

EXERCISE I: REDUCE UNIVERSITY SCHEMA

Reduce the university E-R schema to relation schemas. Use schema combination where possible to reduce relationships. Specify all referential integrity constraints.

EXERCISE I: REDUCE STRONG ENTITIES

How do we reduce the strong entities?

 \implies Create a relation for each strong entity with the same attribute as the entity.

What are the keys of these relations? \Rightarrow Same as the entities.

What are the foreign key constraints? \Rightarrow None.

What are the referential integrity actions? \Rightarrow None.

EXERCISE I: REDUCE GENERALIZATIONS

Option 1: Reduce *all entities* to relation schemas.

Staff(hkid, name, officeNumber)

Instructor(<u>hkid</u>, title) foreign key (hkid) references Staff(hkid) on delete cascade

TA(<u>hkid</u>)

foreign key (hkid) references Staff(hkid) on delete cascade

Which option to select?

Option 2: Reduce *only subclass entities* to relation schemas.

Instructor(<u>hkid</u>, name, officeNumber, title)

TA(hkid, name, officeNumber)

Select Option 1 since Staff has a relationship to other entities and some subclass entities have their own attributes.

EXERCISE I: REDUCE COMPOSITE/ MULTIVALUED ATTRIBUTES

Multivalued attributes: major

How do we reduce the multivalued attribute major?

⇒ Create a relation StudentMajor and include studentId, the key of Student, and the attribute major.

What is the key of this relation?

What is the foreign key constraint?

What is the referential integrity action?

EXERCISE I: REDUCE WEAK ENTITIES

Offering entity

How do we reduce this entity?

⇒ Create a relation from Offering and include courseld, the key of Course, as a foreign key.

What is the key of this relation?

What is the foreign key constraint?

What is the referential integrity action?

COMP 3311

EXERCISE I: REDUCE I:N RELATIONSHIPS

Offers relationship between **Department** and **Course**

How do we reduce this relationship?
⇒ Create a relation, Offers, containing the keys of Department and Course.
What is the key of the relation?
What are the foreign key constraints?
What are the referential integrity actions?

COMP 3311

EXERCISE I: REDUCE I:N RELATIONSHIPS

Offers relationship between **Department** and **Course** (using schema combination)

Which relation do we use?

⇒ Course (Add code, the key of Department, as a foreign key.)

What is the foreign key constraint?

What is the referential integrity action?

EXERCISE I: REDUCE I:N RELATIONSHIPS

Appoints relationship between Department and Staff (using schema combination)

Which relation do we use?

⇒ Staff (Add code, the key of Department, as a foreign key.)

What is the foreign key constraint?

What is the referential integrity action?

EXERCISE I: REDUCE N:M RELATIONSHIPS

AssignedTo relationship between Staff and Offering

AssignedTo(hkid, courseld, section, semester, year) foreign key (hkid) references Staff on delete cascade foreign key (courseld, section, semester, year) references Offering on delete cascade

How do we reduce this relationship?

⇒ Create a relation, AssignedTo, containing the keys of the Staff and Offering relations.

What is the key of the relation?

What are the foreign key constraints?

What are the referential integrity actions?

For a relation that represents a relationship, the referential integrity action is always on delete cascade.

EXERCISE I: REDUCE N:M RELATIONSHIPS

EnrollsIn relationship between **Student** and **Offering**

How do we reduce this relationship?

⇒ Create a relation, EnrollsIn, containing the keys of the Student and Offering relations.

Anything else? \Rightarrow Add the attribute grade to the relation.

EXERCISE I: REDUCE N:M RELATIONSHIPS

HasPrerequisite relationship between Course and Course

Course(<u>code</u>, name) (*previously reduced*)

HasPrerequisite(<u>courseld</u>, <u>prerequisiteld</u>) foreign key (courseld) references Course(courseld) on delete cascade foreign key (<u>prerequisiteld</u>) references Course(courseld) on delete cascade

How do we reduce this relationship?

⇒ Create a relation, HasPrerequisite, containing the key of the Course relation (twice).

What is the key of the relation?

EXERCISE I: UNIVERSITY SCHEMA REDUCTION

Staff(<u>hkid</u>, name, officeNumber, code) foreign key (code) references Department(code) on delete cascade

Instructor(<u>hkid</u>, title) foreign key (hkid) references Staff(hkid) on delete cascade

TA(<u>hkid</u>)

foreign key (hkid) references Staff(hkid) on delete cascade

Student(studentId, name)

Course(<u>courseld</u>, name, code) foreign key (code) references Department(code) on delete cascade

Department(code, name)

StudentMajor(<u>studentId, major</u>) foreign key (studentId) references Student(studentId) on delete cascade Offering(<u>courseld</u>, <u>section</u>, <u>semester</u>, <u>year</u>) foreign key (courseld) references Course(courseld) on delete cascade

AssignedTo(<u>hkid, courseld, section, semester, year</u>) foreign key (hkid) references Staff(hkid) on delete cascade foreign key (courseld, section, semester, year) references Offering(courseld, section, semester, year) on delete cascade

EnrollsIn(studentId, courseld, section, semester, year, grade) foreign key (studentId) references Student(studentId) on delete cascade foreign key (courseld, section, semester, year) references Offering(courseld, section, semester, year) on delete cascade

HasPrerequisite(courseld, prerequisiteld) foreign key (courseld) references Course(courseld) on delete cascade foreign key (prerequisiteld) references Course(courseld) on delete cascade

EXERCISE 2: REDUCE BUS COMPANY SCHEMA

Reduce the bus company E-R schema to relation schemas. Specify all keys and referential integrity constraints. Do not add any surrogate keys. Use schema combination where possible to reduce relationships.

Route

routeNo

COMP 3311

14

EXERCISE 2: REDUCE ENTITIES

Strong Entities

Weak Entities

EXERCISE 2: REDUCE I:N RELATIONSHIPS

EXERCISE 2: REDUCE I:N RELATIONSHIPS

HasDeparture relationship between Route and Station (using schema combination)

Route(<u>routeNo</u>, departureStationName) foreign key (departureStationName) references Station(name) on delete cascade

HasDestination relationship between Route and Station (using schema combination)

Route(<u>routeNo</u>, departureStationName, destinationStationName) foreign key (destinationStationName) references Station(name) on delete cascade

EXERCISE 2: BUS COMPANY SCHEMA REDUCTION

Driver(empld, name, phoneNo)

Bus(licenseNo, maxSeating)

Route(<u>routeNo</u>, departureStationName, destinationStationName) foreign key (departureStationName) references Station(name) on delete cascade foreign key (destinationStationName) references Station(name) on delete cascade

Station(name)

Schedule(<u>routeNo, departureTime</u>, empld, licenseNo) foreign key (routeNo) references Route(routeNo) on delete cascade foreign key (empld) references Driver(empld) on delete set null foreign key (licenseNo) references Bus(licenseNo) on delete set null

