented
flexibility. It overcomes the deficiency of single-hop non-
transitive connection of c-Through or Helios. However, OSA is
intended for container-size DCNs and is hard to scale. Further-
more, the wavelength assignment problem remains unsolved.
Mordia [34] also cannot scale due to wavelength contention.

VIII. CONCLUSION

We have presented WaveCube, a scalable, fault-tolerant,
high-performance optical DCN architecture. WaveCube
removes MEMS from its design, thus achieving scalability.
It is fault-tolerant as there is no single point of failure
and node-disjoint parallel paths exist between any pair of
ToRs. WaveCube delivers high performance by exploiting
multi-pathing and dynamic link bandwidth. Our results show
that WaveCube well outperforms previous optical DCNs and
delivers network bisection bandwidth that is 70%-85% of
non-blocking under both realistic and synthetic traffic patterns.
And its performance degrades gracefully in case of failures—
a 20% drop even with 20% links cut.

APPENDIX

A. Correctness of Find_Perfect_Matching()

Find_Perfect_Matching() is what we learned and summa-
rized from previous work and is not our contribution. We prove
it for reader’s better understanding of the algorithm.

Theorem 3: The procedure Find_Perfect_Matching() retu-
rns a perfect matching M of Gr in O(Δ(Gr)|Er|) time.

Proof: We first show M is a perfect matching. The proof
is based on the fact that the sum of weight w of all edges
incident to each node is Δ(Gr) in the initialization, and is
never changed during the whole algorithm execution. This
is guaranteed by line 12 of Figure 4. When the algorithm
terminates, the subgraph of Gr whose edge set is M has
no cycle and is thus a forest. Suppose u is a leaf node and
e = (u, v), then w(e) = Δ(Gr), and due to the above fact,
v must have no other incident edge in M except e, which
indicates that M is a matching. Furthermore, since M covers
all the nodes in Gr, M is a perfect matching of Gr.

Regarding the time complexity, the value
∑

e∈Er w(e)2 is
|Er| in the initialization, and is |V |

2 Δ(Gr)2 = Δ(Gr)|Er|
when algorithm terminates. In each iteration (lines 10-13), the
value

∑
e∈Er w(e)2 is increased by:

∑

e∈M1

((w(e) + 1)2 − w(e)2)

+
∑

e∈M2

((w(e) − 1)2 − w(e)2)

= 2w(M1) + |M1| − 2w(M2) + |M2|
≥ |M1| + |M2| = |C| (6)

The above inequation is due to w(M1) ≥ w(M2). Further-
more, we need O(|C|) time to find a cycle C. Thus, the entire
algorithm runs in O(Δ(Gr)|Er|) time.

REFERENCES

[1] Best Practices Guide: Cabling the Data Center. [Online]. Available:
http://www.brocade.com/downloads/documents/white_papers/
cabling_best_practices_ga-bp-036-02.pdf

[2] Edge Coloring. [Online]. Available: http://en.wikipedia.org/wiki/
edge_coloring

[3] Hungarian Algorithm. [Online]. Available: http://en.wikipedia.org/wiki/
hungarian_algorithm

[4] Lee Distance. [Online]. Available: http://en.wikipedia.org/wiki/lee_
distance

[5] Manhattan Distance. [Online]. Available: http://en.wiktionary.org/wiki/
manhattan_distance

[6] Progressive Filling. [Online]. Available: http://en.wikipedia.org/wiki/
max-min_fairness

[7] Scaling Challenges for Warehouse Scale Computers. [Online].
Available: http://iee.ucsb.edu/content/2011-summit-video-presentation-
bikash-koley

[8] D. Abts and J. Kim, “High performance datacenter networks: Architec-
tures, algorithms, and opportunity,” Synthesis Lectures Comput. Archit.,
vol. 6, no. 1, p. 115, Mar. 2011.

[9] H. Abu-Libdeh, P. Costa, A. Rowstron, G. O’Shea, and
A. Donnelly, “Symbiotic routing in future data centers,” in Proc.
SIGCOMM, Aug. 2010, pp. 51–62.

[10] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data
center network architecture,” in Proc. ACM SIGCOMM, Aug. 2008,
pp. 63–74.

[11] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat,
“Hedera: Dynamic flow scheduling for data center networks,” in Proc.
USENIX Symp. Netw. Syst. Design Implement. (NSDI), Apr. 2010, p. 19.

[12] T. Benson, A. Akella, and D. Maltz, “Network traffic characteristics of
data centers in the wild,” in Proc. ACM IMC, Nov. 2010, pp. 267–280.

[13] T. Benson, A. Anand, A. Akella, and M. Zhang, “The case for
fine-grained traffic engineering in data centers,” in Proc. USENIX
INM/WREN, Apr. 2010.

[14] K. Chen et al., “Generic and automatic address configuration for data
centers,” in Proc. SIGCOMM, Aug. 2010, pp. 39–50.

[15] K. Chen et al., “Osa: An optical switching architecture for data center
networks with unprecedented flexibility,” in Proc. USENIX Symp. Netw.
Syst. Design Implement. (NSDI), 2012, pp. 239–252.

CHEN et al.: TOWARD A SCALABLE, FAULT-TOLERANT, HIGH-PERFORMANCE OPTICAL DATA CENTER ARCHITECTURE 2293

[16] W. J. Dally, “Performance analysis of k-ary n-cube interconnection
networks,” IEEE Trans. Comput., vol. 39, no. 6, pp. 775–785, Jun. 1990.

[17] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing
on large clusters,” in Proc. USENIX Symp. Oper. Syst. Design Imple-
ment. (OSDI), 2004, pp. 137–150.

[18] N. Farrington et al., “Helios: A hybrid electrical/optical switch archi-
tecture for modular data centers,” in Proc. SIGCOMM, Aug. 2010,
pp. 339–350.

[19] B. Fortz and M. Thorup, “Internet traffic engineering by optimizing ospf
weights,” in Proc. INFOCOM, Mar. 2000, pp. 519–528.

[20] S. Ghemawat, H. Gobioff, and S. T. Leung, “The Google file system,”
in Proc. SIGOPS, Oct. 2003, pp. 29–43.

[21] A. Greenberg et al., “VL2: A scalable and flexible data center network,”
in Proc. ACM SIGCOMM, Aug. 2009, pp. 51–62.

[22] C. Guo et al., “BCube: A high performance, server-centric network
architecture for modular data centers,” in Proc. SIGCOMM, Aug. 2009,
pp. 63–74.

[23] C. Guo et al., “DCell: A scalable and fault-tolerant network structure
for data centers,” in Proc. SIGCOMM, Aug. 2008, pp. 75–86.

[24] D. Guo et al., “Bcn: Expansible network structures for data centers
using hierarchical compound graphs,” in Proc. INFOCOM, Apr. 2011,
pp. 61–65.

[25] D. Halperin, S. Kandula, J. Padhye, P. Bahl, and D. Wetherall, “Aug-
menting data center networks with multi-gigabit wireless links,” in Proc.
ACM SIGCOMM, Aug. 2011, pp. 38–49.

[26] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad:
Distributed data-parallel programs from sequential building blocks,” in
Proc. Eurosys, Mar. 2007, pp. 59–72.

[27] S. Kandula, J. Padhye, and P. Bahl, “Flyways to de-congest data center
networks,” in Proc. HotNets, Aug. 2009.

[28] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R. Chaiken,
“The nature of datacenter traffic: Measurements and analysis,” in Proc.
ACM IMC, Nov. 2009, pp. 202–208.

[29] C. F. Lam et al., “Fiber optic communication technologies: What’s
needed for datacenter network operations,” IEEE Commun. Mag.,
vol. 48, no. 7, pp. 32–39, Jul. 2010.

[30] D. Li et al., “FiConn: Using backup port for server interconnection in
data centers,” in Proc. INFOCOM, Apr. 2009, pp. 2276–2285.

[31] H. Liu, C. F. Lam, and C. Johnson, “Scaling optical interconnects in
datacenter networks opportunities and challenges for wdm,” in Proc.
HOTI, Aug. 2010, pp. 113–116.

[32] R. N. Mysore et al., “Portland: A scalable fault-tolerant layer 2 data
center network fabric,” in Proc. SIGCOMM, Aug. 2009, pp. 39–50.

[33] A. E. Ozdaglar and D. P. Bertseka, “Routing and wavelength assign-
ment in optical networks,” IEEE/ACM Trans. Netw., vol. 11, no. 2,
pp. 259–272. Apr. 2003.

[34] G. Porter et al., “Integrating microsecond circuit switching into the data
center,” in Proc. SIGCOMM, Sep. 2013, pp. 447–458.

[35] J. Rath. (May 24, 2010). Google Eyes ‘Optical Express’ for Its Network.
[Online]. Available: http://www.datacenterknowledge.com/archives

[36] A. Schrijver, “Bipartite edge-colouring in o(δm) time,” SIAM J. Com-
put., vol. 28, no. 6, pp. 841–846, 1998.

[37] A. Singla, C.-Y. Hong, L. Popa, and P. B. Godfrey, “Jellyfish: Network-
ing data centers randomly,” in Proc. USENIX Symp. Netw. Syst. Design
Implement. (NSDI), Apr. 2012, p. 17.

[38] T. Truex, A. A. Bent, and N. W. Hagood, “Beam steering optical switch
fabric utilizing piezoelectric actuation technology,” in Proc. NFOEC,
2003.

[39] G. Wang et al., “c-Through: Part-time optics in data centers,” in Proc.
SIGCOMM, Aug. 2010, pp. 327–338.

[40] X. Wen et al., “Virtualknotter: Online virtual machine shuffling for con-
gestion resolving in virtualized datacenter,” in Proc. ICDCS, Jun. 2012,
pp. 12–21.

Kai Chen received the Ph.D. degree in computer
science from Northwestern University, Evanston, IL,
USA, in 2012. He is currently an Assistant Profes-
sor with the Department of Computer Science and
Engineering, The Hong Kong University of Science
and Technology, Hong Kong. His research interest
includes networked systems design and implemen-
tation, data center networks, and cloud computing.

Xitao Wen received the B.S. degree in computer
science from Peking University, Beijing, China,
in 2010, and the Ph.D. degree in computer science
from Northwestern University, Evanston, IL, USA,
in 2016. His research interests include networking
and security in networked systems, with a current
focus on software-defined network security and dat-
acenter networks.

Xingyu Ma received the B.E. degree in computer
science from Tsinghua University, China, in 2012,
and the M.S. degree in computer science from
the University of California at Los Angeles, Los
Angeles, CA, USA, in 2014. His interests include
datacenter networking and mobile systems.

Yan Chen (F’17) received the Ph.D. degree in
computer science from the University of California
at Berkeley, Berkeley, CA, USA, in 2003. He is cur-
rently a Professor with the Department of Electrical
Engineering and Computer Science, Northwestern
University, Evanston, IL, USA. His research inter-
ests include network security and measurement and
diagnosis for large-scale networks and distributed
systems. He received the Department of Energy
Early CAREER Award in 2005, the Department of
Defense Young Investigator Award in 2007, and the

Best Paper nomination in the ACM SIGCOMM 2010. Based on Google
Scholar, his papers have been cited over 10 000 times and his h-index is 42.

Yong Xia (M’04–SM’12) received the B.E. degree
from the Huazhong University of Science and Tech-
nology, Wuhan, China, in 1994, the M.E. degree
from the Institute of Automation, Chinese Academy
of Sciences, Beijing, in 1998, and the Ph.D. degree
from Rensselaer Polytechnic Institute, Troy, NY,
USA, in 2004. His research interests are in computer
networking, mobile networking, and scalable data
processing systems.

Chengchen Hu received the Ph.D. degree from
Tsinghua University, Beijing, China, in 2008.
From 2008 to 2010, he was an Assistant Research
Professor with Tsinghua University. He became
an Associate Professor with the Department of
Computer Science and Technology, Xi’an Jiaotong
University (XJTU), Xi’an, China. He visited
Northwestern University, USA, for three months
in 2007 and the Norwegian University of Science
and Technology Norway, for one year in 2014.
He is currently a Professor and the Head of the

Department of Computer Science and Technology with XJTU.
He has authored over 70 papers in high competitive venues, including

INFOCOM, CoNext, ICDCS, the IEEE/ACM TRANSACTIONS ON

NETWORKING, the IEEE TRANSACTIONS ON COMMUNICATIONS, and
the IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS. His
main research interests include network measurement, cloud datacenter
networking, and software defined networking. He served in the Organization
Committee and Technical Program Committee of several conferences,
including INFOCOM 2012–2017, IWQoS 2010, GLOBECOM 2010–2017,
ICC 2011–2016, ANCS2 014–2015/2017, and Networking 2014–2017. He is
a recipient of a Fellowship from the European Research Consortium for
Informatics and Mathematics, Microsoft Star-Track Young Faculty Program,
New Century Excellent Talents in University awarded by Ministry of
Education, China.

2294 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 4, AUGUST 2017

Qunfeng Dong received the Ph.D. degree in com-
puter science from UW-Madison. Since 1998, he has
been devoting his career to research in technological
fields centered on networking, computing, and data.
He joined the University of Science and Technology
of China as a Computer Science Professor, where
he published the very first NSDI paper that has
ever been accomplished by native universities of the
Greater China area. In 2013, he joined Huawei as
the Chief Scientist on computing architecture and the
CTO on hardware acceleration, where he also served

as a Founding Member of Huawei’s Algorithm Committee. He is currently
the Chairman and the CEO of DataBox Ltd., a leading vendor of chips and
systems for data center and cloud computing, which he founded in 2015.

Yongqiang Liu received the B.E. degree in computer science from the Harbin
Institute of Technology Harbin, China, in 2001, and the Ph.D. degree in
computer networking from Peking University in 2006. He was a Researcher
and the Research Manager with NEC Laboratories China from 2011 to 2012.
He is currently a Senior Research Scientist with Hewlett-Packard Laboratories
China. His research interests include wireless ad hoc network and wireless
mesh network, data center networking, parallel computing, and android
networking.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Aachen-Bold
 /ACaslon-AltBold
 /ACaslon-AltBoldItalic
 /ACaslon-AltItalic
 /ACaslon-AltRegular
 /ACaslon-AltSemibold
 /ACaslon-AltSemiboldItalic
 /ACaslon-Bold
 /ACaslon-BoldItalic
 /ACaslon-BoldItalicOsF
 /ACaslon-BoldOsF
 /ACaslonExp-Bold
 /ACaslonExp-BoldItalic
 /ACaslonExp-Italic
 /ACaslonExp-Regular
 /ACaslonExp-Semibold
 /ACaslonExp-SemiboldItalic
 /ACaslon-Italic
 /ACaslon-ItalicOsF
 /ACaslon-Ornaments
 /ACaslon-Regular
 /ACaslon-RegularSC
 /ACaslon-Semibold
 /ACaslon-SemiboldItalic
 /ACaslon-SemiboldItalicOsF
 /ACaslon-SemiboldSC
 /ACaslon-SwashBoldItalic
 /ACaslon-SwashItalic
 /ACaslon-SwashSemiboldItalic
 /AGaramondAlt-Italic
 /AGaramondAlt-Regular
 /AGaramond-Bold
 /AGaramond-BoldItalic
 /AGaramond-BoldItalicOsF
 /AGaramond-BoldOsF
 /AGaramondExp-Bold
 /AGaramondExp-BoldItalic
 /AGaramondExp-Italic
 /AGaramondExp-Regular
 /AGaramondExp-Semibold
 /AGaramondExp-SemiboldItalic
 /AGaramond-Italic
 /AGaramond-ItalicOsF
 /AGaramond-Regular
 /AGaramond-RegularSC
 /AGaramond-Semibold
 /AGaramond-SemiboldItalic
 /AGaramond-SemiboldItalicOsF
 /AGaramond-SemiboldSC
 /AGaramond-Titling
 /AJensonMM
 /AJensonMM-Alt
 /AJensonMM-Ep
 /AJensonMM-It
 /AJensonMM-ItAlt
 /AJensonMM-ItEp
 /AJensonMM-ItSC
 /AJensonMM-SC
 /AJensonMM-Sw
 /AlbertusMT
 /AlbertusMT-Italic
 /AlbertusMT-Light
 /Americana
 /Americana-Bold
 /Americana-ExtraBold
 /Americana-Italic
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /AvantGarde-Demi
 /BBOLD10
 /BBOLD5
 /BBOLD7
 /BermudaLP-Squiggle
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chaparral-Display
 /CMB10
 /CMBSY10
 /CMBSY5
 /CMBSY6
 /CMBSY7
 /CMBSY8
 /CMBSY9
 /CMBX10
 /CMBX12
 /CMBX5
 /CMBX6
 /CMBX7
 /CMBX8
 /CMBX9
 /CMBXSL10
 /CMBXTI10
 /CMCSC10
 /CMCSC8
 /CMCSC9
 /CMDUNH10
 /CMEX10
 /CMEX7
 /CMEX8
 /CMEX9
 /CMFF10
 /CMFI10
 /CMFIB8
 /CMINCH
 /CMITT10
 /CMMI10
 /CMMI12
 /CMMI5
 /CMMI6
 /CMMI7
 /CMMI8
 /CMMI9
 /CMMIB10
 /CMMIB5
 /CMMIB6
 /CMMIB7
 /CMMIB8
 /CMMIB9
 /CMR10
 /CMR12
 /CMR17
 /CMR5
 /CMR6
 /CMR7
 /CMR8
 /CMR9
 /CMSL10
 /CMSL12
 /CMSL8
 /CMSL9
 /CMSLTT10
 /CMSS10
 /CMSS12
 /CMSS17
 /CMSS8
 /CMSS9
 /CMSSBX10
 /CMSSDC10
 /CMSSI10
 /CMSSI12
 /CMSSI17
 /CMSSI8
 /CMSSI9
 /CMSSQ8
 /CMSSQI8
 /CMSY10
 /CMSY5
 /CMSY6
 /CMSY7
 /CMSY8
 /CMSY9
 /CMTCSC10
 /CMTEX10
 /CMTEX8
 /CMTEX9
 /CMTI10
 /CMTI12
 /CMTI7
 /CMTI8
 /CMTI9
 /CMTT10
 /CMTT12
 /CMTT8
 /CMTT9
 /CMU10
 /CMVTT10
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /Cutout
 /EMB10
 /EMBX10
 /EMBX12
 /EMBX5
 /EMBX6
 /EMBX7
 /EMBX8
 /EMBX9
 /EMBXSL10
 /EMBXTI10
 /EMCSC10
 /EMCSC8
 /EMCSC9
 /EMDUNH10
 /EMFF10
 /EMFI10
 /EMFIB8
 /EMITT10
 /EMMI10
 /EMMI12
 /EMMI5
 /EMMI6
 /EMMI7
 /EMMI8
 /EMMI9
 /EMMIB10
 /EMMIB5
 /EMMIB6
 /EMMIB7
 /EMMIB8
 /EMMIB9
 /EMR10
 /EMR12
 /EMR17
 /EMR5
 /EMR6
 /EMR7
 /EMR8
 /EMR9
 /EMSL10
 /EMSL12
 /EMSL8
 /EMSL9
 /EMSLTT10
 /EMSS10
 /EMSS12
 /EMSS17
 /EMSS8
 /EMSS9
 /EMSSBX10
 /EMSSDC10
 /EMSSI10
 /EMSSI12
 /EMSSI17
 /EMSSI8
 /EMSSI9
 /EMSSQ8
 /EMSSQI8
 /EMTCSC10
 /EMTI10
 /EMTI12
 /EMTI7
 /EMTI8
 /EMTI9
 /EMTT10
 /EMTT12
 /EMTT8
 /EMTT9
 /EMU10
 /EMVTT10
 /EstrangeloEdessa
 /EUEX10
 /EUEX7
 /EUEX8
 /EUEX9
 /EUFB10
 /EUFB5
 /EUFB7
 /EUFM10
 /EUFM5
 /EUFM7
 /EURB10
 /EURB5
 /EURB7
 /EURM10
 /EURM5
 /EURM7
 /EuroMono-Bold
 /EuroMono-BoldItalic
 /EuroMono-Italic
 /EuroMono-Regular
 /EuroSans-Bold
 /EuroSans-BoldItalic
 /EuroSans-Italic
 /EuroSans-Regular
 /EuroSerif-Bold
 /EuroSerif-BoldItalic
 /EuroSerif-Italic
 /EuroSerif-Regular
 /EUSB10
 /EUSB5
 /EUSB7
 /EUSM10
 /EUSM5
 /EUSM7
 /Fences
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /FreestyleScript
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Giddyup
 /GreymantleMVB
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /ICMEX10
 /ICMMI8
 /ICMSY8
 /ICMTT8
 /ILASY8
 /ILCMSS8
 /ILCMSSB8
 /ILCMSSI8
 /Impact
 /jsMath-cmex10
 /Kartika
 /Khaki-Two
 /LASY10
 /LASY5
 /LASY6
 /LASY7
 /LASY8
 /LASY9
 /LASYB10
 /Latha
 /LCIRCLE10
 /LCIRCLEW10
 /LCMSS8
 /LCMSSB8
 /LCMSSI8
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LINE10
 /LINEW10
 /LOGO10
 /LOGO8
 /LOGO9
 /LOGOBF10
 /LOGOD10
 /LOGOSL10
 /LOGOSL8
 /LOGOSL9
 /LucidaBlackletter
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaBright-Oblique
 /LucidaBrightSmallcaps
 /LucidaBrightSmallcaps-Demi
 /LucidaCalligraphy-Italic
 /LucidaCasual
 /LucidaCasual-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaNewMath-AltDemiItalic
 /LucidaNewMath-AltItalic
 /LucidaNewMath-Arrows
 /LucidaNewMath-Arrows-Demi
 /LucidaNewMath-Demibold
 /LucidaNewMath-DemiItalic
 /LucidaNewMath-Extension
 /LucidaNewMath-Italic
 /LucidaNewMath-Roman
 /LucidaNewMath-Symbol
 /LucidaNewMath-Symbol-Demi
 /LucidaSans
 /LucidaSans-Bold
 /LucidaSans-BoldItalic
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /LucidaTypewriter
 /LucidaTypewriterBold
 /LucidaTypewriterBoldOblique
 /LucidaTypewriterOblique
 /Mangal-Regular
 /MicrosoftSansSerif
 /Mojo
 /MonotypeCorsiva
 /MSAM10
 /MSAM5
 /MSAM6
 /MSAM7
 /MSAM8
 /MSAM9
 /MSBM10
 /MSBM5
 /MSBM6
 /MSBM7
 /MSBM8
 /MSBM9
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MTEX
 /MTEXB
 /MTEXH
 /MTGU
 /MTGUB
 /MTLS
 /MTLSB
 /MTMI
 /MTMIB
 /MTMIH
 /MTMS
 /MTMSB
 /MTMUB
 /MTMUH
 /MTSY
 /MTSYB
 /MTSYH
 /MT-Symbol
 /MT-Symbol-Italic
 /MTSYN
 /MVBoli
 /Myriad-Tilt
 /Nyx
 /OCRA-Alternate
 /Ouch
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Pompeia-Inline
 /Postino-Italic
 /Raavi
 /Revue
 /RMTMI
 /RMTMIB
 /RMTMIH
 /RMTMUB
 /RMTMUH
 /RSFS10
 /RSFS5
 /RSFS7
 /Shruti
 /Shuriken-Boy
 /SpumoniLP
 /STMARY10
 /STMARY5
 /STMARY7
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-BoldOblique
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Oblique
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /UniversityRoman
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /WASY10
 /WASY5
 /WASY7
 /WASYB10
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /WNCYB10
 /WNCYI10
 /WNCYR10
 /WNCYSC10
 /WNCYSS10
 /WoodtypeOrnaments-One
 /WoodtypeOrnaments-Two
 /ZapfChancery-MediumItalic
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

