
1DSAA 5012 L8: EXERCISES20 February 2021©

LECTURE 8 EXERCISES
STRUCTURED QUERY LANGUAGE (SQL)

DSAA 5012
Advanced Data Management for Data

Science

2DSAA 5012 L8: EXERCISES20 February 2021©

BOOK STORE RELATIONAL SCHEMA

Book(bookId, title, subject, quantityInStock, price, authorId)

Author(authorId, firstName, lastName)

Customer(customerId, firstName, lastName)

BookOrder(orderId, customerId, orderYear)

OrderDetails(orderId, bookId, quantity)

Assumptions

– Each author has authored at least one book in the store.

– Each book has exactly one Author.

– Each order is made by exactly one customer and has one or more associated

tuples in OrderDetails (e.g., one order may contain several different books).

Attribute names in

italics are foreign

key attributes.

3DSAA 5012 L8: EXERCISES20 February 2021©

EXERCISE 1

Given the foreign keys of the Book Store relations and

assuming the referential integrity constraints are included in

the SQL create statements, what should be the create order?

Book

Author Customer

BookOrder

OrderDetails

Book(bookId, title, subject, quantityInStock, price, authorId)

Author(authorId, firstName, lastName)

Customer(customerId, firstName, lastName)

BookOrder(orderId, customerId, orderYear)

OrderDetails(orderId, bookId, quantity)

references references

referencesreferences

Table Possible create order

Author 1 1 2 2 1 3

Customer 2 2 1 1 3 1

Book 3 4 3 4 2 4

BookOrder 4 3 4 3 4 2

OrderDetails 5 5 5 5 5 5

Create Order

Author before Book

Customer before BookOrder

Book, BookOrder before OrderDetails

4DSAA 5012 L8: EXERCISES20 February 2021©

All attributes will be used in the join!

Cannot specify the attribute on which to join.

Note: Natural join cannot be used if self join is required. Why?

EXERCISE 2

For all authors who wrote books on at least two

subjects, increase the price of all their books by 5%.

update Book

set price=1.05*price

where authorId in (select B1.authorId

from Book B1, Book B2

where B1.authorId=B2.authorId

and B1.subject<>B2.subject);

Join Book with

itself on authorId.

Select only those tuples where the subject is

different (i.e., the result contains only those authors

who wrote books on more than one subject).

Update the

price by 5%.

Book(bookId, title, subject, quantityInStock, price, authorId)

5DSAA 5012 L8: EXERCISES20 February 2021©

EXERCISE 2 (cont’d)

For all authors who wrote books on at least two

subjects, increase the price of all their books by 5%.

update Book

set price=1.05*price

where authorId in (select authorId

from Book

group by authorId

having count(distinct subject)>=2);

Authors who wrote books

on more than one subject.

Update the

price by 5%.

Do not

use join

Book(bookId, title, subject, quantityInStock, price, authorId)

6DSAA 5012 L8: EXERCISES20 February 2021©

Can we say⟹ where subject='Art' and subject='Business'?
☞ Selects nothing.

Can we say⟹ where subject='Art' or subject='Business'?
☞ Selects authors who wrote either Art or Business books,

but not necessarily on both subjects.

No. Why?

No. Why?

EXERCISE 3

Find the last name and first name of all authors who

wrote books on both the subjects of Art and Business.

Book(bookId, title, subject, quantityInStock, price, authorId) Author(authorId, firstName, lastName)

select lastName, firstName

from (select authorId, lastName, firstName

from Author natural join Book

where subject='Art'

intersect

select authorId, lastName, firstName

from Author natural join Book

where subject='Business');

Authors who wrote

books on Art.

Authors who wrote

books on Business.

Select only those authors in the Art

set who are also in the Business set.

7DSAA 5012 L8: EXERCISES20 February 2021©

EXERCISE 3 (cont'd)

Find the last name and first name of all authors who

wrote books on both the subjects of Art and Business.

select lastName, firstName

from Author natural join Book

where subject='Art'

and authorId in (select authorId

from Author natural join Book

where subject='Business');

Authors who wrote

books on Art (Art set).

Authors who wrote books

on Business (Business set).

Select only those authors in the Art

set who are also in the Business set.

Use only set

membership

Book(bookId, title, subject, quantityInStock, price, authorId) Author(authorId, firstName, lastName)

8DSAA 5012 L8: EXERCISES20 February 2021©

EXERCISES 4, 5, 6, 7

Exercise 4: Find the last name and first name of all authors who wrote

books on exactly ten different subjects. Do not use subqueries;

do not create any derived relations.

Exercise 5: For each customer who made more than 10 orders in 2019, find

the customer id, last name and the number of orders in 2019.

Do not use subqueries; do not create any derived relations.

Exercise 6: Find the customer id, last name and total quantity ordered for

those customer(s) who ordered the largest total quantity of

books.

Exercise 7: Complete the definitions of the accountCursor and the

borrowerCursor for the PL/SQL procedure.

9DSAA 5012 L8: EXERCISES20 February 2021©

select lastName, firstName, count(distinct subject) as numSubjects

from Author natural join Book

group by authorId, lastName, firstName

having numSubjects=10;

EXERCISE 4

Is this a

correct

solution?

No! Why?

Join Customer and

Book on authorId.

Group the result by authorId,

lastName and firstName.

Select only those groups

having exactly ten subjects.

☞ Cannot use an alias defined in the select clause in the having clause.

Find the last name and first name of all authors

who wrote books on exactly ten different subjects.

Do not use

subqueries.

Do not create any

derived relations.

Book(bookId, title, subject, quantityInStock, price, authorId) Author(authorId, firstName, lastName)

10DSAA 5012 L8: EXERCISES20 February 2021©

EXERCISE 4 (cont’d)

select lastName, firstName

from Author A

where 10 = (select count(*)

from Book

where A.authorId=Book.authorId

group by A.authorId);

Is this a

correct

solution?

No! Why?

☞ Selects authors who wrote exactly ten books.
(But the subject could be the same!)

☞ How to fix this?
Change select count(*) to select count(distinct subject).

?
Selects last name of author

if the where clause is true.

Counts the number of books written by each author and

returns true if the author wrote exactly ten books.

Do not use

subqueries.

Do not create any

derived relations.

Book(bookId, title, subject, quantityInStock, price, authorId) Author(authorId, firstName, lastName)

Find the last name and first name of all authors

who wrote books on exactly ten different subjects.

11DSAA 5012 L8: EXERCISES20 February 2021©

Is authorId needed in the group by clause?

☞ Yes, otherwise the count for two different authors with the same last and

first name will be incorrect resulting in an incorrect result.

EXERCISE 4 (cont’d)

select lastName, firstName

from Author natural join Book

group by authorId, lastName, firstName

having count(distinct subject)=10;

Join Author and

Book on authorId.

Group the result by

authorId and lastName.

Select only those groups having

exactly ten different subjects.

Is this a

correct

solution?

Yes!

Do not use

subqueries.

Do not create any

derived relations.

Book(bookId, title, subject, quantityInStock, price, authorId) Author(authorId, firstName, lastName)

Find the last name and first name of all authors

who wrote books on exactly ten different subjects.

12DSAA 5012 L8: EXERCISES20 February 2021©

EXERCISE 4 (cont’d)

select lastName, firstName

from Author

where authorId in (select authorId

from Book

group by authorId

having count(distinct subject)=10;

Last and first names of authors who

are in the result of the inner select.

Is this a

correct

solution?

Yes!

(But should

not use

subquery!)

?
Ids of authors who have written

books on ten different subjects.

Do not use

subqueries.

Do not create any

derived relations.

Book(bookId, title, subject, quantityInStock, price, authorId) Author(authorId, firstName, lastName)

Find the last name and first name of all authors

who wrote books on exactly ten different subjects.

13DSAA 5012 L8: EXERCISES20 February 2021©

EXERCISE 5

For each customer who made more than 10 orders in 2019, find

the customer id, last name and the number of orders in 2019.

select customerId, lastName, count(*)

from Customer natural join BookOrder

where orderYear=‘2019'

group by customerId, lastName

having count(*)>10;

Are both customerId and lastName needed in the group by clause?

☞ Yes, since they are both present in the select clause.

Join Customer and Order on

customerId for orders in 2019.

Group the result by

customerId and lastName.

Select only those groups having

more than 10 orders.

Do not use

subqueries.

Do not create any

derived relations.

Customer(customerId, firstName, lastName) BookOrder(orderId, customerId, orderYear)

Is this a

correct

solution?

Yes!

14DSAA 5012 L8: EXERCISES20 February 2021©

EXERCISE 5 (cont'd)

select customerId, lastName, count(*)

from Customer natural join BookOrder

group by customerId, lastName

having count(*)>10 and orderYear=‘2019';

☞ Any attribute present in the having clause that is not being

aggregated must appear in the group by clause.

Do not use

subqueries.

Do not create any

derived relations.

Customer(customerId, firstName, lastName) BookOrder(orderId, customerId, orderYear)

Is this a

correct

solution?

No! Why?

select customerId, lastName, count(*)

from Customer natural join BookOrder

group by customerId, lastName, orderYear

having count(*)>10 and orderYear=‘2019';

Correct

solution.

For each customer who made more than 10 orders in 2019, find

the customer id, last name and the number of orders in 2019.

15DSAA 5012 L8: EXERCISES20 February 2021©

EXERCISE 6

Find the customer id, last name and total quantity ordered for

those customers who ordered the largest total quantity of books.

select customerId, lastName, sum(quantity) as totalQuantity

from Customer natural join BookOrder natural join OrderDetails

group by customerId, lastName

having sum(quantity)=(select max(sum(quantity))

from BookOrder natural join OrderDetails

group by customerId);

The customers who ordered the

largest total quantity of books.

The total quantity of books

ordered by each customer.

Select those customers whose

total quantity is the largest.

Customer(customerId, firstName, lastName) BookOrder(orderId, customerId, orderYear) OrderDetails(orderId, bookId, quantity)

16DSAA 5012 L8: EXERCISES20 February 2021©

EXERCISE 6 (cont’d)

select customerId, lastName, sum(quantity) as totalQuantity

from Customer natural join BookOrder natural join OrderDetails

group by customerId, lastName

having sum(quantity) >=all (select sum(quantity)

from BookOrder natural join OrderDetails

group by customerId);

The customers who ordered the

largest total quantity of books.

The total quantity of books

ordered by each customer.

Select those customers whose

total quantity is the largest.

Customer(customerId, firstName, lastName) BookOrder(orderId, customerId, orderYear) OrderDetails(orderId, bookId, quantity)

Find the customer id, last name and total quantity ordered for

those customers who ordered the largest total quantity of books.

17DSAA 5012 L8: EXERCISES20 February 2021©

EXERCISE 6 (cont’d)

with TotalBooksOrdered as

(select customerId, lastName, sum(quantity) as totalQuantity

from Customer natural join BookOrder natural join OrderDetails

group by customerId, lastName)

select customerId, lastName, totalQuantity

from TotalBooksOrdered

where totalQuantity = (select max(totalQuantity)

from TotalBooksOrdered);

The customers who ordered the

largest total quantity of books.

The total quantity of books

ordered by each customer.

The largest total quantity of books ordered

(from the TotalBooksOrdered derived relation).

Customer(customerId, firstName, lastName) BookOrder(orderId, customerId, orderYear) OrderDetails(orderId, bookId, quantity)

Find the customer id, last name and total quantity ordered for

those customers who ordered the largest total quantity of books.

18DSAA 5012 L8: EXERCISES20 February 2021©

EXERCISE 6 (cont'd)

Customer(customerId, firstName, lastName) BookOrder(orderId, customerId, orderYear) OrderDetails(orderId, bookId, quantity)

☞ Cannot use an aggregate function in the select

clause unless only one tuple is returned.

Is this a

correct

solution?

No! Why?

with TotalBooksOrdered as

(select customerId, lastName, sum(quantity) as totalQuantity

from Customer natural join BookOrder natural join OrderDetails

group by customerId, lastName)

select customerId, lastName, max(totalQuantity)

from TotalBooksOrdered;

Find the customer id, last name and total quantity ordered for

those customers who ordered the largest total quantity of books.

19DSAA 5012 L8: EXERCISES20 February 2021©

EXERCISE 7

The following PL/SQL procedure is used to calculate the interest payable

to an account and to update the account balance with the interest payable

according to the following schedule.

0% if balance < $10,000

2% if $10,000 ≤ balance < $100,000

4% if balance ≥ $100,000

Additionally, if the account balance is greater than or equal to $100,000

and the client holding the account has a loan, then an additional 1%

interest is given.

Complete the accountCursor and borrowerCursor definitions

so that the PL/SQL procedure executes correctly.

Branch(branchName, district, assets) Account(accountNo, balance, branchName)

Client(clientId, name, address, district) Borrower(clientId, loanNo)

Loan(loanNo, amount, branchName) Depositor(clientId, accountNo)

20DSAA 5012 L8: EXERCISES20 February 2021©

EXERCISE 7 (CONT”D)

create or replace procedure CalculateInterest as

currentAccountNo Account.accountNo%type;

interestPayable Account.balance%type;

percentInterest number;

-- The cursor for the Account table

cursor accountCursor is select accountNo, balance from Account;

-- The cursor for the join of the Borrower and Depositor tables for the current account

cursor borrowerCursor is select count(loanNo) numLoans from Borrower natural join

Depositor where accountNo=currentAccountNo;

begin

for accountRecord in accountCursor loop

currentAccountNo := accountRecord.accountNo;

-- Determine the percent interest to pay

percentInterest := 0;

if (accountRecord.balance>=10000 and accountRecord.balance<100000) then

percentInterest := 0.02;

21DSAA 5012 L8: EXERCISES20 February 2021©

EXERCISE 7 (CONT”D)

elsif (accountRecord.balance >= 100000) then percentInterest := 0.04;

-- Give an additional 1% interest if the client has a loan

for borrowerRecord in borrowerCursor loop

if (borrowerRecord.numLoans <> 0) then

percentInterest := percentInterest + 0.01;

end if;

end loop;

end if;

-- Calculate the interest payable

interestPayable := accountRecord.balance * percentInterest;

-- Update the client's account balance

update Account set balance = balance + interestPayable where

accountNo=currentAccountNo;

end loop;

end CalculateInterest;

